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Abstract. In this paper, we introduce and study strong convergence of modified inertial-type subgradient
extragradient method for finding solution of variational inequality problem and common fixed point
problem of an infinite family of demimetric mappings in a Hilbert space. Our results substantially improve
and generalize some well-known results in the literature.

1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H. A mapping G : D(G) ⊂ H→ H
is said to be: (i) monotone if for all x, y ∈ D(G),

⟨Gx − Gy, x − y⟩ ≥ 0, (1)

holds, where D(G) denotes the domain of G. (ii) L − Lipschitz if there exists L > 0 and for all x, y ∈ D(G), we
have

||Gx − Gy|| ≤ L||x − y||.

The set of fixed points of G is given by F(G) = {x ∈ D(G) : G(x) = x}. Let G : C→ H be a nonlinear mapping.
The variational inequality problem introduced and studied by Stampacchia [31] is to:

find u ∈ C such that ⟨Gu, v − u⟩ ≥ 0, ∀v ∈ C. (2)

The set of solution of variational inequality problem is denoted by VI(C,G). The problem of solving a
variational inequality of the form (2) has been intensively studied by numerous authors due to its various
applications in several physical problems, such as in operational research, economics and engineering
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design (see [4–6]). The ideas and techniques of variational inequalities are being applied in a variety of
diverse areas of sciences and proving to be productive and innovative. It has been shown that this theory
provides a simple, natural, and unified framework for a general treatment of many unrelated problems. In
recent years, considerable interest has been shown in developing various extensions and generalizations
of variational inequalities, both for mathematical theories and for their applications. Iterative methods for
solving these problems have been proposed and analyzed by many authors (see, for example, [12, 13, 20] and
references therein). These methods include extragradient method introduced by Korpelevič [24]. Censor et
al.[14] modified the method proposed by Korpelevič [24] by replacing one of the projections with a projection
onto a half-space. The modified method of Censor et al. [14] is known as subgradient extragradient method
and is studied in [15, 16]. Under some appropriate condtions, the subgradient extragradient method in [14]
converges weakly to a solution of a variational inequality. In 2014, Kraikaew and Saejung [25] introduced
a subgradient extragradient method which converges strongly to a solution of the variational inequality as
follows:

Theorem 1.1. (Kraikaew and Saejung [25]) Let S : H → H be a quasi-nonexpansive mapping such that I − S is
demiclosed at zero and G : C → H be a monotone and L−Lipschitz mapping. Let τ be a positive real number such
that τL < 1. Suppose that VI(C,G) ∩ F(S) , ∅. Let {xn} ⊂ H be a sequence generated by

x0 ∈ H;
yn = PC(xn − τG(xn)),
Tn = {w ∈ H : ⟨xn − τG(xn) − yn,w − yn⟩ ≤ 0},
zn = αnx0 + (1 − αn)PTn (xn − τG(yn)),
xn+1 = βnxn + (1 − βn)Szn,

(3)

where βn ⊂ [a, b] ⊂]0, 1[ for some a, b ∈ (0, 1), {αn} is a sequence in (0, 1) satisfying limn→∞ αn = 0 and
∑
∞

n=1 αn = ∞
and PC denotes the metric projection of C onto H. Then {xn} converges strongly to PVI(C,G)∩F(S)x0.

In order to speed up rate of convergence of an iterative method (to reduce computational cost), Polyak
[29] studied the heavy ball method, an inertial extrapolation to accelerate process for minimizing a smooth
convex function h. The inertial algorithm is the following two-step iterative method:

x0, x1 ∈ H,
wn = xn + θn(xn − xn−1)
xn+1 = wn + λn∇h(xn), n ≥ 1

(4)

where θn ∈ [0, 1) and λn is a step-size parameter to be chosen sufficiently small. The main difference
compared to a standard gradient method is that in each iteration, the extrapolated term wn is used instead
of xn. It is remarkable that this minor change significantly improves the performance of the method.
The term θn(xn − xn−1) is called inertial; hence method (4) is called inertial method. In view of great
potential, study of inertial-type method has attracted the attention of several researchers, see for example
[2, 3, 11, 17, 37]. In 2015, Bot and Csetnek [7] introduced the so-called inertial hybrid proximal extragradient
method, which combines inertial type method and hybrid proximal extragradient method for a maximal
monotone operator. Inspired by this method, Dong et al. [8] proposed an algorithm by including inertial
terms in the extragradient method as follows:


x0, x1 ∈ H,
wn = xn + θn(xn − xn−1)
yn = PC(wn − τGwn),
xn+1 = (1 − βn)wn + βnPC(wn − τGyn).

(5)

Under appropriate conditions, they proved that the sequence {xn} converges weakly to an element of
VI(C,G). Recently, Thong and Hieu [36] combined the inertial technique with the subgradient extragradient
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method and proposed a method, called inertial subgradient extragradient method, for solving variational
inequality problem (2) in a Hilbert spaces as follows:



x0, x1 ∈ H,
wn = xn + θn(xn − xn−1)
yn = PC(wn − τGwn),
Tn = {x ∈ H : ⟨wn − τGwn − yn, x − yn⟩ ≤ 0},
xn+1 = PTn (wn − τGyn)

(6)

where τ > 0, θn ≥ 0 are suitable parameters. Under some appropriate conditions imposed on these
parameters, they proved weak convergence of the sequence {xn} generated by (6) to some point in V I(C,G).
Motivated and inspired by the work of Kraikaew and Saejund [25] and Thong and Hiew [36], in this paper,
we study common fixed point problem of a new modified inertial subgradient extragradient method for
an infinite family of demimetric mappings {Ti}

∞

i=1 introduced by Takahash [34] and a monotone L-Lipschitz
mapping G on a Hilbert space. We prove a strong convergence theorem for modified inertial method to
find a solution of variational inequality problem of G and a common fixed point of the family {Ti}

∞

i=1.

2. Preliminaries

The metric projection from H onto C is the mapping: PC : H → C, for each x ∈ H, there exists a unique
point z = PC(x) such that

||x − z|| = inf
y∈C
||x − y||.

Lemma 2.1. [18]Let x ∈ H and z ∈ C be an arbitrary point. Then we have

(i) z = PC(x) if and only if the following relation holds

⟨x − z, y − z⟩ ≤ 0, ∀y ∈ C. (7)

(ii) There holds the relation

⟨PC(x) − PC(y), x − y⟩ ≥ ||PC(x) − PC(y)||2, ∀x, y ∈ H.

(iii) For x ∈ H and y ∈ C
||y − PC(x)||2 + ||x − PC(x)||2 ≤ ||x − y||2.

Lemma 2.2. [27] Let H be a real Hilbert space. Then for all x, y, z ∈ H and α, β, γ ∈ [0, 1] with α + β + γ = 1, we
have

||αx + βy + γz||2 = α||x||2 + β||y||2 + γ||z||2 − αβ||x − y||2 − αγ||x − z||2 − βγ||y − z||2.

Lemma 2.3. ([33]) For any x, y,u, v ∈ H, we have the following statements:

(i) |⟨x, y⟩| ≤ ||x||||y||;

(ii) ||x + y||2 ≤ ||x||2 + 2⟨y, x + y⟩ (the subdifferential inequality).

(iii) 2⟨x − y,u − v⟩ = ||x − v||2 + ||y − u||2 − ||x − u||2 − ||y − v||2.

Recently, Takahashi [34] introduced the notion of a new nonlinear mapping in a smooth, strictly convex
and reflexive Banach space as follows:



G.C. Ugwunnadi, S. S. Motsa, A.R. Khan and M. Abbas / FAAC 14 (1) (2022), 1–13 4

Definition 2.4. Let E be a smooth, strictly convex and reflexive Banach space, C be a nonempty, closed and convex
subset of E and let η be a real number in (−∞, 1). Then a mapping T : C→ E with F(T) , ∅, is called η− demimetric
[34] if,

⟨x − q, J(x − Tx)⟩ ≥
1 − η

2
||x − Tx||2,

for any x ∈ C and q ∈ F(T), where J is the duality mapping on E.
In a Hilbert space H, the above definition becomes: A mapping T : C→ H with F(T) , ∅, is called η − demimetric if

⟨x − q, x − Tx⟩ ≥
1 − η

2
||x − Tx||2, (8)

for any x ∈ C and q ∈ F(T).
A mapping T : C→ H is a generalized hybrid if there exist α, β ∈ R such that, for all x, y ∈ C

α||Tx − Ty||2 + (1 − α)||x − Ty||2 ≤ β||Tx − y||2 + (1 − β)||x − y||2.

It is clear that if T is generalized hybrid and F(T) , ∅, then T is 0 − demimetric. Note that the class of
generalized hybrid mappings covers several well-known mappings (see [23] for details). For example, if T
is a (1, 0)−generalized hybrid mapping, then T is nonexpansive, that is, ||Tx − Ty|| ≤ ||x − y|| for all x, y ∈ C
and quasi-nonexpansive if F(T) , ∅. Also, T is nonspreading [21, 22] if α = 2 and β = 1, that is,

2||Tx − Ty||2 ≤ ||Tx − y||2 + ||Ty − x||2, ∀ x, y ∈ C.

Furthermore, T is hybrid [32] for α = 3
2 and β = 1

2 , that is,

3||Tx − Ty||2 ≤ ||x − y||2 + ||Tx − y||2 + ||Ty − x||2, ∀ x, y ∈ C.

Osilike and Isiogugu [28] introduced a class of nonlinear mapping more general than the nonspreading
mapping in Hilbert space, namely k-strictly pseudononspreading mapping as follows: A mapping T :
D(T)→ H is called k-strictly pseudononspreading if there exists k ∈ [0, 1) such that

||Tx − Ty||2 ≤ ||x − y||2 + k||x − Tx − (y − Ty)||2

+2⟨x − Tx, y − Ty⟩ ∀ x, y ∈ D(T). (9)

But, if T is k-strictly pseudononspreading with F(T) , ∅, then for y ∈ F(T), (9) becomes

||Tx − y||2 ≤ ||x − y||2 + k||x − Tx||2 ∀ x ∈ D(T). (10)

By (iii) in Lemma 2.3 and (10), we obtain

||x − Tx||2 + ||y − x||2 − 2⟨x − y, x − Tx⟩ ≤ ||x − y||2 + k||x − Tx||2 ∀ x ∈ D(T),

hence

⟨x − y, x − Tx⟩ ≥
1 − k

2
||x − Tx||2.

Therefore, T is a k-demimetric mapping with k ∈ [0, 1).

Lemma 2.5. ([1, 34, 35]) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let
k ∈ (−∞, 0) and let T be a k−demimetric mapping of C into H such that F(T) , ∅. Let λ be a real number with
0 < λ ≤ 1 − k and defined S = (1 − λ) + λT. Then

(i) F(T) = F(S),

(ii) F(T) is closed and convex,

(iii) S is a quasi-nonexpansive mapping of C into H.
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Lemma 2.6. (Song [30]) Let H be a Hilbert space and C be a nonempty convex subset of H. Assume that {Ti}
∞

i=1 :
C→ H is an infinite family of ki − demimetric mappings with sup{k1 : i ∈N} < 1 such that

⋂
∞

i=1 F(Ti) , ∅. Assume
that {ηi}

∞

i=1 is a positive sequence such that
∑
∞

i=1 ηi = 1. Then
∑
∞

i=1 ηiTi : C → H is a k-demimetric mapping with
k = sup{ki : i ∈N} and F(

∑
∞

i=1 ηiTi) =
⋂
∞

i=1 F(Ti).

Lemma 2.7. [25] Let H be a Hilbert space and C be nonempty convex subset of H. Let G : H→ H be a monotone and
L−Lipschitz on C. Let U = PC(I−µG), where µ > 0. If {xn} is a sequence in H satisfying xn ⇀ q and xn −Uxn → 0,
then q ∈ VI(C,G) = F(U).

Lemma 2.8. [25] Let H be a Hilbert space and C be nonempty convex subset of H. Let G : H → H be a monotone
and L−Lipschitz on C, τ a positive number and suppose that VI(C,G) , ∅. Let {xn} be a sequence in H defined by

x0 ∈ H;
yn = PC(xn − τG(xn)),
Tn = {w ∈ H : ⟨xn − τG(xn) − yn,w − yn⟩ ≤ 0},
zn = PTn (xn − τG(yn)),

then for all u ∈ VI(C,G), we have

||zn − u||2 ≤ ||xn − u||2 − (1 − τL)||yn − xn||
2
− (1 − τL)||zn − yn||

2. (11)

In particular, if τL ≤ 1, we have ||zn − u|| ≤ ||xn − u||.

Lemma 2.9. ([26]) Let {an} be a sequence of real numbers such that there exists a subsequence {ni} of {n} such that
ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that mk →∞ and the following
properties are satisfied by all (sufficiently large) numbers k ∈N.

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{ j ≤ k : a j < a j+1}.

Lemma 2.10. ([9]) Let {an}, {γn}, {δn}, and {tn} be sequences of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1 − tn − γn)an + γnan−1 + tnsn + δn,

where
∑
∞

n=n0
tn = +∞,

∑
∞

n=n0
δn < +∞ for each n ≥ n0 (where n0 is a positive integer) and {γn} ⊂ [0, 1

2 ], lim supn→∞ sn ≤

0. Then, the sequence {an} converges strongly to zero.

The demiclosedness principle for mappings plays an important role in our proof in the subsequent section.

Definition 2.11. (Chidume and Maruster [10]) A self-mapping T on a Banach space is said to be demiclosed at y,
if for any sequence {xn}which converges weakly to x, and if the sequence {Txn} converges strongly to y, then T(x) = y.
In particular, if y = 0, then T is demiclosed at 0.

3. Main Results

In this section, we introduce a modified subgradient extragradient method, by using the termθn(xn−1−xn)
which is called modified inertial. Inertial can be viewed as method of speeding up the convergence properties
(see [2, 3, 7] for more details). Note that modified inertial term θn(xn−1 − xn) not only speed up the rate
of convergence of algorithms, the computational cost of algorithms with modified inertial term are less
expensive compared to the normal inertial term θn(xn − xn−1), see [19] (for example, wn in (3.1) can be
written as a convex combination).
For this reason, the following method is different from the methods studied in [8, 25, 36, 37].
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Theorem 3.1. Let H be a real Hilbert space and C be a nonempty closed and convex subset of H. Let {Ti}
∞

i=1 : H→ H
be an infinite family of ki−demimetric mapping and demiclosed at zero with ki ∈ (−∞, 1) for each i ≥ 1 and
k = max{ki : i ≥ 1} ≤ 1. Let G : H→ H be a monotone and L−Lipschits mapping with L > 0. Let τ be a positive real
number such that τL < 1. Assume Γ :=

⋂
∞

i=1 F(Ti) ∩ VI(C,G) , ∅. For any fixed u ∈ H, let {xn}
∞

n=1 be a sequence
defined iteratively by arbitrary chosen x0, x1 ∈ H as:



wn = xn + θn(xn−1 − xn),
yn = PC(wn − τGwn),
Tn = {x ∈ H : ⟨wn − τGwn − yn, x − yn⟩ ≤ 0},
zn = PTn (wn − τGyn),
vn = (1 − λn)zn + λn

∑
∞

i=1 γiTizn,

xn+1 = αnxn + βnvn + (1 − αn − βn)u n ≥ 1,

(12)

where {θn} ⊂ [0, 1
2 ], {αn}, {βn}, {γi} ⊂ (0, 1) and {λn} ⊂ (0,+∞) satisfy the following conditions

(C1) 0 < a ≤ θn < βn ≤
1
2 , for all n ≥ 1 and for some a,

(C2) lim
n→∞

(1 − αn − βn) = 0 and
∑
∞

n=1(1 − αn − βn) = +∞,

(C3)
∑
∞

i=1 γi = 1,

(C4) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.

Then {xn} converges strongly to p := PΓu.

Proof. Let p ∈ Γ :=
⋂
∞

i=1 F(Ti) ∩ VI(C,G). By (12) and Lemma 2.8, we obtain

||zn − p||2 ≤ ||wn − p||2 − (1 − τL)||yn − wn||
2
− (1 − τL)||zn − yn||

2. (13)

Also, from modified inertial part of (12) and convexity of the norm, we obtain

||wn − p||2 = ||xn + θn(xn−1 − xn) − p||2

= ||(1 − θn)(xn − p) + θn(xn−1 − p)||2

≤ (1 − θn)||xn − p||2 + θn||xn−1 − p||2. (14)

Furthermore, letting D :=
∑
∞

i=1 γiTi, by Lemma 2.6, D is k−demimetric mapping. Let Sn := (1 − λn)I + λnD.
Then by Lemma 2.5, Sn is a quasi-nonexpansive mapping and F(Sn) = F(D) =

⋂
∞

i=1 F(Ti). Therefore from
(vn) in (12), we obtain

||vn − p|| = ||Snzn − p|| ≤ ||zn − p||. (15)
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Hence, from (12) − (15) and Lemma 2.2, letting (δn := 1− αn − βn which implies αn + βn = 1− δn), we obtain

||xn+1 − p||2 = ||αnxn + βnvn + δnu − p||2

= ||αn(xn − p) + βn(vn − p) + δn(u − p)||2

≤ αn||xn − p||2 + βn||vn − p||2 + δn||u − p||2 − αnβn||xn − vn||
2

≤ αn||xn − p||2 + βn||zn − p||2 + δn||u − p||2 − αnβn||xn − vn||
2

≤ αn||xn − p||2 + βn

(
||wn − p||2 − (1 − τL)||yn − wn||

2

−(1 − τL)||zn − yn||
2
)
+ δn||u − p||2 − αnβn||xn − vn||

2

= αn||xn − p||2 + βn||wn − p||2 − (1 − τL)βn||yn − wn||
2

−(1 − τL)βn||zn − yn||
2 + δn||u − p||2 − αnβn||xn − vn||

2

≤ αn||xn − p||2 + βn[(1 − θn)||xn − p||2 + θn||xn−1 − p||2]
−(1 − τL)βn||yn − wn||

2
− (1 − τL)βn||zn − yn||

2

+δn||u − p||2 − αnβn||xn − vn||
2

= (1 − δn − βnθn) + ||xn − p||2 + βnθn||xn−1 − p||2 + δn||u − p||2

−βn[(1 − τL)||yn − wn||
2 + (1 − τL)||zn − yn||

2 + δn||xn − vn||
2] (16)

≤ (1 − δn − βnθn)||xn − p||2 + βnθn||xn−1 − p||2 + δn||u − p||2

≤ max{||xn − p||2, ||xn−1 − p||2, ||u − p||2}.

By induction
||xn − p|| ≤ max{||x1 − p||2, ||x0 − p||2, ||u − p||2}.

Hence, {xn} is bounded. With this {vn}, {zn}, {yn} and {wn} are also bounded. Therefore, from (16), we obtain

βn[(1 − τL)||yn − wn||
2 + (1 − τL)||zn − yn||

2 + δn||xn − vn||
2]

≤ (1 − δn − βnθn)||xn − p||2 + βnθn||xn−1 − p||2

+δn||u − p||2 − ||xn+1 − p||2

≤

(
||xn − p||2 − ||xn+1 − p||2

)
+ δn||u − p||2

+βnθn

(
||xn−1 − p||2 − ||xn − p||2

)
. (17)

We divide the remaining proof in two cases.
Case 1. Assume that {||xn−p||2}∞n=1 is non-increasing sequence of real numbers. Since {||xn−p||2}∞n=1 is bounded,
therefore its limit exists. It follows that lim

n→∞
(||xn − p||2 − ||xn+1 − p||2) = lim

n→∞
(||xn−1 − p||2 − ||xn − p||2) = 0. From

the fact that δn → 0 as n→∞ and (17), we obtain

lim
n→∞
||yn − wn|| = lim

n→∞
||zn − yn|| = lim

n→∞
||xn − vn|| = 0. (18)

Now, from recursion formula (xn+1) in (12), we get

||xn+1 − xn|| ≤ βn||vn − xn|| + δn||u − xn||,

it follows from (18) and the fact that δn → 0 that

lim
n→∞
||xn+1 − xn|| = 0. (19)

Also, from recursion formula (wn) in (12) and (19), we obtain

lim
n→∞
||wn − xn|| = lim

n→∞
θn||xn−1 − xn|| = 0. (20)

In view of
||yn − xn|| ≤ ||yn − wn|| + ||wn − xn||,
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it follows from (18) and (20), that

lim
n→∞
||yn − xn|| = 0. (21)

As
||zn − vn|| ≤ ||zn − yn|| + ||yn − xn|| + ||xn − vn||

so from (17) and (21), we obtain

lim
n→∞
||zn − vn|| = 0. (22)

Furthermore, since
||xn − zn|| ≤ ||xn − vn|| + ||un − zn||,

therefore it follows from (17) and (22) that

lim
n→∞
||xn − zn|| = 0. (23)

Since {xn} is bounded, there exist a subsequence {xn j } of {xn} such that xn j ⇀ x∗ ∈ C. On the other hand, since
Ti are ki−demimetric for each i ≥ 1, and p ∈

⋂
∞

i=1 F(Ti), therefore from (8), we obtain

⟨zn − p, zn − vn⟩ = ⟨zn − p, zn − Snzn⟩

= λn

∞∑
i=1

γi⟨zn − p, zn − Tizn⟩

≥ λn

∞∑
i=1

γi
1 − ki

2
||zn − Tizn||

2

≥
1 − k

2
λn

∞∑
i=1

γi||zn − Tizn||
2.

From (22) and the fact that k ≤ 1, it follows for each i ≥ 1 that

lim
n→∞
||zn − Tizn|| = 0. (24)

Furthermore, since Ti is demiclosed at zero for each i ≥ 1 and xn ⇀ x∗ as n → ∞ therefore by (23), we get
zn ⇀ x∗. Hence by (24), we conclude that x∗ ∈

⋂
∞

i=1 F(Ti). Also, as xn ⇀ x∗, so by (20), wn ⇀ x∗. Therefore
by (18) and Lemma 2.7, we obtain x∗ ∈ VI(C,G). Hence x∗ ∈ Γ =

⋂
∞

i=1 F(Ti)
⋂

VI(C,G). Also

lim sup
n→∞

⟨u − p, xn − p⟩ = lim
j→∞
⟨u − p, xn j − p⟩ = ⟨u − p, x∗ − p⟩.

Since p = PΓu, by (7) in Lemma 2.1, it follows that ⟨u − p, x∗ − p⟩ ≤ 0. Hence

lim sup
n→∞

⟨u − p, xn − p⟩ = ⟨u − p, x∗ − p⟩ ≤ 0. (25)

Also since, ⟨u − p, xn+1 − p⟩ = ⟨u − p, xn+1 − xn⟩ + ⟨u − p, xn − p⟩, therefore it follows from (19) and (25), that

lim sup
n→∞

⟨u − p, xn+1 − p⟩ ≤ 0. (26)



G.C. Ugwunnadi, S. S. Motsa, A.R. Khan and M. Abbas / FAAC 14 (1) (2022), 1–13 9

Finally, we show that xn → p as n → ∞. From (12), (13) and τL < 1, we get ||zn − p|| ≤ ||wn − p||. Therefore
by Lemma 2.3, (14) and (15), we obtain

||xn+1 − p||2 = ⟨αnxn + βnvn + δnu − p, xn+1 − p⟩
= ⟨αn(xn − p) + βn(vn − p), xn+1 − p⟩ + δn⟨u − p, xn+1 − p⟩
≤ ||αn(xn − p) + βn(vn − p)||||xn+1 − p|| + δn⟨u − p, xn+1 − p⟩
≤ αn||xn − p||||xn+1 − p|| + βn||vn − p||||xn+1 − p||
+δn⟨u − p, xn+1 − p⟩

≤ αn||xn − p||||xn+1 − p|| + βn||zn − p||||xn+1 − p||
+δn⟨u − p, xn+1 − p⟩

≤ αn||xn − p||||xn+1 − p|| + βn||wn − p||||xn+1 − p||
+δn⟨u − p, xn+1 − p⟩

≤
αn

2
[||xn − p||2 + ||xn+1 − p||2] +

βn

2
[||wn − p||2 + ||xn+1 − p||2]

+δn⟨u − p, xn+1 − p⟩

=
αn

2
||xn − p||2 +

βn

2
||wn − p||2 +

αn + βn

2
||xn+1 − p||2

+δn⟨u − p, xn+1 − p⟩

≤
αn

2
||xn − p||2 +

βn

2
||wn − p||2 +

1
2
||xn+1 − p||2

+δn⟨u − p, xn+1 − p⟩

≤
αn

2
||xn − p||2 +

βn

2
[(1 − θn)||xn − p||2 + θn||xn−1 − p||2]

+
1
2
||xn+1 − p||2 + δn⟨u − p, xn+1 − p⟩

≤
1 − δn − βnθn

2
||xn − p||2 +

βnθn

2
||xn−1 − p||2

+
1
2
||xn+1 − p||2 + δn⟨u − p, xn+1 − p⟩.

Therefore

||xn+1 − p||2 ≤ (1 − δn − βnθn)||xn − p||2 + βnθn||xn−1 − p||2

+2δn⟨u − p, xn+1 − p⟩. (27)

Hence, applying Lemma 2.10 and (26) to (27), we obtain xn → p.

Case 2. Assume that {||xn−p||2}∞n=1 is non-decreasing sequence of real numbers. SetΦn := ||xn−p||2 then there
exists a subsequence {Φni } of {Φn} such that Φni < Φni+1 for all i ∈ N. Thus by Lemma 2.9, let s : N→ N be
a mapping for all n ≥ n0 (for some n0 large enough) defined by

s(n) := max{k ∈N : k ≤ n,Φk ≤ Φk+1}.

Clearly, s is a non-decreasing sequence, s(n)→∞ as n→∞ and

0 ≤ Φs(n) ≤ Φs(n)+1, ∀ n ≥ n0.

This implies that ||xs(n) − p||2 ≤ ||xs(n)+1 − p||2, ∀ n ≥ n0. Thus lim
n→∞
||xs(n) − p|| exists. Following the argument

as in Case 1, we can show that

lim
n→∞
||ys(n) − ws(n)|| = lim

n→∞
||zs(n) − ys(n)|| = lim

n→∞
||xs(n) − vs(n)|| = 0
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and lim
n→∞
||xs(n)+1 − xs(n)|| = 0. As {xs(n)} is bounded, so there exists a subsequence of {xs(n)}, still denoted by

{xs(n)} which converges weakly to x∗. By an argument similar to the one in Case 1, we can show that x∗ ∈ Γ
and

lim sup
n→∞

⟨u − p, xs(n)+1 − p⟩ ≤ 0.

Furthermore, from (27), we obtain

||xs(n)+1 − p||2 ≤ (1 − δs(n) − βs(n)θs(n))||xs(n) − p||2 + βs(n)θs(n)||xs(n)−1 − p||2

+2δs(n)⟨u − p, xs(n)+1 − p⟩. (28)

Note that Φs(n) ≤ Φs(n)+1 ∀ n ≥ n0, which means that Φs(n)−1 ≤ Φs(n) and βs(n)θs(n) > 0. Now it follows from
(28) that

||xs(n) − p||2 ≤ ⟨u − p, xs(n)+1 − p⟩.

This implies that
lim sup

n→∞
||xs(n) − p|| ≤ 0.

Thus
lim
n→∞
||xs(n) − p|| = 0

and
||xs(n)+1 − p|| ≤ ||xs(n)+1 − xs(n)|| + ||xs(n) − p|| → 0 as n→∞.

Therefore
lim
n→∞
Φs(n) = Φs(n)+1 = 0.

Furthermore, for n ≥ n0. it is easy to see that Φs(n) ≤ Φs(n)+1 if n , s(n) (that is s(n) < n), because Φk ≥ Φk+1
for s(n) + 1 ≤ k ≤ n. As a consequence, we obtain for all n ≥ n0.

0 ≤ Φn ≤ max{Φs(n),Φs(n)+1} = Φs(n)+1.

Hence, lim
n→∞
Φn = 0 gives lim

n→∞
||xn − p|| = 0. Thus, xn → p as n→∞.

Remark 3.2.

(i) A generalized hybrid mapping T with F(T) , ∅ is a 0-demimetric mapping. So Theorem 3.1 holds good for an
infinite family of generalized hybrid mappings.

(ii) A nonspreading mapping is a (2, 1)-generalized hybrid mapping. Therefore a nonspreading mapping T with
F(T) , ∅ is a 0-demimetric mapping. So Theorem 3.1 holds for an infinite family of nonspreading mappings.

(iii) A hybrid mapping is a ( 3
2 ,

1
2 )-generalized hybrid mapping. Therefore a hybrid mapping T with F(T) , ∅ is a

0-demimetric mapping. So Theorem 3.1 holds for an infinite family of hybrid mappings.

(iv) For k ∈ [0, 1), a k-strictly pseudononspreading mapping T with F(T) , ∅ is a k-demimetric mapping. So
Theorem 3.1 holds good for an infinite family of k-strictly pseudononspreading mappings.

4. Numerical Example

Let R3 be the three-dimensional Euclidean space with the usual inner product〈
x, y
〉
= x1y1 + x2y2 + x3y3,

where x = (x1, x2, x3), y =
(
y1, y2, y3

)
∈ R3 and and usual norm

∥x∥2 = x2
1 + x2

2 + x2
3, ∀x = (x1, x2, x3) ∈ R3.
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Table 1: Convergence behavior of iterative algorithm (3.1) for the initial values x0 = (0.5, 0.25, 0.2), x1 = (0.125, 0.16666, 0.066666).

# of iter. Algorithm (3.1)
0 (0.5, 0.25, 0.2)
1 (0.125, 0.16666, 0.066666)
2 (0.171483, 0.216903, 0.132913)
3 (0.175577, 0.210647, 0.146857)
...

...
50 (0.005741, 0.005741, 0.005741)
...

...
100 (0.002761, 0.002761, 0.002761)
...

...
150 (0.001809, 0.001809, 0.001809)
...

...

Given a half-space C =
{
z ∈ R3 : ⟨u, z − w0⟩ ≤ 0

}
of a real Hilbert space, where u (, 0) and w0 are two xed

element in R3, then for any x0 ∈ H, we have

PCx0 =

{
x0 −

⟨u,x0−w0⟩

∥u∥2
u, ⟨u, x0 − w0⟩ > 0;

x, ⟨u, x0 − w0⟩ ≤ 0.

Let Gx = 1
3 x, τ = 1

2 , T1x = − 2
3 x, then T1 is− 1

5−demimetric mapping and T2x = − 3
4 x, then T2 is− 1

7−demimetric
mapping. Take λn =

2n−1
6n , γ1 = γ2 =

1
2 , αn =

3n+1
6n , βn =

2n−1
4n , θn =

1
4 ∀n ≥ 1 and u = w0 = (1, 1, 1),

x0 = (0.5, 0.25, 0.2), x1 = (0.125, 0.16666, 0.066666). Then the following table shows convergence behavior of
algorithm (3.1) and the following figure shows convergence behavior of ∥xn − (0, 0, 0)∥ for the initial values
x0 = (0.5, 0.25, 0.2), x1 = (0.125, 0.16666, 0.066666).

Acknowledgement: The author A. R. Khan is grateful to King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia for supporting this research work.
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