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Abstract. Let I be a indefinite inner product space. In this paper we investigate the results related
inequalities on parallel summable range symmetric matrices with respect to indefinite inner product. The
results include the relation between the invertible, range symmetric, parallel sum and positive semidefinite
matrices. Some new properties are obtained and some known results are extended.

1. Introduction

An indefinite inner product is a conjugate symmetric sesquilinear form [x, y] together with the regularity
condition that [x, y] = 0,∀y ∈ Cn only when x = 0. Any indefinite inner product is associated with a unique
invertible complex matrix J (called a weight) such that [x, y] =

〈
x, Jy

〉
, where 〈·, ·〉 denotes the Euclidean

inner product on Cn. We also make an additional assumption on J, that is, J2 = I.
Investigations of linear maps on indefinite inner product utilize the usual multiplication of matrices

which is induced by the Euclidean inner product of vectors ([2],[12]). This causes a problem as there are
two different values for dot product of vectors. To overcome this difficulty, Ramanathan et al. introduced a
new matrix product called indefinite matrix multiplication and investigated some of its properties in [12].
More precisely, the indefinite matrix product of two matrices A and B of sizes m × n and n × l complex
matrices, respectively, is defined to be the matrix A ◦ B = AJnB. The adjoint of A, denoted by A[∗] is defined
to be the matrix JnA∗ Jm, where Jm and Jn are weights. Further indefinite matrix product with properties are
established. This concept was discussed further by many researcher in ([3], [5], [6], [7], [8], [10], [11]).

2. Preliminaries

We first recall the notion of an indefinite multiplication of matrices.

Definition 2.1. [12] Let A ∈ M(m,n)(C), B ∈ M(n,k)(C). Let Jn be an arbitrary but fixed n × n complex matrix such
that Jn = J∗n = J−1

n . The indefinite matrix product of A and B (relative to Jn) is defined by A ◦ B = AJnB.
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Definition 2.2. [12] For A ∈M(m,n)(C), A[∗] = JnA∗ Jm is the adjoint of A relative to Jn and Jm.

Definition 2.3. [12] A matrix A ∈ Mn(C) is said to be J-invertible if there exists X ∈ Mn(C), such that A ◦ X =
X ◦ A = Jn such an X is denoted by A[−1] = JA−1 J.

Definition 2.4. [4] A matrix A ∈Mn(C) is said to be J-unitary if A ◦ A[∗] = A[∗]
◦ A = Jn.

Definition 2.5. [9] A matrix A ∈Mn(C) is said to be J-symmetric if A = A[∗].

Definition 2.6. [7] For A ∈ M(m,n)(C), a matrix X satisfying A ◦ X ◦ A = A is called a generalized inverse of A
relative to the weight J. AJ{1} is the set of all generalized inverses of A relative to the weight J.

Remark 2.7. [7] For the identity matrix J, it reduces to a generalized inverse of A and AJ{1} = A{1}. It can be easily
verified that X is a generalized inverse of A under the indefinite matrix product if and only if JnXJm is a generalized
inverse of A under the usual product of matrices. Hence AJ{1} = {X : JnXJm is a generalized inverse of A}.

Definition 2.8. [3] For A ∈M(m,n)(C), and X ∈M(n,m)(C) is called the Moore-Penrose inverse of A if it satisfies the
following equations:
(i) A ◦ X ◦ A = A.
(ii) X ◦ A ◦ X = X.
(iii) (A ◦ X)[∗] = A ◦ X.
(iv) (X ◦ A)[∗] = X ◦ A.
such an X is denoted by A[†] and represented as A[†] = JnA† Jm.

Definition 2.9. [12] The range space of A ∈ M(m,n)(C) is defined by Ra(A) = {y = A ◦ x ∈ Cm : x ∈ Cn
}. The null

space of A ∈M(m,n)(C) is defined by Nu(A) = {x ∈ Cn : A ◦ x = 0}.

Property 2.10. [6] Let A ∈M(m,n)(C). Then
(i) (A[∗])[∗] = A.
(ii) (A[†])[†] = A.
(iii) (AB)[∗] = B[∗]A[∗].
(iv) Ra(A[∗]) = Ra(A[†]).
(v) Ra(A ◦ A[∗]) = Ra(A), Ra(A[∗]

◦ A) = Ra(A[∗]).
(vi) Nu(A ◦ A[∗]) = Nu(A[∗]), Nu(A[∗]

◦ A) = Nu(A).

Definition 2.11. [6] A ∈Mn(C) is range symmetric(J-EP) in I if and only if Ra(A) = Ra(A[∗]) (A◦A[†] = A[†]
◦A).

Remark 2.12. [6] In particular for J = In, this reduces to the definition of range symmetric matrix in unitary space
(or) equivalently to an EP matrix.

Theorem 2.13. [6] For A ∈Mn(C), the following are equivalent:
(i) A is range symmetric in I .
(ii) AJ is EP.
(iii) JA is EP.
(iv) N(A) = N(A[∗]).
(v) N(A∗) = N(AJ).
(vi) A[∗] = HA = AK, for some invertible matrices H and K.
(vii) R(A∗) = R(JA).

Definition 2.14. [4] A matrix A ∈Mn(C) is said to be positive semidefinite in I
denoted as A ≥I 0⇔ A is J − EP and [Ax, x] ≥ 0, for all x ∈ Cn.

Theorem 2.15. [4] For A ∈Mn(C), A ≥
I

0⇔ A[†]
≥
I

0.

Definition 2.16. [13] A1 and A2 are said to be parallel summable if N(A1 +A2) ⊆ N(A1) and N((A1 +A2)∗) ⊆ N(A∗1).
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Definition 2.17. [13] If A1 and A2 are parallel summable then parallel sum of A1 and A2 denoted by A1 : A2 is
defined as A1 : A2 = A1(A1 + A2)−A2. The product A1(A1 + A2)−A2 is invariant for all choices of generalized inverse
(A1 + A2)−of (A1 + A2) under the conditions that A1 and A2 are parallel summable.

Definition 2.18. [5] A pair of matrices A1 and A2 are said to be parallel summable in I if N(A1 + A2) ⊆ N(A2) and
Nu((A1 + A2)[∗]) ⊆ Nu(A[∗]

2 ) or equivalently N(A1 + A2) ⊆ N(A1) and Nu((A1 + A2)[∗]) ⊆ Nu(A[∗]
1 ).

Theorem 2.19. [5] Let A1 and A2 are parallel summable range symmetric in I . Then (A1 : A2) and (A1 + A2) are
range symmetric in I .

Property 2.20. [5] Let A1 and A2 be a pair of parallel summable matrices in I . Then the following hold:
(i) (A1 : A2)[∗] = (A2 : A1)[∗]

(ii) A[∗]
1 and A[∗]

2 are parallel summable and (A1 : A2)[∗] = A[∗]
1 : A[∗]

2 .

3. Inequalities on parallel summable range symmetric matrices in I

Lemma 3.1. Let A and B be parallel summable range symmetric matrices in I such that A + B is J-symmetric in
I . Then there exist non-singular matrices H and K such that (HA : HB)[∗] = KA : KB = K(A : B).

Proof. Since A and B are parallel summable range symmetric matrices in I , by Theorem 2.13(vi), there
exists non-singular matrices H and K such that A[∗] = HA and B[∗] = KB. Now

HA : HB = HA(HA + HB)−HB
= HA((HA)− + (HB)−)HB
= HA((HA)−HB + (HB)−HB)
= HA(HA)−HB + HA(HB)−HB)
= HB + HA
= HAA−B + HAB−B
= H(AA−B + AB−B)
= H(A(A− + B−)B)
= H(A(A + B)−B)
= H(A : B)

HA : HB = H(A : B) (1)

Taking adjoint on bothsides

(HA : HB)[∗] = [H(A : B)][∗]

= (A : B)[∗]H[∗]

= (B : A)[∗]H[∗] ( By Property 2.20 (i) )

= (B[∗] : A[∗])H[∗] ( By Property 2.20 (ii) )

= B[∗](B[∗] + A[∗])−A[∗]H[∗]

= B[∗][(B + A)[∗]]−A[∗]H[∗]

= B[∗](B + A)−A[∗]H[∗] ( By A+B is J-symmetric )
= KB(B + A)−A ( By Theorem 2.13(vi) )
= K(B : A)
= K(A : B) ( By Property 2.20 (i) )

(HA : HB)[∗] = KA : KB ( By (1) )
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Theorem 3.2. Let A and B be parallel summable range symmetric matrices in I such that A ≥
I
−B. Then the

following hold
(i) A ≥

I
KA : KB, for some K ∈Mn(C)

(ii) A + B ≥
I

T(A : B), for some T = K + H ∈Mn(C).

Proof. Since A and B are parallel summable range symmetric matrices in I . By Theorem 2.13(vi), there
exists non-singular matrices H and K such that A[∗] = HA and B[∗] = KB. Since A ≥

I
−B⇒ A + B ≥

I
0. Again

by Theorem 2.15 (A + B)[†]
≥
I

0.

Now A − (A : B) = A − A(A + B)[†]B
= A − A(A + B)[†](A + B) + A(A + B)[†]A

A − (A : B) = A(A + B)[†]A
Pre multiplying both sides by H we get
HA −H(A : B) = HA(A + B)[†]A
A[∗]
−H(A : B) = A[∗](A + B)[†]A (By Theorem 2.13(vi))

= A[∗](A + B)[†]A ≥
I

0 (By Theorem 2.15)

A[∗]
−H(A : B) ≥

I
0

Thus A[∗]
≥
I

H(A : B).

Now taking adjoint on both sides we get (A[∗])[∗]
≥
I

[H(A : B)][∗]

A ≥
I

KA : KB, for some K ∈Mn(C) (2)

(By Lemma 3.1). Thus (i) is proved.
Similarly, B − (B : A) = B − B(A + B)[†]A

= B − B(A + B)[†](A + B) + B(A + B)[†]B
B − (B : A) = B(A + B)[†]B
Pre multiplying by K on both sides, we get KB − K(B : A) = KB(A + B)[†]B
B[∗]
− K(B : A) = B[∗](A + B)[†]B (By Theorem 2.13(vi))

= B[∗](A + B)[†]B ≥
I

0 (By Theorem 2.15)

B[∗]
− K(B : A) ≥

I
0

B[∗]
≥
I

K(B : A) = K(A : B) (By Property 2.20 (i))

Taking adjoint on both sides, we get (B[∗])[∗]
≥
I

[K(A : B)][∗]

B ≥
I

HA : HB for some H ∈Mn(C) (3)

(By Lemma 3.1)
Now adding (2) and (3) we get A + B ≥

I
KA : KB + HA : HB

≥
I

K(A : B) + H(A : B) (By (1))

= (H + K)(A : B)
A + B ≥

I
T(A : B), where T = K + H ∈Mn(C)

Thus (ii) is proved. Hence the Theorem.

Remark 3.3. In particular when A and B are J-symmetric semi-definite, then the condition in the Theorem 3.2,
automatically holds, and H = K = I. Then Theorem 3.2 reduces to A ≥

I
A : B, B ≥

I
A : B and A + B ≥

I
2(A : B). We

will show in a subsequent result that actually A + B ≥
I

4(A : B).
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For a range symmetric matrix A ∈Mn(C) in I , by Theorem 2.13(ii), JA is EP implies JA(JA)† = (JA)† JA
JAA† J = A†A

JAA† J = A†A. (4)

Let PA = AA† and PA∗ = A†A be the orthogonal projectors onto R(A) and R(A∗) in unitary space.

Theorem 3.4. Let A and B be parallel summable range symmetric matrices in I such that A ≥
I
−B. For x, y, z ∈ Cn

if z = x + y then there exist non-singular matrices H and K such that
(A ◦ x, x) + (B ◦ y, y) ≥

I
(K(A : B) ◦ x, z) + (H(A : B) ◦ y, z).

Proof. For any z = x + y, let us define x′ = PJ(A+B)x, y′ = PJ(A+B)y and z′ = PJ(A+B)z. Since A and B are parallel
summable range symmetric in I . By Theorem 2.19 (A + B) is range symmetric in I . Again by Theorem
2.13(ii) J(A + B) is EP. By using (4),

J(A + B)(A + B)† J = (A + B)†(A + B). (5)

The given conditions, A ≥
I
−B implies A + B ≥

I
0 and hence by Theorem 2.15, (A + B)[†]

≥
I

0.

Let x′o = (A + B)[†]
◦ B ◦ z, y′o = (A + B)[†]

◦ A ◦ z
x′o + y′o = (A + B)[†]

◦ (A + B) ◦ z
= J(A + B)† JJ(A + B)Jz ( By (5) )
= J(A + B)†(A + B)Jz ( since J2 = I )
= PJ(A+B)z
= PJ(A+B)(x + y)
= PJ(A+B)x + PJ(A+B)y
= x′ + y′.

Thus x′o + y′o = x′ + y′ = z′.
Let x′ = x′o + t and y′ = y′o − t, where t is suitably so chosen that x′o + y′o = x′ + y′, A ◦ t = A ◦ x′ − A ◦ x′o and
B ◦ t = B ◦ y′o − B ◦ y′.
From the Definition of z′, A ◦ z′ = A ◦ PJ(A+B)z = A ◦ J(A + B)†(A + B)Jz
= A(A + B)†(A + B) ◦ z = A ◦ z.

Hence A ◦ z′ = A ◦ z. Thus (A : B) ◦ z′ = (A : B) ◦ z. (6)

Now (A ◦ x′, x′) = (A ◦ x′o + A ◦ t, x′o + t)
= (A ◦ x′o, x

′

o) + (A ◦ x′o, t) + (A ◦ t, x′o) + (A ◦ t, t)
= (A ◦ x′o, x

′

o) + (A ◦ x′o, t) + (A ◦ x′ − A ◦ x′o, x
′

o) + (A ◦ t, t)
= (A ◦ x′o, x

′

o) + (A ◦ x′o, t) + (A ◦ x′, x′o) − (A ◦ x′o, x
′

o) + (A ◦ t, t)

(A ◦ x′, x′) = (A ◦ x′o, t) + (A ◦ x′, x′o) + (A ◦ t, t). (7)

Similarly (B ◦ y′, y′) = −(B ◦ y′o, t) + (B ◦ y′, y′o) + (B ◦ t, t). (8)

By Definition of x′o, y′o
A ◦ x′o = A ◦ (A + B)[†]

◦ B ◦ z = (A : B) ◦ z = (A : B) ◦ z′

B ◦ y′o = B ◦ (A + B)[†]
◦ B ◦ z = (B : A) ◦ z = (A : B) ◦ z = (A : B) ◦ z′ (9)

Now adding (7) and (8) and using (9) we get
(A ◦ x′, x′) + (B ◦ y′, y′) = (A ◦ x′o, t) + (A ◦ x′, x′o) + (A ◦ t, t)

− (B ◦ y′o, t) + (B ◦ y′, y′o) + (B ◦ t, t)
(A ◦ x′, x′) + (B ◦ y′, y′) = (A ◦ x′, x′o) + (B ◦ y′, y′o) + ((A + B) ◦ t, t)
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By hypothesis, A ≥
I
−B ⇒ A + B ≥

I
0

⇒ ((A + B) ◦ t, t) ≥
I

0

Hence (A ◦ x′, x′) + (B ◦ y′, y′) ≥
I

(A ◦ x′, x′o) + (B ◦ y′, y′o) (10)

From the Definition of x′ and y′ we get

A ◦ x′ = A ◦ PJ(A+B)x = A ◦ x (11)

Similarly, B ◦ y′ = B ◦ y.Thus A ◦ x′ = A ◦ x and B ◦ y′ = B ◦ y (12)

(A ◦ x′, x′) + (B ◦ y′, y′) ≥
I

(A ◦ x, x′o) + (B ◦ y, y′o)

= (x,A[∗]
◦ x′o) + (y,B[∗]

◦ y′o)
= (x,HA ◦ x′o) + (y,KB ◦ y′o) ( By Theorem 2.13(vi) )
= (x,H(A : B) ◦ z) + (y,K(A : B) ◦ z) ( By (9) )

= ((H(A : B))[∗]
◦ x, z) + ((K(A : B))[∗]

◦ y, z)
= ((KA : KB) ◦ x, z) + ((HA : HB) ◦ y, z)

( By Lemma 3.1 )

(A ◦ x′, x′) + (B ◦ y′, y′) ≥
I

(K(A : B) ◦ x, z) + (H(A : B) ◦ y, z) (13)

(A ◦ x′, x′) =
(
A ◦ PJ(A+B)(x),PJ(A+B)(x)

)
=

(
A ◦ x,PJ(A+B)(x)

)
( By (11) )

= (x,A[∗]
◦ PJ(A+B)(x))

=
(
x,HA ◦ PJ(A+B)(x)

)
( By Theorem 2.13 (vi) )

= (x,HA ◦ x) ( By (11) )

= (x,A[∗]
◦ x) ( By Theorem 2.13(vi) )

= (A ◦ x, x).

Similarly, (B◦y′, y′) = (B◦y, y) can be proved. Thus (13) reduces to (A◦x, x)+(B◦y, y) ≥
I

(H(A : B)◦y, z)+(K(A :

B) ◦ x, z). Hence the Theorem.

Remark 3.5. In particular x = 0 implies B ≥
I

H(A : B), y = 0 implies A ≥
I

K(A : B) and x = y⇒ A + B ≥
I

2T(A : B),

where T = H + K. This is a stronger result than A + B ≥
I

T(A + B). Thus in Remark 3.3, A + B ≥
I

4(A : B).

Corollary 3.6. Let A and B be parallel summable J-symmetric matrices such that A ≥
I
−B. For any x, y, z ∈ Cn, if

z = x + y then (A ◦ x, x) + (B ◦ y, y) ≥
I

((A : B) ◦ z, z).

Proof. Since A, B are J-symmetric this follows from Theorem 3.4, by putting H = K = I.

Remark 3.7. In the special case, when A and B are J-symmetric semi-definite, the condition A ≥
I
−B in Corollary 3.6

automatically hold, then for any x, y, z ∈ Cn if z = x + y, (A ◦ x, x) + (B ◦ y, y) ≥
I

((A : B) ◦ z, z).

Theorem 3.8. Let A and B be parallel summable range symmetric matrices. If z ∈ Ra(A) + Ra(B) with x =
(A + B)[†]

◦ B ◦ z and y = (A + B)[†]
◦ A ◦ z, then z = x + y and (A ◦ x, x) + (B ◦ y, y) = ((A : B) ◦ z, z).
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Proof. Since A and B are parallel summable by Definition 2.18, Ra(A) + Ra(B) ⊆ Ra(A + B). For any A and B,
Ra(A + B) ⊆ Ra(A) + Ra(B). Therefore Ra(A + B) = Ra(A) + Ra(B). Since z ∈ Ra(A) + Ra(B) = Ra(A + B) implies,
z = (A + B) ◦ (A + B)[†]

◦ z. By Theorem 2.19, A and B are parallel summable range symmetric implies A + B
is range symmetric in I . Hence by Theorem 2.13(ii) and by using (5), we get J(A + B) is range symmetric
in I
x + y = (A + B)[†]

◦ (A + B) ◦ z = J(A + B)(A + B)† Jz
= PJ(A+B)z = PA+B ◦ z = (A + B) ◦ (A + B)[†]

◦ z
( By A + B is range symmetric in I )

A ◦ x = A ◦ (A + B)[†]
◦ B ◦ z = (A : B) ◦ z

B ◦ y = B ◦ (A + B)[†]
◦ A ◦ z = (B : A) ◦ z = (A : B) ◦ z ( By Property 2.20 (i) )

Thus A ◦ x = B ◦ y = (A : B) ◦ z and
(A ◦ x, x) + (B ◦ y, y) = ((A : B) ◦ z, x) + ((A : B) ◦ z, y)
= ((A : B) ◦ z, x + y)
(A ◦ x, x) + (B ◦ y, y) = ((A : B) ◦ z, z) (By z = x + y)
Hence the Theorem.

Theorem 3.9. Let A and B be parallel summable J-symmetric matrices such that A ≥
I
−B. Then (A ◦ z, z) : (B ◦

z, z) ≥
I

((A : B) ◦ z, z).

Proof. If ((A : B) ◦ z, z) = 0, then the result is trivial. If not let us define
x =

(B◦z,z)◦z
((A+B)◦z,z) , y =

(A◦z,z)◦z
((A+B)◦z,z) then x + y = z.

(A ◦ x, x) + (B ◦ y, y) =

(
A ◦ (B ◦ z, z) ◦ z
((A + B) ◦ z, z)

,
(B ◦ z, z) ◦ z

((A + B) ◦ z, z)

)
+

(
B ◦ (A ◦ z, z) ◦ z
((A + B) ◦ z, z)

,
(A ◦ z, z) ◦ z

((A + B) ◦ z, z)

)
=

(B ◦ z, z) ◦ (B ◦ z, z) ◦ (A ◦ z, z)
((A + B) ◦ z, z)

+
(A ◦ z, z) ◦ (A ◦ z, z) ◦ (B ◦ z, z)

((A + B) ◦ z, z)

=
(A ◦ z, z) ◦ (B ◦ z, z)

((A + B) ◦ z, z)2 ◦

[
(A ◦ z, z) + (B ◦ z, z)

]
=

(A ◦ z, z) ◦ (B ◦ z, z)
((A + B) ◦ z, z)

◦
((A + B) ◦ z, z)
((A + B) ◦ z, z)

=
(A ◦ z, z) ◦ (B ◦ z, z)

((A + B) ◦ z, z)

= (A ◦ z, z) ◦ ((A + B) ◦ z, z)[†]
◦ (B ◦ z, z)

(A ◦ x, x) + (B ◦ y, y) = (A ◦ z, z) : (B ◦ z, z).

Since A and B are parallel summable J-symmetric and by using Corollary 3.6, we get, (A ◦ x, x) + (B ◦ y, y) =
(A ◦ z, z) : (B ◦ z, z) ≥

I
((A : B) ◦ z, z). Hence the Theorem.

Corollary 3.10. Let A, B, C, D be parallel summable J-symmetric matrices such that A ≥
I
−C and B ≥

I
−D then

(A + B) : (C + D) ≥
I

(A : C) + (B : D).

Proof. Since A, B, C, D are parallel summable J-symmetric in I , then by Theorem 2.19, A + B + C + D is
range symmetric in I and it suffices to consider z ∈ Ra(A + B) + Ra(C + D). Since (A + B) and (C + D)
are parallel summable J-symmetric by Theorem 3.8, for suitable choice of xo, yo, such that z = xo + yo,
((A + B) : (C + D) ◦ z, z) = ((A + B) ◦ xo) + ((C + D) ◦ yo, yo)
= (A ◦ xo, xo) + (C ◦ yo, yo) + (B ◦ xo, xo) + (D ◦ yo, yo).
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Since A and C are parallel summable J-symmetric such that A ≥
I
−C and z = xo + yo, by Corollary 3.6, we get

(A ◦ xo, xo) + (C ◦ yo, yo) ≥
I

((A : C)z, z).

Similarly using B and D are parallel summable J-symmetric such that B ≥
I
−D by Corollary 3.6, we get

(B ◦ xo, xo) + (D ◦ yo, yo) ≥
I

((B : D) ◦ z, z).

Thus ((A + B) : (C + D) ◦ z, z) ≥
I

(((A : C) + (B : D)) ◦ z, z)

(A + B) : (C + D) ≥
I

(A : C) + (B : D)

Hence the Theorem.
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[11] Ivana M. Radojević, Dragan S. Djordjević, Moore-Penrose Inverse in Indefinite Inner Product Spaces, Filomat, 31(12) (2017), 3847-3857.
[12] K. Ramanathan, K. Kamaraj and K.C. Sivakumar, Indefinite product of matrices and applications to indefinite inner product spaces, J.

Anal., 12 (2004), 135-142.
[13] C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and its Application, Wiley and Sons, New York, 1971.


