# The star order on $C^{*}$-modular operators 

Maryam Jalaeian ${ }^{\text {a }}$, Mehdi Mohammadzadeh Karizaki ${ }^{* \mathbf{b}}$, Mahmoud Hassani ${ }^{\text {a }}$<br>${ }^{a}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran<br>${ }^{b}$ Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran


#### Abstract

By Moore-Penrose properties and block matrix forms of $C^{*}$-modular operators we prove that $T \leqslant{ }_{*}$ is equivalent to $T \leqslant{ }^{*} S$ that define ordering relation, when $T$ and $S$ have closed ranges, we give an explicit formula for Moore-Penrose product of $S^{+}$and $T$, in the case it is idempotent.


## 1. Introduction

Let $M_{m, n}(\mathbb{C})$ be the algebra of all $m \times n$ complex matrices, and let $B(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite-dimensional complex Hilbert space $\mathcal{H}$.

One of such orders is the star partial order, which was defined by Drazin [4] for complex matrices, and Dolinar [3] stated the equivalent definition of the star partial order on $B(\mathcal{H})$, by using orthogonal projections.

Drazin [4] introduced two binary relations in the set of complex matrices by combining each of the conditions

$$
\begin{equation*}
T^{*} T=T^{*} S \quad \text { and } \quad T T^{*}=S T^{*} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{\dagger} T=T^{\dagger} S=S^{\dagger} T \quad \text { and } \quad T T^{\dagger}=T S^{\dagger}=S T^{\dagger} \tag{2}
\end{equation*}
$$

The star partial ordering defined by (1) is due to Drazin [4]. Hartwig [7] inspired from Drazin [4] and introduced the plus partial order (or minus partial order).

The star order is investigated by some authors, that we refer to the $[1,2,6,7]$.
In this paper, we introduce star order and Moore-Penrose order in Hilbert $C^{*}$-modules. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(X, Y)$ have closed ranges. We denote the star order by

$$
\begin{equation*}
T \leqslant * S \quad \text { whenever } \quad T^{*} T=T^{*} S \quad \text { and } \quad T T^{*}=S T^{*}, \tag{3}
\end{equation*}
$$

[^0]and Moore-Penrose order by
$T \leqslant$ * whenever $T^{\dagger}$ exists such that $T^{\dagger} T=T^{\dagger} S$ and $T T^{\dagger}=S T^{\dagger}$.
By Moore-Penrose properties and block matrix forms of $C^{*}$-modular operators we show that $T \leqslant_{*} S$ is equivalent to $T \leqslant^{*} S$ that define ordering relation, when $T$ and $S$ have closed ranges, and we give an explicit formula for Moore-Penrose product of $S^{\dagger}$ and $T$, in the case it is idempotent. We obtain some results that one of two binary relation holds, such as $T^{*} T=T^{*} S$ and $S T^{\dagger}=T T^{\dagger}$ that is equivalent with $T \leqslant^{*} S$.

Inner product $C^{*}$-modules are generalizations of inner product spaces by allowing inner products to take values in some $C^{*}$-algebras instead of the field of complex numbers. More precisely, an inner-product module over a $C^{*}$-algebra $\mathfrak{A}$ is a right $\mathfrak{A}$-module equipped with an $\mathfrak{A}$-valued inner product $\langle\cdot, \cdot\rangle: \mathcal{X} \times \mathcal{X} \rightarrow \mathfrak{A}$. If $\mathcal{X}$ is complete with respect to the induced norm defined by $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}(x \in \mathcal{X})$, then $\mathcal{X}$ is called a Hilbert $\mathfrak{A}$-module. Some fundamental properties of inner product spaces are no longer valid in inner product $C^{*}$-modules in their complete generality. Consequently, when we are studying inner product $C^{*}$-modules, it is always of interest under which conditions as well as which more general, situations might appear. The book [9] is used as a standard reference source.

Throughout the rest of this paper, $\mathfrak{H}$ denotes a $C^{*}$-algebra and $\mathcal{X}, \mathcal{Y}$ denote Hilbert $\mathfrak{A}$-modules. Let $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ be the set of operators $T: \mathcal{X} \rightarrow \mathcal{Y}$ for which there is an operator $T^{*}: \mathcal{Y} \rightarrow \mathcal{X}$ such that $\langle T x, y\rangle=$ $\left\langle x, T^{*} y\right\rangle$ for any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. It is known that any element $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ must be bounded and $\mathfrak{A}$-linear. In general, a bounded operator between Hilbert $C^{*}$-modules may be not adjointable. We call $\mathcal{L}(X, y)$ the set of all adjointable operators from $\mathcal{X}$ to $\mathcal{Y}$. In the case when $\mathcal{X}=\boldsymbol{y}, \mathcal{L}(\mathcal{X}, \mathcal{X})$, abbreviated to $\mathcal{L}(\mathcal{X})$, is a $C^{*}$-algebra. For any operator $T$ between linear spaces, the range and the null space of $T$ are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively.

A closed submodule $M$ of $\mathcal{X}$ is said to be orthogonally complemented if $\mathcal{X}=M \oplus M^{\perp}$, where $M^{\perp}=\{x \in \mathcal{X}$ : $\langle x, y\rangle=0$ for any $y \in M\}$. If $T \in \mathcal{L}(\mathcal{X}, \mathcal{y})$ does not have closed range, then neither $\mathcal{N}(T)$ nor $\overline{\mathcal{R}(T)}$ needs to be orthogonally complemented. In addition, if $T \in \mathcal{L}(X, Y)$ and $\overline{\mathcal{R}\left(T^{*}\right)}$ is not orthogonally complemented, then it may happen that $\mathcal{N}(T)^{\perp} \neq \overline{\mathcal{R}\left(T^{*}\right)}$; see $[9,10]$. The above facts show that the theory Hilbert $C^{*}$-modules are much different and more complicated than that of Hilbert spaces.

## 2. Main results

By Moore-Penrose properties and block matrix forms of $C^{*}$-modular operators we prove that $T \leqslant_{*} S$ is equivalent to $T \leqslant \leqslant^{*} S$ that define ordering relation. When $T$ and $S$ have closed ranges, we give an explicit formula for Moore-Penrose product of $S^{\dagger}$ and $T$, in the case it is idempotent.

Conditions are stated in the following theorem that $\left(S T^{+}\right)^{*}=T S^{+}$hold.
Theorem 2.1. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ have closed ranges such that $T^{*} T=T^{*} S$ and $S T^{\dagger}=T T^{\dagger}$, then $\left(S T^{\dagger}\right)^{*}=T S^{\dagger}$.

Proof. We have

$$
S T^{\dagger}=S S^{\dagger} S T^{\dagger}=\left(S S^{\dagger}\right)^{*} S T^{\dagger}=\left(S^{\dagger}\right)^{*} S^{*} S T^{\dagger}=\left(S^{\dagger}\right)^{*} S^{*} T T^{\dagger}
$$

Taking adjoint we conclude that $\left(S T^{\dagger}\right)^{*}=\left(T^{\dagger}\right)^{*} T^{*} S S^{\dagger}=\left(T^{\dagger}\right)^{*} T^{*} T S^{\dagger}=T S^{\dagger}$.
Now, we give an explicit formula for Moore-Penrose product of $S^{\dagger}$ and $T$, in the case it is idempotent.
Theorem 2.2. Suppose that $T, S \in \mathcal{L}(X, Y)$ and $S^{\dagger} T$ and $T S^{\dagger}$ have closed ranges. Then the following assertions hold.
(i) If $T T^{+}=S T^{\dagger}$ then $\left(S^{+} T\right)^{\dagger}$ is idempotent and

$$
\left(S^{\dagger} T\right)^{\dagger}=\left(S^{\dagger} T\right)^{*}-P_{\mathcal{R}\left(S^{*}\right)}\left[\left(1-P_{\mathcal{R}\left(T^{*}\right)}\right)\left(1-P_{\mathcal{R}\left(S^{*}\right)}\right)\right]^{\dagger} P_{\mathcal{R}\left(S^{*}\right)}
$$

(ii) If $T^{*} T=T^{*} S$ then $\left(T S^{\dagger}\right)^{\dagger}$ is idempotent and

$$
\left(T S^{\dagger}\right)^{\dagger}=\left(T S^{\dagger}\right)^{*}-P_{\mathcal{R}(S)}\left[\left(1-P_{\mathcal{R}(S)}\right)\left(1-P_{\mathcal{R}(T)}\right)\right]^{\dagger} P_{\mathcal{R}(T)} .
$$

Proof. (i) Suppose that $T T^{\dagger}=S T^{\dagger}$. Multiplying by $T$ on the right we have $T=S T^{\dagger} T$. Multiplying $S^{\dagger}$ on the left yields $S^{\dagger} T=S^{\dagger} S T^{\dagger} T=P_{\mathcal{R}\left(S^{*}\right)} P_{\mathcal{R}\left(T^{*}\right)}$. Now, [11, Theorem 2.3] implies that $\left(S^{\dagger} T\right)^{\dagger}$ is idempotent and [11, Corollary 2.4] implies that

$$
\left(S^{\dagger} T\right)^{\dagger}=\left(S^{\dagger} T\right)^{*}-P_{\mathcal{R}\left(T^{*}\right)}\left[\left(1-P_{\mathcal{R}\left(T^{*}\right)}\right)\left(1-P_{\mathcal{R}\left(S^{*}\right)}\right)\right]^{\dagger} P_{\mathcal{R}\left(S^{*}\right)}
$$

(ii) Since $T^{*} T=T^{*} S$, multiplying by $\left(T^{*}\right)^{\dagger}$ on the left we have $T=\left(T^{*}\right)^{\dagger} T^{*} T=\left(T^{*}\right)^{\dagger} T^{*} S=T T^{\dagger} S$. Multiplying $T=T T^{\dagger} S$ on the right by $S^{\dagger}$ yields $T S^{\dagger}=T T^{\dagger} S S^{\dagger}=P_{\mathcal{R}(T)} P_{\mathcal{R}(S)}$. Again by applying [11, Theorem 2.3] implies that $\left(T S^{\dagger}\right)^{\dagger}$ is idempotent and [11, Corollary 2.4] immediately implies that

$$
\left(T S^{\dagger}\right)^{\dagger}=\left(T S^{\dagger}\right)^{*}-P_{\mathcal{R}(S)}\left[\left(1-P_{\mathcal{R}(S)}\right)\left(1-P_{\mathcal{R}(T)}\right)\right]^{\dagger} P_{\mathcal{R}(T)}
$$

Remark 2.3. In Theorem 2.2 items (i) and (ii), respectively, conditions $T T^{+}=S T^{+}$and $T^{*} T=T^{*} S$ can be replaced by $T T^{*}=S T^{*}$ and $T^{\dagger} T=T^{\dagger}$.

The following theorem is expressed that $\leqslant_{*}$ coincides with $\leqslant^{*}$.
Theorem 2.4. Let $\mathcal{X}, \boldsymbol{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ be such that $T$ has closed range. Then $T \leqslant{ }_{*} S$ if and only if $T \leqslant{ }^{*} S$.

Proof. Since $T, S$ have closed ranges, we have $\mathcal{X}=\mathcal{R}\left(S^{*}\right) \oplus \mathcal{N}(S)$ and $\boldsymbol{y}=\mathcal{R}(T) \oplus \mathcal{N}\left(T^{*}\right)$. Hence, by using these complemented submodules, $T$ and $S$ admit the following matrix representations

$$
\begin{aligned}
T & =\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}\left(S^{*}\right) \\
\mathcal{N}(S)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(T) \\
\mathcal{N}\left(T^{*}\right)
\end{array}\right], \\
S & =\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}\left(S^{*}\right) \\
\mathcal{N}(S)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(T) \\
\mathcal{N}\left(T^{*}\right)
\end{array}\right] .
\end{aligned}
$$

By matrix decompositions $T$ and $S$, we obtain matrix representations $T^{*} T, T^{*} S, T T^{*}, S T^{*}, T^{\dagger} T, T^{\dagger} S, T T^{\dagger}$ and $S T^{+}$with the following

$$
\begin{align*}
T^{*} T & =\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
T_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} T_{1} & T_{1}^{*} T_{2} \\
T_{2}^{*} T_{1} & T_{2}^{*} T_{2}
\end{array}\right]  \tag{5}\\
T^{*} S & =\left[\begin{array}{ll}
T_{1}^{*} & 0 \\
T_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} S_{1} & 0 \\
T_{2}^{*} S_{1} & 0
\end{array}\right]  \tag{6}\\
T T^{*} & =\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
T_{2}^{*} & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{1} T_{1}^{*}+T_{2} T_{2}^{*} & 0 \\
0 & 0
\end{array}\right]  \tag{7}\\
S T^{*} & =\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
T_{2}^{*} & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} & 0
\end{array}\right], \tag{8}
\end{align*}
$$

by using [8, Lemma 2.4], we have

$$
\begin{align*}
T^{+} T & =\left[\begin{array}{ll}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} E^{-1} T_{1} & T_{1}^{*} E^{-1} T_{2} \\
T_{2}^{*} E^{-1} T_{1} & T_{2}^{*} E^{-1} T_{2}
\end{array}\right],  \tag{9}\\
T^{\dagger} S & =\left[\begin{array}{ll}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} E^{-1} S_{1} & 0 \\
T_{2}^{*} E^{-1} S_{1} & 0
\end{array}\right],  \tag{10}\\
T T^{+} & =\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],  \tag{11}\\
S T^{+} & =\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} T_{1}^{*} E^{-1} & 0 \\
S_{2} T_{1}^{*} E^{-1} & 0
\end{array}\right], \tag{12}
\end{align*}
$$

where $E=T_{1} T_{1}^{*}+T_{2} T_{2}^{*}$ is invertible.
$(\Rightarrow)$ Now, suppose that $T \leqslant_{*} S$ or equivalently, $T^{*} T=T^{*} S$ and $T T^{*}=S T^{*}$. By the equations (5) and (6),

$$
\left[\begin{array}{cc}
T_{1}^{*} T_{1} & T_{1}^{*} T_{2} \\
T_{2}^{*} T_{1} & T_{2}^{*} T_{2}
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} S_{1} & 0 \\
T_{2}^{*} S_{1} & 0
\end{array}\right]
$$

and consequently

$$
\begin{align*}
T_{1}^{*} T_{1} & =T_{1}^{*} S_{1}  \tag{13}\\
T_{2}^{*} T_{1} & =T_{2}^{*} S_{1}  \tag{14}\\
T_{1}^{*} T_{2} & =0, \\
T_{2}^{*} T_{2} & =0 . \tag{15}
\end{align*}
$$

Equation (15) implies that,

$$
\begin{equation*}
T_{2}=0 \tag{16}
\end{equation*}
$$

Since $T T^{*}=S T^{*}$ then (16) implies that

$$
\left[\begin{array}{cc}
T_{1} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} & 0
\end{array}\right]
$$

that is

$$
\begin{align*}
& T_{1} T_{1}^{*}=S_{1} T_{1}^{*},  \tag{17}\\
& S_{2} T_{1}^{*}=0 . \tag{18}
\end{align*}
$$

Since $E=T_{1} T_{1}^{*}$ is invertible, multiplying the equality (17) by $\left(T_{1} T_{1}^{*}\right)^{-1}$ from the right side, we obtain

$$
\begin{equation*}
S_{1} T_{1}^{*}\left(T_{1} T_{1}^{*}\right)^{-1}=1 \tag{19}
\end{equation*}
$$

Again, multiplying the equality (18) by $E^{-1}$ from the right side, we get

$$
\begin{equation*}
S_{2} T_{1}^{*} E^{-1}=0, \tag{20}
\end{equation*}
$$

by applying (19) and (20) we conclude

$$
S T^{\dagger}=\left[\begin{array}{ll}
S_{1} T_{1}^{*} E^{-1} & 0  \tag{21}\\
S_{2} T_{1}^{*} E^{-1} & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=T T^{+}
$$

On the other hand, multiplying the equality (13) by $E^{-1} T_{1}$ from the left side, we obtain

$$
\begin{align*}
\left(E^{-1} T_{1} T_{1}^{*}\right) T_{1} & =\left(E^{-1} T_{1} T_{1}^{*}\right) S_{1} \\
T_{1} & =S_{1} \tag{22}
\end{align*}
$$

Now, prove that $T^{\dagger} T=T^{\dagger}$ S. By (16) and (22) we have

$$
T^{\dagger} T=\left[\begin{array}{cc}
T_{1}^{*} E^{-1} T_{1} & T_{1}^{*} E^{-1} T_{2}  \tag{23}\\
T_{2}^{*} E^{-1} T_{1} & T_{2}^{*} E^{-1} T_{2}
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} E^{-1} S_{1} & 0 \\
T_{2}^{*} E^{-1} S_{1} & 0
\end{array}\right]=T^{\dagger} S
$$

Then (21) and (23) implies that, $T \leqslant^{*} S$.
Conversely, suppose that $T \leqslant^{*} S$ that is, $T^{\dagger} T=T^{\dagger} S$ and $T T^{\dagger}=S T^{\dagger}$. As $T^{\dagger} T=T^{\dagger} S$ by applying (9) and (10), we have

$$
\left[\begin{array}{cc}
T_{1}^{*} E^{-1} T_{1} & T_{1}^{*} E^{-1} T_{2} \\
T_{2}^{*} E^{-1} T_{1} & T_{2}^{*} E^{-1} T_{2}
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} E^{-1} S_{1} & 0 \\
T_{2}^{*} E^{-1} S_{1} & 0
\end{array}\right]
$$

so we conclude that

$$
\begin{align*}
T_{1}^{*} E^{-1} T_{1} & =T_{1}^{*} E^{-1} S_{1}  \tag{24}\\
T_{2}^{*} E^{-1} T_{1} & =T_{2}^{*} E^{-1} S_{1}  \tag{25}\\
T_{1}^{*} E^{-1} T_{2} & =0  \tag{26}\\
T_{2}^{*} E^{-1} T_{2} & =0 \tag{27}
\end{align*}
$$

By multiplication $T_{1}$ and $T_{2}$ on the left of equations (41) and (42), respectively, and additive obtained the equalities we achieve, $\left(T_{1} T_{1}^{*}+T_{2} T_{2}^{*}\right) E^{-1} T_{1}=E E^{-1} S_{1}$, then $T_{1}=S_{1}$.

Again, By multiplication $T_{1}$ and $T_{2}$ on the left of equations (26) and (27), respectively, we get $T_{1} T_{1}^{*} E^{-1} T_{2}=$ 0 and $T_{2} T_{2}^{*} E^{-1} T_{2}=0$. By additive the obtained equalities, we have $T_{2}=0$.

Also, since $T T^{\dagger}=S T^{+}$rewrite matrix forms (11) and (12)

$$
T T^{\dagger}=\left[\begin{array}{cc}
\left(T_{1} T_{1}^{*}+T_{2} T_{2}^{*}\right) E^{-1} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} T_{1}^{*} E^{-1} & 0 \\
S_{2} T_{1}^{*} E^{-1} & 0
\end{array}\right]=S T^{\dagger}
$$

this conclude that, $S_{1} T_{1}^{*} E^{-1}=1$ and $S_{2} T_{1}^{*} E^{-1}=0$. Since $E$ is invertible, we obtain

$$
\begin{align*}
& S_{1} T_{1}^{*}=E,  \tag{28}\\
& S_{2} T_{1}^{*}=0 . \tag{29}
\end{align*}
$$

By the equations $T_{1}=S_{1}$ and $T_{2}=0$ and (29) we get

$$
\begin{align*}
T^{*} T & =\left[\begin{array}{cc}
T_{1}^{*} T_{1} & T_{1}^{*} T_{2} \\
T_{2}^{*} T_{1} & T_{2}^{*} T_{2}
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*} S_{1} & 0 \\
0 & 0
\end{array}\right]=T^{*} S  \tag{30}\\
T T^{*} & =\left[\begin{array}{ll}
E & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} & 0
\end{array}\right]=S T^{*} . \tag{31}
\end{align*}
$$

Hence, equations (30) and (31) implies that $T \leqslant_{*} S$.
Theorem 2.5. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that $T$ has closed range. If $T \leqslant_{*} S$ then $T S^{*} \leqslant_{*} S T^{*}$.

Proof. Suppose that $T \leqslant_{*} S$, that is $T^{*} T=T^{*} S$ and $T T^{*}=S T^{*}$.
To show that $T S^{*}\left(T S^{*}\right)^{*}=S T^{*}\left(T S^{*}\right)^{*}$ and $\left(T S^{*}\right)^{*} T S^{*}=\left(T S^{*}\right)^{*} S T^{*}$, or equivalently,

$$
S T^{*} T S^{*}=\left(S T^{*}\right)^{2}=T S^{*} S T^{*}
$$

By using the complemented submodules from [8, Lemma 2.4] and matrix representations $T, S$ and equation (12), we compute $S T^{*} T S^{*}, \quad\left(S T^{*}\right)^{2}$ and $T S^{*} S T^{*}$ with the following

$$
\begin{aligned}
& S T^{*} T S^{*}=\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]^{*}\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]^{*} \\
& =\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} & 0 \\
T_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
S_{1}^{*} & S_{2}^{*} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
S_{1} T_{1}^{*} T_{1} S_{1}^{*} & S_{1} T_{1}^{*} T_{1} S_{2}^{*} \\
S_{2} T_{1}^{*} T_{1} S_{1}^{*} & S_{2} T_{1}^{*} T_{1} S_{2}^{*}
\end{array}\right] \\
& \text { (by (18)) }=\left[\begin{array}{cc}
S_{1} T_{1}^{*} T_{1} S_{1}^{*} & 0 \\
0 & 0
\end{array}\right] \\
& (\text { by }(22))=\left[\begin{array}{cc}
\left(T_{1} T_{1}^{*}\right)^{2} & 0 \\
0 & 0
\end{array}\right], \\
& \left(S T^{*}\right)^{2}=\left[\begin{array}{ll}
S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} & 0
\end{array}\right]\left[\begin{array}{ll}
S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
S_{1} T_{1}^{*} S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} S_{1} T_{1}^{*} & 0
\end{array}\right] \\
& (\text { by }(18))=\left[\begin{array}{cc}
S_{1} T_{1}^{*} S_{1} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right] \\
& \left(\text { by (22)) }=\left[\begin{array}{cc}
\left(T_{1} T_{1}^{*}\right)^{2} & 0 \\
0 & 0
\end{array}\right]\right.
\end{aligned}
$$

and

$$
\begin{aligned}
T S^{*} S T^{*} & =\left[\begin{array}{cc}
T_{1} S_{1}^{*} & T_{1} S_{2}^{*} \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
S_{1} T_{1}^{*} & 0 \\
S_{2} T_{1}^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
T_{1} S_{1}^{*} S_{1} T_{1}^{*}+T_{1} S_{2}^{*} S_{2} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right] \\
\text { (by (18)) } & =\left[\begin{array}{cc}
T_{1} S_{1}^{*} S_{1} T_{1}^{*} & 0 \\
0 & 0
\end{array}\right] \\
\text { (by (22)) } & =\left[\begin{array}{cc}
\left(T_{1} T_{1}^{*}\right)^{2} & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Hence, we conclude that

$$
\begin{equation*}
S T^{*} T S^{*}=\left(S T^{*}\right)^{2}=T S^{*} S T^{*} \tag{32}
\end{equation*}
$$

Equation (32) implies that $T S^{*}\left(T S^{*}\right)^{*}=S T^{*}\left(T S^{*}\right)^{*}$ and $\left(T S^{*}\right)^{*}=T S^{*} S T^{*}$, or, equivalently $T S^{*} \leqslant_{*} S T^{*}$.
In the following theorem we show that $\leqslant_{*}$ has some inherited properties.
Theorem 2.6. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ have closed ranges such that $T \leqslant *$. Then the following statements are hold:
(i) $T^{*} \leqslant_{*} S^{*}$,
(ii) $T^{+} \leqslant_{*} S^{+}$,
(iii) $(T-S)^{\dagger}=T^{\dagger}-S^{\dagger}$,
(iv) $\left(T T^{*}-S S^{*}\right)^{\dagger}=\left(T T^{*}\right)^{\dagger}-\left(S S^{*}\right)^{\dagger}$,
(v) $\left(T T^{\dagger}-S S^{\dagger}\right)^{\dagger}=\left(T T^{\dagger}\right)^{\dagger}-\left(S S^{\dagger}\right)^{\dagger}$,
(vi) $\left(T S^{*}-S T^{*}\right)^{\dagger}=\left(T S^{*}\right)^{\dagger}-\left(S T^{*}\right)^{\dagger}$.

Proof. (i) Suppose that $T \leqslant^{*} S$, or, equivalently $T^{*} T=T^{*} S$ and $T T^{*}=S T^{*}$. By taking conjugates of previous equations, we get $T^{*} T=S^{*} T$ and $T T^{*}=T S^{*}$, respectively. Hence, implies that $T^{*} \leqslant_{*} S^{*}$.
(ii) Assuming the case is equivalent with $T^{*} T=T^{*} S$ and $T T^{*}=S T^{*}$. By multiplication $S_{1}^{*}$ and $S_{2}^{*}$ on the left of equations (28) and (29), respectively, and additive obtained the equalities we achieve,

$$
\begin{equation*}
F T_{1}^{*}=S_{1}^{*} E \tag{33}
\end{equation*}
$$

Where $F=S_{1}^{*} S_{1}+S_{2}^{*} S_{2}$ is invertible. Multiplying (33) by $E^{-1}$ on the right side and by $E^{-1} T_{1} F^{-1}$ on the left side, we obtain

$$
\begin{equation*}
E^{-1} T_{1} F^{-1} S_{1}^{*}=E^{-1} \tag{34}
\end{equation*}
$$

We show that $\left(T^{\dagger}\right)^{*} T^{\dagger}=\left(T^{\dagger}\right)^{*} S^{\dagger}$ and $T^{\dagger}\left(T^{\dagger}\right)^{*}=S^{\dagger}\left(T^{\dagger}\right)^{*}$ and conclude that $T^{\dagger} \leqslant S^{\dagger}$. Since $T S^{\dagger}=S T^{\dagger}$ then

$$
\begin{align*}
& {\left[\begin{array}{cc}
T_{1} & T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
F^{-1} S_{1}^{*} & F^{-1} S_{1}^{*} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} & 0 \\
S_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
T_{1} F^{-1} S_{1}^{*} & T_{1} F^{-1} S_{2}^{*} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
S_{1} T_{1}^{*} E^{-1} & 0 \\
S_{2} T_{1}^{*} E^{-1} & 0
\end{array}\right] .} \tag{35}
\end{align*}
$$

So we have $T_{1} F^{-1} S_{2}^{*}=0$ and consequently,

$$
\begin{equation*}
E^{-1} T_{1} F^{-1} S_{2}^{*}=0 \tag{36}
\end{equation*}
$$

Using [8, Lemma 2.4], (34) and (36) we compute

$$
\begin{align*}
\left(T^{\dagger}\right)^{*} T^{\dagger} & =\left[\begin{array}{cc}
E^{-1} T_{1} & E^{-1} T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
E^{-1} & 0 \\
0 & 0
\end{array}\right] \tag{37}
\end{align*}
$$

and

$$
\begin{align*}
\left(T^{+}\right)^{*} S^{+} & =\left[\begin{array}{cc}
E^{-1} T_{1} & E^{-1} T_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
F^{-1} S_{1}^{*} & F^{-1} S_{2}^{*} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
E^{-1} T_{1} F^{-1} S_{1}^{*} & E^{-1} T_{1} F^{-1} S_{2}^{*} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
E^{-1} & 0 \\
0 & 0
\end{array}\right] . \tag{38}
\end{align*}
$$

Hence, equations (37) and (38) implies that $\left(T^{+}\right)^{*} T^{\dagger}=\left(T^{+}\right)^{*} S^{\dagger}$.
In the same way, applying the equation (33) we derive that $T_{1}^{*} E^{-1}=F^{-1} S_{1}^{*}$. Again, by using [8, Lemma 2.4] and (16) we reach

$$
\begin{align*}
T^{\dagger}\left(T^{\dagger}\right)^{*} & =\left[\begin{array}{ll}
T_{1}^{*} E^{-1} & 0 \\
T_{2}^{*} E^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
E^{-1} T_{1} & E^{-1} T_{2} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
T_{1}^{*}\left(E^{-1}\right)^{2} T_{1} & T_{1}^{*}\left(E^{-1}\right)^{2} T_{2} \\
T_{2}^{*}\left(E^{-1}\right)^{2} T_{1} & T_{2}^{*}\left(E^{-1}\right)^{2} T_{2}
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*}\left(E^{-1}\right)^{2} T_{1} & 0 \\
0 & 0
\end{array}\right] \tag{39}
\end{align*}
$$

and

$$
\begin{align*}
S^{\dagger}\left(T^{\dagger}\right)^{*} & =\left[\begin{array}{cc}
F^{-1} S_{1}^{*} & F^{-1} S_{2}^{*} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
E^{-1} T_{1} & E^{-1} T_{2} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
F^{-1} S_{1}^{*} E^{-1} T_{1} & F^{-1} S_{1}^{*} E^{-1} T_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
T_{1}^{*}\left(E^{-1}\right)^{2} T_{1} & 0 \\
0 & 0
\end{array}\right] \tag{40}
\end{align*}
$$

Equations (39) and (40) implies that $T^{+} T^{\dagger^{*}}=S^{+} T^{\dagger^{*}}$.
Hence $T^{\dagger} \leqslant{ }_{*} S^{\dagger}$.
(iii) By Theorem 2.4 since $T \leqslant_{*} S$, we have $T^{\dagger} T=T^{\dagger} S=S^{\dagger} T$ and $T T^{\dagger}=S T^{\dagger}=T S^{\dagger}$. Let $X=T^{\dagger}-S^{\dagger}$, since

$$
\begin{aligned}
& (T-S) X(T-S)=(T-S)\left(T^{\dagger}-S^{\dagger}\right)(T-S) \\
= & T T^{\dagger} T-T T^{\dagger} S-T S^{\dagger} T+T S^{\dagger} S-S T^{\dagger} T+S T^{\dagger} S+S S^{\dagger} T-S S^{\dagger} S \\
= & T-S T^{\dagger} S-T T^{\dagger} S+S T^{\dagger} S-S S^{\dagger} T+S T^{\dagger} S+S S^{\dagger} T-S \\
= & T-T T^{\dagger} S+S T^{\dagger} S-S=T-S T^{\dagger} S+S T^{\dagger} S-S=T-S,
\end{aligned}
$$

$$
\begin{aligned}
& X(T-S) X=\left(T^{\dagger}-S^{\dagger}\right)(T-S)\left(T^{\dagger}-S^{\dagger}\right) \\
= & T^{\dagger} T T^{\dagger}-T^{\dagger} T S^{\dagger}-T^{\dagger} S T^{\dagger}+T^{\dagger} S T^{\dagger}-S^{\dagger} T T^{\dagger}+S^{\dagger} T S^{\dagger}+S^{\dagger} S T^{\dagger}-S^{\dagger} S S^{\dagger} \\
= & T^{\dagger}-T^{\dagger} T S^{\dagger}-T^{\dagger} S T^{\dagger}+T^{\dagger} S T^{\dagger}-S^{\dagger} T T^{\dagger}+S^{\dagger} T S^{\dagger}+S^{\dagger} S T^{\dagger}-S^{\dagger} \\
= & T^{\dagger}-S^{\dagger} T S^{\dagger}-S^{\dagger} T S^{\dagger}+S^{\dagger} T S^{\dagger}-S^{\dagger} S T^{\dagger}+S^{\dagger} T S^{\dagger}+S^{\dagger} S T^{\dagger}-S^{\dagger} \\
= & T^{\dagger}-S^{\dagger}=X,
\end{aligned}
$$

$$
\begin{aligned}
(T-S) X & =(T-S)\left(T^{\dagger}-S^{\dagger}\right)=T T^{\dagger}-T S^{\dagger}-S T^{\dagger}+S S^{\dagger} \\
& =T T^{\dagger}-T T^{\dagger}-T T^{\dagger}+S S^{\dagger}=S S^{\dagger}-T T^{\dagger} .
\end{aligned}
$$

So $(T-S) X$ is hermitian. In the same way, prove that $X(T-S)$ is hermitian. By uniqueness of Moore-Penrose inverse, we have $(T-S)^{\dagger}=T^{\dagger}-S^{\dagger}$.
(iv) We know $T T^{*} \leqslant_{*} S S^{*}$ if and only if $\left(T T^{*}\right)^{*} T T^{*}=\left(T T^{*}\right)^{*} S S^{*}$ and $T T^{*}\left(T T^{*}\right)^{*}=S S^{*}\left(T T^{*}\right)^{*}$, or, equivalently,

$$
\left(T T^{*}\right)^{2}=T T^{*} S S^{*}=S S^{*}\left(T T^{*}\right)^{*} .
$$

Since $T \leqslant * S$ then

$$
\begin{align*}
T^{*} T & =T^{*} S  \tag{41}\\
T T^{*} & =S T^{*} . \tag{42}
\end{align*}
$$

Thus, we get

$$
\begin{align*}
T T^{*} S S^{*} & =T\left(T^{*} S\right) S^{*} \\
(\text { by }(41)) & =T\left(T^{*} T\right) S^{*} \\
& =\left(T T^{*}\right)\left(T S^{*}\right) \\
(\text { by }(42)) & =\left(T T^{*}\right)\left(T T^{*}\right) \\
& =\left(T T^{*}\right)^{2} . \tag{43}
\end{align*}
$$

Taking conjugate of (41), we obtain that $\left(T T^{*}\right)^{2}=T T^{*} S S^{*}=S S^{*}\left(T T^{*}\right)^{*}$ is satisfied. By using the statement (iii) we conclude that $\left(T T^{*}-S S^{*}\right)^{\dagger}=\left(T T^{*}\right)^{\dagger}-\left(S S^{*}\right)^{\dagger}$.
(v) Suppose that $T \leqslant_{*} S$. By Theorems 2.1 and 2.4 , we obtain $T T^{\dagger}=T S^{\dagger}$. So we get

$$
\begin{equation*}
T T^{\dagger}=T S^{\dagger}=T T^{\dagger} T S^{\dagger}=T T^{\dagger} S S^{\dagger} \tag{44}
\end{equation*}
$$

By taking conjugate of (44) we conclude that $T T^{\dagger}=S S^{\dagger} T T^{\dagger}$. Hence $T T^{\dagger} \leqslant_{*} S S^{\dagger}$. By using the statement (iii) we conclude that $\left(T T^{\dagger}-S S^{\dagger}\right)^{\dagger}=T T^{\dagger}-S S^{\dagger}$.
(vi) By using Theorem 2.1 and the statement (iii) we conclude that $\left(T S^{*}-S T^{*}\right)^{\dagger}=\left(T S^{*}\right)^{\dagger}-\left(S T^{*}\right)^{\dagger}$.

Proposition 2.7. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(X, y)$. If $U \in \mathcal{L}(X)$ is a unitary operator, then $T \leqslant_{*} S$ if and only if $T U \leqslant_{*} S U$.

Proof. Let $U$ be an unitary operator with respect to the decomposition $X=\mathcal{R}\left(S^{*}\right) \oplus \mathcal{N}(S)$. Since $T \leqslant * S$ then $T^{*} T=T^{*} S$ and $T T^{*}=S T^{*}$ therefore, we have

$$
(T U)^{*} T U=U^{*} T^{*} T U=U^{*} T^{*} S U=(T U)^{*} S U .
$$

Also, we compute

$$
T U(T U)^{*}=T U U^{*} T^{*}=T T^{*}=S T^{*}=S U U^{*} T^{*}=S U(S U)^{*} .
$$

Hence $T U \leqslant_{*} S U$.
Conversely, suppose that $T U \leqslant_{*} S U$, then we have $(T U)^{*} T U=(T U)^{*} S U$ and $T U(T U)^{*}=S U(S U)^{*}$. So we obtain

$$
\begin{aligned}
(T U)^{*} T U & =(T U)^{*} S U \\
U^{*} T^{*} T U & =U^{*} T^{*} S U \\
U U^{*} T^{*} T U U^{*} & =U U^{*} T^{*} S U U^{*} \\
T^{*} T & =T^{*} S .
\end{aligned}
$$

In the same way,

$$
T T^{*}=T U U^{*} T^{*}=T U(T U)^{*}=S U(T U)^{*}=S U U^{*} T^{*}=S T^{*}
$$

Therefore, $T T^{*}=S T^{*}$ and $T^{*} T=T^{*} S$, or, equivalently $T \leqslant_{*} S$.
Theorem 2.8. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, then the following statement are equivalent
(i) $T^{*} T=T^{*} S$ and $S T^{+}=T T^{+}$,
(ii) $T \leqslant_{*} S$,
(iii) $T \leqslant \leqslant^{*} S$.

Proof. (i) $\Rightarrow$ (ii) Since $T^{*} T=T^{*} S$, multiplying by $\left(T^{\dagger}\right)^{*}$ on the left we have $\left(T^{\dagger}\right)^{*} T^{*} T=\left(T^{\dagger}\right)^{*} T^{*} S$, therefore $T=T T^{\dagger} S$, multiplying by $T^{\dagger}$ on the left we get $T^{\dagger} T=T^{\dagger} S$. By this fact and assumption $S T^{\dagger}=T T^{\dagger}$ we desired the result.
(ii) $\Leftrightarrow$ (iii) By Theorem 2.4 is obvious.
(iii) $\Rightarrow$ (i) Since $T \leqslant^{*} S$ and $T \leqslant_{*} S$ hold, then $S T^{+}=T T^{+}$and $T^{*} T=T^{*} S$.

Theorem 2.9. Let $\mathcal{X}, \mathcal{Y}$ be Hilbert $\mathcal{A}$-modules and $T, S, U \in \mathcal{L}(X, Y)$ have closed ranges. Then $\leqslant_{*}$ is an ordering relation.
Proof. It is clear that $T \leqslant_{*} T$.
Now suppose that $T \leqslant_{*} S$ and $S \leqslant_{*} T$. Then we get $T=T T^{+} T=T S^{+} T=S S^{+} T=S S^{+} S=S$. Suppose that $T \leqslant_{*} S$ and $S \leqslant_{*} U$, we have

$$
\begin{align*}
& T T^{\dagger}=S T^{\dagger}=T S^{\dagger}  \tag{45}\\
& T^{\dagger} T=T^{\dagger} S=S^{\dagger} T \tag{46}
\end{align*}
$$

and

$$
\begin{align*}
& S S^{\dagger}=U S^{\dagger}=S U^{\dagger}  \tag{47}\\
& S^{+} S=S^{+} U=U^{+} S \tag{48}
\end{align*}
$$

Multiplying the equality (47) by $S$ from the right side, leads to $S=U S^{\dagger} S$ and consequently, we obtain $T T^{\dagger}=U S^{\dagger} S T^{\dagger}=U S^{\dagger} T T^{\dagger}=U T^{\dagger} T T^{\dagger}=U T^{\dagger}$. Also, multiplying the equality (48) by $S$ from the left side, leads to $S=S S^{\dagger} U$ and consequently, we obtain $T^{\dagger} T=T^{\dagger} S=T^{\dagger} S S^{\dagger} U=T^{+} T S^{\dagger} U=T^{\dagger} T T^{\dagger} U=T^{\dagger} U$.

Remark 2.10. As an application of star order we note that if $T, S \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges and $T \leqslant_{*} S$, since $T S^{\dagger}=T T^{\dagger}$. Then the system of operator equations $T X S=T=S X T$ is solvable if and only if $S S^{\dagger} T S^{\dagger} S=T$, in this case $T=S$. It is obviously $X=T^{+}+V\left(1-T T^{+}\right)+\left(1-T^{+} T\right) W$, where $V, W \in \mathcal{L}(\boldsymbol{y}, \mathcal{X})$ are arbitrary operators. Hence, proof [12, Theorem 3.8.] is clear.

## References

[1] J. K. Baksalary , A relationship between the star and minus orderings, Linear Algebra Appl 81, (1986) 145-167.
[2] J. K. Baksalary and Radoslaw Kala , Partial orderings between matrices one of which is of rank one, Bull. Polish Acad. Sci. Math. 31, (1983) 5-7 .
[3] G. Dolinar , J. Marovt , Star partial order on B(H), Linear Algebra Appl 434 (2011), 319-326
[4] M. P. Drazin , Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978) 139-141.
[5] R. Harte, M. Mbekhta , On generalized inverses in C*-algebras, Studia Math 103 (1992) 71-77.
[6] R. E. Hartwig, A note on the partial ordering of positive semi-definite matrices, Linear and Multilinear Algebra 6, (1978) 223-226 .
[7] R. E. Hartwig,How to partially order regular elements?, Math. Japonica 25, (1980) 1-13.
[8] M. Jalaeian, M. Mohammadzadeh Karizaki and M. Hassani (2019) Conditions that the product of operators is an EP operator in Hilbert C*-module, Linear and Multilinear Algebra, DOI: 10.080/03081087.2019.1567673
[9] E. C. Lance, Hilbert C*-Modules, LMS Lecture Note Series 210 (1995).
[10] V. Manuilov, E. Troitsky, Hilbert C*-modules. translated from the 2001 russian original by the authors, Translations of Mathematical Monographs 226.
[11] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari, M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert $C^{*}$-modules, Colloq. Math, 140, (2015), 171-182.
[12] M. Vosough, M. Moslehian , Solutions of the system of operator equations $B X A=B=A X B$ via the *-order, Electron. J. Linear Algebra 32,(2017) 172-183.
[13] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Alg. Appl. 428, (2008) 992-1000.


[^0]:    2010 Mathematics Subject Classification. Primary 47A62; Secondary 15A24, 46L08.
    Keywords. Closed range; Moore-Penrose inverse; Star partial ordering.
    Received: 25 October 2019; Accepted: 25 December 2020
    Communicated by Dragan S. Djordjević
    *Corresponding Author
    Email addresses: jalaeianmaryam7@gmail.com (Maryam Jalaeian), m.mohammadzadeh@torbath.ac.ir (Mehdi Mohammadzadeh Karizaki*), mhassanimath@gmail.com (Mahmoud Hassani)

