
Functional Analysis,
Approximation and
Computation
12 (1) (2020), 71-80

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. By Moore-Penrose properties and block matrix forms of C∗-modular operators we prove that
T 6∗ S is equivalent to T 6∗ S that define ordering relation, when T and S have closed ranges, we give an
explicit formula for Moore-Penrose product of S† and T, in the case it is idempotent.

1. Introduction

Let Mm,n(C) be the algebra of all m × n complex matrices, and let B(H) be the algebra of all bounded
linear operators on an infinite-dimensional complex Hilbert spaceH .

One of such orders is the star partial order, which was defined by Drazin [4] for complex matrices,
and Dolinar [3] stated the equivalent definition of the star partial order on B(H), by using orthogonal
projections.

Drazin [4] introduced two binary relations in the set of complex matrices by combining each of the
conditions

T∗T = T∗S and TT∗ = ST∗, (1)

and

T†T = T†S = S†T and TT† = TS† = ST†, (2)

The star partial ordering defined by (1) is due to Drazin [4]. Hartwig [7] inspired from Drazin [4] and
introduced the plus partial order (or minus partial order).

The star order is investigated by some authors, that we refer to the [1, 2, 6, 7].
In this paper, we introduce star order and Moore-Penrose order in Hilbert C∗-modules. Let X,Y be

HilbertA-modules and T,S ∈ L(X,Y) have closed ranges. We denote the star order by

T 6∗ S whenever T∗T = T∗S and TT∗ = ST∗, (3)
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and Moore-Penrose order by

T 6∗ S whenever T† exists such that T†T = T†S and TT† = ST†. (4)

By Moore-Penrose properties and block matrix forms of C∗-modular operators we show that T 6∗ S is
equivalent to T 6∗ S that define ordering relation, when T and S have closed ranges, and we give an explicit
formula for Moore-Penrose product of S† and T, in the case it is idempotent. We obtain some results that
one of two binary relation holds, such as T∗T = T∗S and ST† = TT† that is equivalent with T 6∗ S.

Inner product C∗-modules are generalizations of inner product spaces by allowing inner products to
take values in some C∗-algebras instead of the field of complex numbers. More precisely, an inner-product
module over a C∗-algebraA is a rightA-module equipped with anA-valued inner product 〈·, ·〉 : X×X → A.
If X is complete with respect to the induced norm defined by ‖x‖ = ‖〈x, x〉‖

1
2 (x ∈ X), then X is called a

HilbertA-module. Some fundamental properties of inner product spaces are no longer valid in inner product
C∗-modules in their complete generality. Consequently, when we are studying inner product C∗-modules,
it is always of interest under which conditions as well as which more general, situations might appear. The
book [9] is used as a standard reference source.

Throughout the rest of this paper, A denotes a C∗-algebra and X,Y denote Hilbert A-modules. Let
L(X,Y) be the set of operators T : X → Y for which there is an operator T∗ : Y → X such that 〈Tx, y〉 =
〈x,T∗y〉 for any x ∈ X and y ∈ Y. It is known that any element T ∈ L(X,Y) must be bounded and A-linear.
In general, a bounded operator between Hilbert C∗-modules may be not adjointable. We call L(X,Y) the
set of all adjointable operators from X to Y. In the case when X = Y, L(X,X), abbreviated to L(X), is a
C∗-algebra. For any operator T between linear spaces, the range and the null space of T are denoted byR(T)
andN(T), respectively.

A closed submodule M of X is said to be orthogonally complemented if X = M ⊕M⊥, where M⊥ =
{
x ∈ X :

〈x, y〉 = 0 for any y ∈M
}
. If T ∈ L(X,Y) does not have closed range, then neitherN(T) norR(T) needs to be

orthogonally complemented. In addition, if T ∈ L(X,Y) andR(T∗) is not orthogonally complemented, then
it may happen thatN(T)⊥ , R(T∗); see [9, 10]. The above facts show that the theory Hilbert C∗-modules are
much different and more complicated than that of Hilbert spaces.

2. Main results

By Moore-Penrose properties and block matrix forms of C∗-modular operators we prove that T 6∗ S is
equivalent to T 6∗ S that define ordering relation. When T and S have closed ranges, we give an explicit
formula for Moore-Penrose product of S† and T, in the case it is idempotent.

Conditions are stated in the following theorem that (ST†)∗ = TS† hold.

Theorem 2.1. Let X,Y be Hilbert A-modules and T,S ∈ L(X,Y) have closed ranges such that T∗T = T∗S and
ST† = TT†, then (ST†)∗ = TS†.

Proof. We have

ST† = SS†ST† = (SS†)∗ST† = (S†)∗S∗ST† = (S†)∗S∗TT†.

Taking adjoint we conclude that (ST†)∗ = (T†)∗T∗SS† = (T†)∗T∗TS† = TS†.

Now, we give an explicit formula for Moore-Penrose product of S† and T, in the case it is idempotent.

Theorem 2.2. Suppose that T,S ∈ L(X,Y) and S†T and TS† have closed ranges. Then the following assertions hold.

(i) If TT† = ST† then (S†T)† is idempotent and

(S†T)† = (S†T)∗ − PR(S∗)[(1 − PR(T∗))(1 − PR(S∗))]†PR(S∗).
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(ii) If T∗T = T∗S then (TS†)† is idempotent and

(TS†)† = (TS†)∗ − PR(S)[(1 − PR(S))(1 − PR(T))]†PR(T).

Proof. (i) Suppose that TT† = ST†. Multiplying by T on the right we have T = ST†T. Multiplying S† on the
left yields S†T = S†ST†T = PR(S∗)PR(T∗). Now, [11, Theorem 2.3] implies that (S†T)† is idempotent and [11,
Corollary 2.4] implies that

(S†T)† = (S†T)∗ − PR(T∗)[(1 − PR(T∗))(1 − PR(S∗))]†PR(S∗).

(ii) Since T∗T = T∗S, multiplying by (T∗)† on the left we have T = (T∗)†T∗T = (T∗)†T∗S = TT†S. Multiplying
T = TT†S on the right by S† yields TS† = TT†SS† = PR(T)PR(S). Again by applying [11, Theorem 2.3] implies
that (TS†)† is idempotent and [11, Corollary 2.4] immediately implies that

(TS†)† = (TS†)∗ − PR(S)[(1 − PR(S))(1 − PR(T))]†PR(T).

Remark 2.3. In Theorem 2.2 items (i) and (ii), respectively, conditions TT† = ST† and T∗T = T∗S can be replaced
by TT∗ = ST∗ and T†T = T†S.

The following theorem is expressed that 6∗ coincides with 6∗.

Theorem 2.4. Let X,Y be HilbertA-modules and T,S ∈ L(X,Y) be such that T has closed range. Then T 6∗ S if
and only if T 6∗ S.

Proof. Since T,S have closed ranges, we have X = R(S∗) ⊕ N(S) and Y = R(T) ⊕ N(T∗). Hence, by using
these complemented submodules, T and S admit the following matrix representations

T =

[
T1 T2
0 0

]
:
[
R(S∗)
N(S)

]
→

[
R(T)
N(T∗)

]
,

S =

[
S1 0
S2 0

]
:
[
R(S∗)
N(S)

]
→

[
R(T)
N(T∗)

]
.

By matrix decompositions T and S, we obtain matrix representations T∗T,T∗S,TT∗, ST∗,T†T,T†S,TT† and
ST† with the following

T∗T =

[
T∗1 0
T∗2 0

] [
T1 T2
0 0

]
=

[
T∗1T1 T∗1T2
T∗2T1 T∗2T2

]
, (5)

T∗S =

[
T∗1 0
T∗2 0

] [
S1 0
S2 0

]
=

[
T∗1S1 0
T∗2S1 0

]
, (6)

TT∗ =

[
T1 T2
0 0

] [
T∗1 0
T∗2 0

]
=

[
T1T∗1 + T2T∗2 0

0 0

]
, (7)

ST∗ =

[
S1 0
S2 0

] [
T∗1 0
T∗2 0

]
=

[
S1T∗1 0
S2T∗1 0

]
, (8)
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by using [8, Lemma 2.4], we have

T†T =

[
T∗1E−1 0
T∗2E−1 0

] [
T1 T2
0 0

]
=

[
T∗1E−1T1 T∗1E−1T2

T∗2E−1T1 T∗2E−1T2

]
, (9)

T†S =

[
T∗1E−1 0
T∗2E−1 0

] [
S1 0
S2 0

]
=

[
T∗1E−1S1 0
T∗2E−1S1 0

]
, (10)

TT† =

[
T1 T2
0 0

] [
T∗1E−1 0
T∗2E−1 0

]
=

[
1 0
0 0

]
, (11)

ST† =

[
S1 0
S2 0

] [
T∗1E−1 0
T∗2E−1 0

]
=

[
S1T∗1E−1 0
S2T∗1E−1 0

]
, (12)

where E = T1T∗1 + T2T∗2 is invertible.
(⇒) Now, suppose that T 6∗ S or equivalently, T∗T = T∗S and TT∗ = ST∗. By the equations (5) and (6),[

T∗1T1 T∗1T2
T∗2T1 T∗2T2

]
=

[
T∗1S1 0
T∗2S1 0

]
and consequently

T∗1T1 = T∗1S1, (13)
T∗2T1 = T∗2S1, (14)
T∗1T2 = 0,
T∗2T2 = 0. (15)

Equation (15) implies that,

T2 = 0. (16)

Since TT∗ = ST∗ then (16) implies that[
T1T∗1 0

0 0

]
=

[
S1T∗1 0
S2T∗1 0

]
that is

T1T∗1 = S1T∗1, (17)
S2T∗1 = 0. (18)

Since E = T1T∗1 is invertible, multiplying the equality (17) by (T1T∗1)−1 from the right side, we obtain

S1T∗1(T1T∗1)−1 = 1. (19)

Again, multiplying the equality (18) by E−1 from the right side, we get

S2T∗1E−1 = 0, (20)

by applying (19) and (20) we conclude

ST† =

[
S1T∗1E−1 0
S2T∗1E−1 0

]
=

[
1 0
0 0

]
= TT†. (21)

On the other hand, multiplying the equality (13) by E−1T1 from the left side, we obtain

(E−1T1T∗1)T1 = (E−1T1T∗1)S1,

T1 = S1. (22)
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Now, prove that T†T = T†S. By (16) and (22) we have

T†T =

[
T∗1E−1T1 T∗1E−1T2

T∗2E−1T1 T∗2E−1T2

]
=

[
T∗1E−1S1 0
T∗2E−1S1 0

]
= T†S. (23)

Then (21) and (23) implies that, T 6∗ S.
Conversely, suppose that T 6∗ S that is, T†T = T†S and TT† = ST†. As T†T = T†S by applying (9) and

(10), we have[
T∗1E−1T1 T∗1E−1T2

T∗2E−1T1 T∗2E−1T2

]
=

[
T∗1E−1S1 0
T∗2E−1S1 0

]
so we conclude that

T∗1E−1T1 = T∗1E−1S1, (24)

T∗2E−1T1 = T∗2E−1S1, (25)

T∗1E−1T2 = 0, (26)

T∗2E−1T2 = 0. (27)

By multiplication T1 and T2 on the left of equations (41) and (42), respectively, and additive obtained the
equalities we achieve, (T1T∗1 + T2T∗2)E−1T1 = EE−1S1, then T1 = S1.

Again, By multiplication T1 and T2 on the left of equations (26) and (27), respectively, we get T1T∗1E−1T2 =

0 and T2T∗2E−1T2 = 0. By additive the obtained equalities, we have T2 = 0.
Also, since TT† = ST† rewrite matrix forms (11) and (12)

TT† =

[
(T1T∗1 + T2T∗2)E−1 0

0 0

]
=

[
S1T∗1E−1 0
S2T∗1E−1 0

]
= ST†,

this conclude that, S1T∗1E−1 = 1 and S2T∗1E−1 = 0. Since E is invertible, we obtain

S1T∗1 = E, (28)
S2T∗1 = 0. (29)

By the equations T1 = S1 and T2 = 0 and (29) we get

T∗T =

[
T∗1T1 T∗1T2
T∗2T1 T∗2T2

]
=

[
T∗1S1 0

0 0

]
= T∗S, (30)

TT∗ =

[
E 0
0 0

]
=

[
S1T∗1 0
S2T∗1 0

]
= ST∗. (31)

Hence, equations (30) and (31) implies that T 6∗ S.

Theorem 2.5. Let X,Y be Hilbert A-modules and T,S ∈ L(X,Y) such that T has closed range. If T 6∗ S then
TS∗ 6∗ ST∗.

Proof. Suppose that T 6∗ S, that is T∗T = T∗S and TT∗ = ST∗.
To show that TS∗(TS∗)∗ = ST∗(TS∗)∗ and (TS∗)∗TS∗ = (TS∗)∗ST∗, or equivalently,

ST∗TS∗ = (ST∗)2 = TS∗ST∗.
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By using the complemented submodules from [8, Lemma 2.4] and matrix representations T,S and equation
(12), we compute ST∗TS∗, (ST∗)2 and TS∗ST∗ with the following

ST∗TS∗ =

[
S1 0
S2 0

] [
T1 T2
0 0

]∗ [
T1 T2
0 0

] [
S1 0
S2 0

]∗
=

[
S1 0
S2 0

] [
T∗1 0
T∗2 0

] [
T1 T2
0 0

] [
S∗1 S∗2
0 0

]
=

[
S1T∗1T1S∗1 S1T∗1T1S∗2
S2T∗1T1S∗1 S2T∗1T1S∗2

]
(by (18)) =

[
S1T∗1T1S∗1 0

0 0

]
(by (22)) =

[
(T1T∗1)2 0

0 0

]
,

(ST∗)2 =

[
S1T∗1 0
S2T∗1 0

] [
S1T∗1 0
S2T∗1 0

]
=

[
S1T∗1S1T∗1 0
S2T∗1S1T∗1 0

]
(by (18)) =

[
S1T∗1S1T∗1 0

0 0

]
(by (22)) =

[
(T1T∗1)2 0

0 0

]
and

TS∗ST∗ =

[
T1S∗1 T1S∗2

0 0

] [
S1T∗1 0
S2T∗1 0

]
=

[
T1S∗1S1T∗1 + T1S∗2S2T∗1 0

0 0

]
(by (18)) =

[
T1S∗1S1T∗1 0

0 0

]
(by (22)) =

[
(T1T∗1)2 0

0 0

]
.

Hence, we conclude that

ST∗TS∗ = (ST∗)2 = TS∗ST∗. (32)

Equation (32) implies that TS∗(TS∗)∗ = ST∗(TS∗)∗ and (TS∗)∗ = TS∗ST∗, or, equivalently TS∗ 6∗ ST∗.

In the following theorem we show that 6∗ has some inherited properties.

Theorem 2.6. Let X,Y be Hilbert A-modules and T,S ∈ L(X,Y) have closed ranges such that T 6∗ S. Then the
following statements are hold:

(i) T∗ 6∗ S∗,
(ii) T† 6∗ S† ,

(iii) (T − S)† = T† − S†,
(iv) (TT∗ − SS∗)† = (TT∗)† − (SS∗)†,
(v) (TT† − SS†)† = (TT†)† − (SS†)†,
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(vi) (TS∗ − ST∗)† = (TS∗)† − (ST∗)†.

Proof. (i) Suppose that T 6∗ S, or, equivalently T∗T = T∗S and TT∗ = ST∗. By taking conjugates of previous
equations, we get T∗T = S∗T and TT∗ = TS∗, respectively. Hence, implies that T∗ 6∗ S∗.

(ii) Assuming the case is equivalent with T∗T = T∗S and TT∗ = ST∗. By multiplication S∗1 and S∗2 on the
left of equations (28) and (29), respectively, and additive obtained the equalities we achieve,

FT∗1 = S∗1E. (33)

Where F = S∗1S1 + S∗2S2 is invertible. Multiplying (33) by E−1 on the right side and by E−1T1F−1 on the left
side, we obtain

E−1T1F−1S∗1 = E−1. (34)

We show that (T†)∗T† = (T†)∗S† and T†(T†)∗ = S†(T†)∗ and conclude that T† 6∗ S†. Since TS† = ST† then[
T1 T2
0 0

] [
F−1S∗1 F−1S∗1

0 0

]
=

[
S1 0
S2 0

] [
T∗1E−1 0
T∗2E−1 0

]
[

T1F−1S∗1 T1F−1S∗2
0 0

]
=

[
S1T∗1E−1 0
S2T∗1E−1 0

]
. (35)

So we have T1F−1S∗2 = 0 and consequently,

E−1T1F−1S∗2 = 0. (36)

Using [8, Lemma 2.4], (34) and (36) we compute

(T†)∗T† =

[
E−1T1 E−1T2

0 0

] [
T∗1E−1 0
T∗2E−1 0

]
=

[
E−1 0
0 0

]
(37)

and

(T†)∗S† =

[
E−1T1 E−1T2

0 0

] [
F−1S∗1 F−1S∗2

0 0

]
=

[
E−1T1F−1S∗1 E−1T1F−1S∗2

0 0

]
=

[
E−1 0
0 0

]
. (38)

Hence, equations (37) and (38) implies that (T†)∗T† = (T†)∗S†.
In the same way, applying the equation (33) we derive that T∗1E−1 = F−1S∗1. Again, by using [8, Lemma

2.4] and (16) we reach

T†(T†)∗ =

[
T∗1E−1 0
T∗2E−1 0

] [
E−1T1 E−1T2

0 0

]
=

[
T∗1(E−1)2T1 T∗1(E−1)2T2

T∗2(E−1)2T1 T∗2(E−1)2T2

]
=

[
T∗1(E−1)2T1 0

0 0

]
(39)

and

S†(T†)∗ =

[
F−1S∗1 F−1S∗2

0 0

] [
E−1T1 E−1T2

0 0

]
=

[
F−1S∗1E−1T1 F−1S∗1E−1T2

0 0

]
=

[
T∗1(E−1)2T1 0

0 0

]
. (40)
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Equations (39) and (40) implies that T†T†
∗

= S†T†
∗

.
Hence T† 6∗ S†.

(iii) By Theorem 2.4 since T 6∗ S,we have T†T = T†S = S†T and TT† = ST† = TS†. Let X = T† − S†, since

(T − S)X(T − S) = (T − S)(T† − S†)(T − S)
= TT†T − TT†S − TS†T + TS†S − ST†T + ST†S + SS†T − SS†S
= T − ST†S − TT†S + ST†S − SS†T + ST†S + SS†T − S
= T − TT†S + ST†S − S = T − ST†S + ST†S − S = T − S,

X(T − S)X = (T† − S†)(T − S)(T† − S†)
= T†TT† − T†TS† − T†ST† + T†ST† − S†TT† + S†TS† + S†ST† − S†SS†

= T† − T†TS† − T†ST† + T†ST† − S†TT† + S†TS† + S†ST† − S†

= T† − S†TS† − S†TS† + S†TS† − S†ST† + S†TS† + S†ST† − S†

= T† − S† = X,

(T − S)X = (T − S)(T† − S†) = TT† − TS† − ST† + SS†

= TT† − TT† − TT† + SS† = SS† − TT†.

So (T−S)X is hermitian. In the same way, prove that X(T−S) is hermitian. By uniqueness of Moore-Penrose
inverse, we have (T − S)† = T† − S†.

(iv) We know TT∗ 6∗ SS∗ if and only if (TT∗)∗TT∗ = (TT∗)∗SS∗ and TT∗(TT∗)∗ = SS∗(TT∗)∗, or, equivalently,

(TT∗)2 = TT∗SS∗ = SS∗(TT∗)∗.

Since T 6∗ S then

T∗T = T∗S, (41)
TT∗ = ST∗. (42)

Thus, we get

TT∗SS∗ = T(T∗S)S∗

(by (41)) = T(T∗T)S∗

= (TT∗)(TS∗)
(by (42)) = (TT∗)(TT∗)

= (TT∗)2. (43)

Taking conjugate of (41), we obtain that (TT∗)2 = TT∗SS∗ = SS∗(TT∗)∗ is satisfied. By using the statement (iii)
we conclude that (TT∗ − SS∗)† = (TT∗)† − (SS∗)†.

(v) Suppose that T 6∗ S. By Theorems 2.1 and 2.4, we obtain TT† = TS†. So we get

TT† = TS† = TT†TS† = TT†SS†. (44)

By taking conjugate of (44) we conclude that TT† = SS†TT†. Hence TT† 6∗ SS†. By using the statement (iii)
we conclude that (TT† − SS†)† = TT† − SS†.

(vi) By using Theorem 2.1 and the statement (iii) we conclude that (TS∗ − ST∗)† = (TS∗)† − (ST∗)†.

Proposition 2.7. Let X,Y be Hilbert A-modules and T,S ∈ L(X,Y). If U ∈ L(X) is a unitary operator, then
T 6∗ S if and only if TU 6∗ SU.
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Proof. Let U be an unitary operator with respect to the decomposition X = R(S∗) ⊕N(S). Since T 6∗ S then
T∗T = T∗S and TT∗ = ST∗ therefore, we have

(TU)∗TU = U∗T∗TU = U∗T∗SU = (TU)∗SU.

Also, we compute

TU(TU)∗ = TUU∗T∗ = TT∗ = ST∗ = SUU∗T∗ = SU(SU)∗.

Hence TU 6∗ SU.
Conversely, suppose that TU 6∗ SU, then we have (TU)∗TU = (TU)∗SU and TU(TU)∗ = SU(SU)∗. So we

obtain

(TU)∗TU = (TU)∗SU
U∗T∗TU = U∗T∗SU

UU∗T∗TUU∗ = UU∗T∗SUU∗

T∗T = T∗S.

In the same way,

TT∗ = TUU∗T∗ = TU(TU)∗ = SU(TU)∗ = SUU∗T∗ = ST∗.

Therefore, TT∗ = ST∗ and T∗T = T∗S, or, equivalently T 6∗ S.

Theorem 2.8. Let X,Y be HilbertA-modules and T,S ∈ L(X,Y), then the following statement are equivalent
(i) T∗T = T∗S and ST† = TT†,

(ii) T 6∗ S ,
(iii) T 6∗ S.

Proof. (i) ⇒ (ii) Since T∗T = T∗S, multiplying by (T†)∗ on the left we have (T†)∗T∗T = (T†)∗T∗S, therefore
T = TT†S, multiplying by T† on the left we get T†T = T†S. By this fact and assumption ST† = TT† we
desired the result.

(ii)⇔ (iii) By Theorem 2.4 is obvious.
(iii)⇒ (i) Since T 6∗ S and T 6∗ S hold, then ST† = TT† and T∗T = T∗S.

Theorem 2.9. Let X,Y be Hilbert A-modules and T,S,U ∈ L(X,Y) have closed ranges. Then 6∗ is an ordering
relation.

Proof. It is clear that T 6∗ T.
Now suppose that T 6∗ S and S 6∗ T. Then we get T = TT†T = TS†T = SS†T = SS†S = S. Suppose that

T 6∗ S and S 6∗ U,we have

TT† = ST† = TS†, (45)
T†T = T†S = S†T, (46)

and

SS† = US† = SU†, (47)
S†S = S†U = U†S. (48)

Multiplying the equality (47) by S from the right side, leads to S = US†S and consequently, we obtain
TT† = US†ST† = US†TT† = UT†TT† = UT†.Also, multiplying the equality (48) by S from the left side, leads
to S = SS†U and consequently, we obtain T†T = T†S = T†SS†U = T†TS†U = T†TT†U = T†U.

Remark 2.10. As an application of star order we note that if T,S ∈ L(X,Y) have closed ranges and T 6∗ S, since
TS† = TT†. Then the system of operator equations TXS = T = SXT is solvable if and only if SS†TS†S = T, in this
case T = S. It is obviously X = T† + V(1 − TT†) + (1 − T†T)W, where V,W ∈ L(Y,X) are arbitrary operators.
Hence, proof [12, Theorem 3.8.] is clear.
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