Functional Analysis, Approximation and Computation 12 (1) (2020), 71-80

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

The star order on *C*^{*}-modular operators

Maryam Jalaeian^a, Mehdi Mohammadzadeh Karizaki^{*b}, Mahmoud Hassani^a

^aDepartment of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran ^bDepartment of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Abstract. By Moore-Penrose properties and block matrix forms of C^* -modular operators we prove that $T \leq_* S$ is equivalent to $T \leq^* S$ that define ordering relation, when T and S have closed ranges, we give an explicit formula for Moore-Penrose product of S^{\dagger} and T, in the case it is idempotent.

1. Introduction

Let $M_{m,n}(\mathbb{C})$ be the algebra of all $m \times n$ complex matrices, and let $B(\mathcal{H})$ be the algebra of all bounded linear operators on an infinite-dimensional complex Hilbert space \mathcal{H} .

One of such orders is the star partial order, which was defined by Drazin [4] for complex matrices, and Dolinar [3] stated the equivalent definition of the star partial order on $B(\mathcal{H})$, by using orthogonal projections.

Drazin [4] introduced two binary relations in the set of complex matrices by combining each of the conditions

$$T^*T = T^*S \quad \text{and} \quad TT^* = ST^*, \tag{1}$$

and

$$T^{\dagger}T = T^{\dagger}S = S^{\dagger}T \quad \text{and} \quad TT^{\dagger} = TS^{\dagger} = ST^{\dagger}, \tag{2}$$

The star partial ordering defined by (1) is due to Drazin [4]. Hartwig [7] inspired from Drazin [4] and introduced the plus partial order (or minus partial order).

The star order is investigated by some authors, that we refer to the [1, 2, 6, 7].

In this paper, we introduce star order and Moore-Penrose order in Hilbert C^* -modules. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges. We denote the star order by

 $T \leq_* S$ whenever $T^*T = T^*S$ and $TT^* = ST^*$, (3)

Keywords. Closed range; Moore-Penrose inverse; Star partial ordering.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A62; Secondary 15A24, 46L08.

Received: 25 October 2019; Accepted: 25 December 2020

Communicated by Dragan S. Djordjević

^{*}Corresponding Author

Email addresses: jalaeianmaryam7@gmail.com (Maryam Jalaeian), m.mohammadzadeh@torbath.ac.ir (Mehdi Mohammadzadeh Karizaki^{*}), mhassanimath@gmail.com (Mahmoud Hassani)

and Moore-Penrose order by

$$T \leq S$$
 whenever T^{\dagger} exists such that $T^{\dagger}T = T^{\dagger}S$ and $TT^{\dagger} = ST^{\dagger}$. (4)

By Moore-Penrose properties and block matrix forms of C^* -modular operators we show that $T \leq S$ is equivalent to $T \leq S$ that define ordering relation, when T and S have closed ranges, and we give an explicit formula for Moore-Penrose product of S^+ and T, in the case it is idempotent. We obtain some results that one of two binary relation holds, such as $T^*T = T^*S$ and $ST^+ = TT^+$ that is equivalent with $T \leq S$.

Inner product *C*^{*}-modules are generalizations of inner product spaces by allowing inner products to take values in some *C*^{*}-algebras instead of the field of complex numbers. More precisely, an inner-product module over a *C*^{*}-algebra \mathfrak{A} is a right \mathfrak{A} -module equipped with an \mathfrak{A} -valued inner product $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathfrak{A}$. If \mathcal{X} is complete with respect to the induced norm defined by $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$ ($x \in \mathcal{X}$), then \mathcal{X} is called a *Hilbert* \mathfrak{A} -module. Some fundamental properties of inner product spaces are no longer valid in inner product *C*^{*}-modules, it is always of interest under which conditions as well as which more general, situations might appear. The book [9] is used as a standard reference source.

Throughout the rest of this paper, \mathfrak{A} denotes a *C**-algebra and *X*, *Y* denote Hilbert \mathfrak{A} -modules. Let $\mathcal{L}(X, \mathcal{Y})$ be the set of operators $T : X \to \mathcal{Y}$ for which there is an operator $T^* : \mathcal{Y} \to X$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for any $x \in X$ and $y \in \mathcal{Y}$. It is known that any element $T \in \mathcal{L}(X, \mathcal{Y})$ must be bounded and \mathfrak{A} -linear. In general, a bounded operator between Hilbert *C**-modules may be not adjointable. We call $\mathcal{L}(X, \mathcal{Y})$ the set of all adjointable operators from X to \mathcal{Y} . In the case when $X = \mathcal{Y}$, $\mathcal{L}(X, X)$, abbreviated to $\mathcal{L}(X)$, is a *C**-algebra. For any operator *T* between linear spaces, the range and the null space of *T* are denoted by $\mathcal{R}(T)$ and $\mathcal{N}(T)$, respectively.

A closed submodule M of X is said to be *orthogonally complemented* if $X = M \oplus M^{\perp}$, where $M^{\perp} = \{x \in X : \langle x, y \rangle = 0 \text{ for any } y \in M\}$. If $T \in \mathcal{L}(X, \mathcal{Y})$ does not have closed range, then neither $\mathcal{N}(T)$ nor $\overline{\mathcal{R}(T)}$ needs to be orthogonally complemented. In addition, if $T \in \mathcal{L}(X, \mathcal{Y})$ and $\overline{\mathcal{R}(T^*)}$ is not orthogonally complemented, then it may happen that $\mathcal{N}(T)^{\perp} \neq \overline{\mathcal{R}(T^*)}$; see [9, 10]. The above facts show that the theory Hilbert C^* -modules are much different and more complicated than that of Hilbert spaces.

2. Main results

By Moore-Penrose properties and block matrix forms of C^* -modular operators we prove that $T \leq_* S$ is equivalent to $T \leq^* S$ that define ordering relation. When T and S have closed ranges, we give an explicit formula for Moore-Penrose product of S^+ and T, in the case it is idempotent.

Conditions are stated in the following theorem that $(ST^{\dagger})^* = TS^{\dagger}$ hold.

Theorem 2.1. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges such that $T^*T = T^*S$ and $ST^{\dagger} = TT^{\dagger}$, then $(ST^{\dagger})^* = TS^{\dagger}$.

Proof. We have

 $ST^{\dagger} = SS^{\dagger}ST^{\dagger} = (SS^{\dagger})^{*}ST^{\dagger} = (S^{\dagger})^{*}S^{*}ST^{\dagger} = (S^{\dagger})^{*}S^{*}TT^{\dagger}.$

Taking adjoint we conclude that $(ST^{\dagger})^* = (T^{\dagger})^*T^*SS^{\dagger} = (T^{\dagger})^*T^*TS^{\dagger} = TS^{\dagger}$. \Box

Now, we give an explicit formula for Moore-Penrose product of S^{\dagger} and T, in the case it is idempotent.

Theorem 2.2. Suppose that $T, S \in \mathcal{L}(X, \mathcal{Y})$ and $S^{\dagger}T$ and TS^{\dagger} have closed ranges. Then the following assertions hold.

(i) If $TT^{\dagger} = ST^{\dagger}$ then $(S^{\dagger}T)^{\dagger}$ is idempotent and

$$(S^{\dagger}T)^{\dagger} = (S^{\dagger}T)^{*} - P_{\mathcal{R}(S^{*})}[(1 - P_{\mathcal{R}(T^{*})})(1 - P_{\mathcal{R}(S^{*})})]^{\dagger}P_{\mathcal{R}(S^{*})}.$$

(*ii*) If $T^*T = T^*S$ then $(TS^{\dagger})^{\dagger}$ is idempotent and

$$(TS^{\dagger})^{\dagger} = (TS^{\dagger})^{*} - P_{\mathcal{R}(S)}[(1 - P_{\mathcal{R}(S)})(1 - P_{\mathcal{R}(T)})]^{\dagger}P_{\mathcal{R}(T)}.$$

Proof. (*i*) Suppose that $TT^{\dagger} = ST^{\dagger}$. Multiplying by *T* on the right we have $T = ST^{\dagger}T$. Multiplying S^{\dagger} on the left yields $S^{\dagger}T = S^{\dagger}ST^{\dagger}T = P_{\mathcal{R}(S^{\circ})}P_{\mathcal{R}(T^{\circ})}$. Now, [11, Theorem 2.3] implies that $(S^{\dagger}T)^{\dagger}$ is idempotent and [11, Corollary 2.4] implies that

$$(S^{\dagger}T)^{\dagger} = (S^{\dagger}T)^{*} - P_{\mathcal{R}(T^{*})}[(1 - P_{\mathcal{R}(T^{*})})(1 - P_{\mathcal{R}(S^{*})})]^{\dagger}P_{\mathcal{R}(S^{*})}.$$

(*ii*) Since $T^*T = T^*S$, multiplying by $(T^*)^{\dagger}$ on the left we have $T = (T^*)^{\dagger}T^*T = (T^*)^{\dagger}T^*S = TT^{\dagger}S$. Multiplying $T = TT^{\dagger}S$ on the right by S^{\dagger} yields $TS^{\dagger} = TT^{\dagger}SS^{\dagger} = P_{\mathcal{R}(T)}P_{\mathcal{R}(S)}$. Again by applying [11, Theorem 2.3] implies that $(TS^{\dagger})^{\dagger}$ is idempotent and [11, Corollary 2.4] immediately implies that

$$(TS^{\dagger})^{\dagger} = (TS^{\dagger})^{*} - P_{\mathcal{R}(S)}[(1 - P_{\mathcal{R}(S)})(1 - P_{\mathcal{R}(T)})]^{\dagger}P_{\mathcal{R}(T)}.$$

Remark 2.3. In Theorem 2.2 items (i) and (ii), respectively, conditions $TT^{\dagger} = ST^{\dagger}$ and $T^{*}T = T^{*}S$ can be replaced by $TT^{*} = ST^{*}$ and $T^{\dagger}T = T^{\dagger}S$.

The following theorem is expressed that \leq_* coincides with \leq^* .

Theorem 2.4. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$ be such that T has closed range. Then $T \leq_* S$ if and only if $T \leq^* S$.

Proof. Since *T*, *S* have closed ranges, we have $X = \mathcal{R}(S^*) \oplus \mathcal{N}(S)$ and $\mathcal{Y} = \mathcal{R}(T) \oplus \mathcal{N}(T^*)$. Hence, by using these complemented submodules, *T* and *S* admit the following matrix representations

Т	=	$\begin{bmatrix} T_1\\ 0 \end{bmatrix}$	$\begin{bmatrix} T_2\\ 0 \end{bmatrix}$:	$\left[\begin{array}{c}\mathcal{R}(S^*)\\\mathcal{N}(S)\end{array}\right]$	$ \rightarrow $	$\begin{bmatrix} \mathcal{R}(T) \\ \mathcal{N}(T^*) \end{bmatrix}$],
S	=	$\begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$:	[$ \begin{array}{c} \mathcal{R}(S^*) \\ \mathcal{N}(S) \end{array} \right] $	\rightarrow	$ \begin{array}{c} \mathcal{R}(T) \\ \mathcal{N}(T^*) \end{array} \right] $	

By matrix decompositions *T* and *S*, we obtain matrix representations T^*T , T^*S , TT^* , ST^* , $T^{\dagger}T$, $T^{\dagger}S$, TT^{\dagger} and ST^{\dagger} with the following

$$T^{*}T = \begin{bmatrix} T_{1}^{*} & 0 \\ T_{2}^{*} & 0 \end{bmatrix} \begin{bmatrix} T_{1} & T_{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_{1}^{*}T_{1} & T_{1}^{*}T_{2} \\ T_{2}^{*}T_{1} & T_{2}^{*}T_{2} \end{bmatrix},$$
(5)

$$T^*S = \begin{bmatrix} T_1^* & 0 \\ T_2^* & 0 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ S_2 & 0 \end{bmatrix} = \begin{bmatrix} T_1^*S_1 & 0 \\ T_2^*S_1 & 0 \end{bmatrix},$$
(6)

$$TT^* = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_1^* & 0 \\ T_2^* & 0 \end{bmatrix} = \begin{bmatrix} T_1T_1^* + T_2T_2^* & 0 \\ 0 & 0 \end{bmatrix},$$
(7)

$$ST^* = \begin{bmatrix} S_1 & 0 \\ S_2 & 0 \end{bmatrix} \begin{bmatrix} T_1^* & 0 \\ T_2^* & 0 \end{bmatrix} = \begin{bmatrix} S_1 T_1^* & 0 \\ S_2 T_1^* & 0 \end{bmatrix},$$
(8)

by using [8, Lemma 2.4], we have

$$T^{\dagger}T = \begin{bmatrix} T_{1}^{*}E^{-1} & 0 \\ T_{2}^{*}E^{-1} & 0 \end{bmatrix} \begin{bmatrix} T_{1} & T_{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_{1}^{*}E^{-1}T_{1} & T_{1}^{*}E^{-1}T_{2} \\ T_{2}^{*}E^{-1}T_{1} & T_{2}^{*}E^{-1}T_{2} \end{bmatrix},$$
(9)

$$T^{\dagger}S = \begin{bmatrix} T_{1}^{*}E^{-1} & 0 \\ T_{2}^{*}E^{-1} & 0 \end{bmatrix} \begin{bmatrix} S_{1} & 0 \\ S_{2} & 0 \end{bmatrix} = \begin{bmatrix} T_{1}^{*}E^{-1}S_{1} & 0 \\ T_{2}^{*}E^{-1}S_{1} & 0 \end{bmatrix},$$
(10)

$$TT^{\dagger} = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_1^* E^{-1} & 0 \\ T_2^* E^{-1} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$
(11)

$$ST^{\dagger} = \begin{bmatrix} S_1 & 0 \\ S_2 & 0 \end{bmatrix} \begin{bmatrix} T_1^* E^{-1} & 0 \\ T_2^* E^{-1} & 0 \end{bmatrix} = \begin{bmatrix} S_1 T_1^* E^{-1} & 0 \\ S_2 T_1^* E^{-1} & 0 \end{bmatrix},$$
(12)

where $E = T_1T_1^* + T_2T_2^*$ is invertible.

(⇒) Now, suppose that $T \leq_* S$ or equivalently, $T^*T = T^*S$ and $TT^* = ST^*$. By the equations (5) and (6),

$$\begin{bmatrix} T_1^*T_1 & T_1^*T_2 \\ T_2^*T_1 & T_2^*T_2 \end{bmatrix} = \begin{bmatrix} T_1^*S_1 & 0 \\ T_2^*S_1 & 0 \end{bmatrix}$$

and consequently

$$T_1^*T_1 = T_1^*S_1, (13)$$

$$T_2^*T_1 = T_2^*S_1, (14)$$

$$T_1^T T_2 = 0,$$

 $T_2^* T_2 = 0.$ (15)

Equation (15) implies that,

$$T_2 = 0.$$
 (16)

Since $TT^* = ST^*$ then (16) implies that

 $\left[\begin{array}{cc} T_1T_1^* & 0\\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} S_1T_1^* & 0\\ S_2T_1^* & 0 \end{array}\right]$

that is

$$T_1 T_1^* = S_1 T_1^*,$$

$$S_2 T_1^* = 0.$$
(17)
(17)
(18)

Since $E = T_1 T_1^*$ is invertible, multiplying the equality (17) by $(T_1 T_1^*)^{-1}$ from the right side, we obtain

$$S_1 T_1^* (T_1 T_1^*)^{-1} = 1. (19)$$

Again, multiplying the equality (18) by E^{-1} from the right side, we get

$$S_2 T_1^* E^{-1} = 0, (20)$$

by applying (19) and (20) we conclude

$$ST^{\dagger} = \begin{bmatrix} S_1 T_1^* E^{-1} & 0 \\ S_2 T_1^* E^{-1} & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = TT^{\dagger}.$$
 (21)

On the other hand, multiplying the equality (13) by $E^{-1}T_1$ from the left side, we obtain

$$(E^{-1}T_1T_1^*)T_1 = (E^{-1}T_1T_1^*)S_1,$$

$$T_1 = S_1.$$
(22)

Now, prove that $T^{\dagger}T = T^{\dagger}S$. By (16) and (22) we have

$$T^{\dagger}T = \begin{bmatrix} T_{1}^{*}E^{-1}T_{1} & T_{1}^{*}E^{-1}T_{2} \\ T_{2}^{*}E^{-1}T_{1} & T_{2}^{*}E^{-1}T_{2} \end{bmatrix} = \begin{bmatrix} T_{1}^{*}E^{-1}S_{1} & 0 \\ T_{2}^{*}E^{-1}S_{1} & 0 \end{bmatrix} = T^{\dagger}S.$$
(23)

Then (21) and (23) implies that, $T \leq S$.

Conversely, suppose that $T \leq^* S$ that is, $T^{\dagger}T = T^{\dagger}S$ and $TT^{\dagger} = ST^{\dagger}$. As $T^{\dagger}T = T^{\dagger}S$ by applying (9) and (10), we have

$$\begin{bmatrix} T_1^* E^{-1} T_1 & T_1^* E^{-1} T_2 \\ T_2^* E^{-1} T_1 & T_2^* E^{-1} T_2 \end{bmatrix} = \begin{bmatrix} T_1^* E^{-1} S_1 & 0 \\ T_2^* E^{-1} S_1 & 0 \end{bmatrix}$$

so we conclude that

$$T_1^* E^{-1} T_1 = T_1^* E^{-1} S_1, (24)$$

$$T_2^* E^{-1} T_1 = T_2^* E^{-1} S_1, (25)$$

$$T_1^* E^{-1} T_2 = 0,$$

$$T_2^* E^{-1} T_2 = 0.$$
(26)
(27)

By multiplication T_1 and T_2 on the left of equations (41) and (42), respectively, and additive obtained the equalities we achieve, $(T_1T_1^* + T_2T_2^*)E^{-1}T_1 = EE^{-1}S_1$, then $T_1 = S_1$.

Again, By multiplication T_1 and T_2 on the left of equations (26) and (27), respectively, we get $T_1T_1^*E^{-1}T_2 = 0$ and $T_2T_2^*E^{-1}T_2 = 0$. By additive the obtained equalities, we have $T_2 = 0$.

Also, since $TT^{\dagger} = ST^{\dagger}$ rewrite matrix forms (11) and (12)

$$TT^{\dagger} = \begin{bmatrix} (T_1T_1^* + T_2T_2^*)E^{-1} & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1T_1^*E^{-1} & 0\\ S_2T_1^*E^{-1} & 0 \end{bmatrix} = ST^{\dagger}.$$

this conclude that, $S_1T_1^*E^{-1} = 1$ and $S_2T_1^*E^{-1} = 0$. Since *E* is invertible, we obtain

$$S_1 T_1^* = E, (28)$$

$$S_2 T_1^* = 0. (29)$$

By the equations $T_1 = S_1$ and $T_2 = 0$ and (29) we get

$$T^{*}T = \begin{bmatrix} T_{1}^{*}T_{1} & T_{1}^{*}T_{2} \\ T_{2}^{*}T_{1} & T_{2}^{*}T_{2} \end{bmatrix} = \begin{bmatrix} T_{1}^{*}S_{1} & 0 \\ 0 & 0 \end{bmatrix} = T^{*}S,$$
(30)

$$TT^* = \begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1T_1^* & 0 \\ S_2T_1^* & 0 \end{bmatrix} = ST^*.$$
(31)

Hence, equations (30) and (31) implies that $T \leq_* S$. \Box

Theorem 2.5. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$ such that T has closed range. If $T \leq_* S$ then $TS^* \leq_* ST^*$.

Proof. Suppose that $T \leq_* S$, that is $T^*T = T^*S$ and $TT^* = ST^*$. To show that $TS^*(TS^*)^* = ST^*(TS^*)^*$ and $(TS^*)^*TS^* = (TS^*)^*ST^*$, or equivalently,

$$ST^*TS^* = (ST^*)^2 = TS^*ST^*.$$

By using the complemented submodules from [8, Lemma 2.4] and matrix representations T, S and equation (12), we compute ST^*TS^* , $(ST^*)^2$ and TS^*ST^* with the following

$$ST^*TS^* = \begin{bmatrix} S_1 & 0 \\ S_2 & 0 \end{bmatrix} \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix}^* \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ S_2 & 0 \end{bmatrix} \begin{bmatrix} T_1^* & 0 \\ T_2^* & 0 \end{bmatrix} \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1^* & S_2^* \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} S_1T_1^*T_1S_1^* & S_1T_1^*T_1S_2^* \\ S_2T_1^*T_1S_1^* & S_2T_1^*T_1S_2^* \end{bmatrix}$$
$$(by (18)) = \begin{bmatrix} S_1T_1^* & 0 \\ 0 & 0 \end{bmatrix}$$
$$(by (22)) = \begin{bmatrix} S_1T_1^* & 0 \\ S_2T_1^* & 0 \end{bmatrix} \begin{bmatrix} S_1T_1^* & 0 \\ S_2T_1^* & 0 \end{bmatrix},$$
$$(ST^*)^2 = \begin{bmatrix} S_1T_1^* & 0 \\ S_2T_1^* & 0 \end{bmatrix} \begin{bmatrix} S_1T_1^* & 0 \\ S_2T_1^* & 0 \end{bmatrix}$$
$$(by (18)) = \begin{bmatrix} S_1T_1^*S_1T_1^* & 0 \\ S_2T_1^*S_1T_1^* & 0 \\ 0 & 0 \end{bmatrix}$$
$$(by (18)) = \begin{bmatrix} S_1T_1^*S_1T_1^* & 0 \\ S_2T_1^*S_1T_1^* & 0 \\ 0 & 0 \end{bmatrix}$$
$$(by (18)) = \begin{bmatrix} (T_1T_1^*)^2 & 0 \\ 0 & 0 \end{bmatrix}$$

and

$$TS^*ST^* = \begin{bmatrix} T_1S_1^* & T_1S_2^* \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1T_1 & 0 \\ S_2T_1^* & 0 \end{bmatrix}$$
$$= \begin{bmatrix} T_1S_1^*S_1T_1^* + T_1S_2^*S_2T_1^* & 0 \\ 0 & 0 \end{bmatrix}$$
$$(by (18)) = \begin{bmatrix} T_1S_1^*S_1T_1^* & 0 \\ 0 & 0 \end{bmatrix}$$
$$(by (22)) = \begin{bmatrix} (T_1T_1^*)^2 & 0 \\ 0 & 0 \end{bmatrix}.$$

Hence, we conclude that

$$ST^*TS^* = (ST^*)^2 = TS^*ST^*.$$

(32)

Equation (32) implies that $TS^*(TS^*)^* = ST^*(TS^*)^*$ and $(TS^*)^* = TS^*ST^*$, or, equivalently $TS^* \leq_* ST^*$. \Box

In the following theorem we show that \leq_* has some inherited properties.

Theorem 2.6. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges such that $T \leq_* S$. Then the following statements are hold:

(i) $T^* \leq_* S^*$, (ii) $T^{\dagger} \leq_* S^{\dagger}$, (iii) $(T - S)^{\dagger} = T^{\dagger} - S^{\dagger}$, (iv) $(TT^* - SS^*)^{\dagger} = (TT^*)^{\dagger} - (SS^*)^{\dagger}$, (v) $(TT^{\dagger} - SS^{\dagger})^{\dagger} = (TT^{\dagger})^{\dagger} - (SS^{\dagger})^{\dagger}$, (vi) $(TS^* - ST^*)^{\dagger} = (TS^*)^{\dagger} - (ST^*)^{\dagger}$.

Proof. (i) Suppose that $T \leq S$, or, equivalently $T^*T = T^*S$ and $TT^* = ST^*$. By taking conjugates of previous equations, we get $T^*T = S^*T$ and $TT^* = TS^*$, respectively. Hence, implies that $T^* \leq S^*$.

(ii) Assuming the case is equivalent with $T^*T = T^*S$ and $TT^* = ST^*$. By multiplication S_1^* and S_2^* on the left of equations (28) and (29), respectively, and additive obtained the equalities we achieve,

$$FT_1^* = S_1^*E.$$
 (33)

Where $F = S_1^*S_1 + S_2^*S_2$ is invertible. Multiplying (33) by E^{-1} on the right side and by $E^{-1}T_1F^{-1}$ on the left side, we obtain

$$E^{-1}T_1F^{-1}S_1^* = E^{-1}. (34)$$

We show that $(T^{\dagger})^*T^{\dagger} = (T^{\dagger})^*S^{\dagger}$ and $T^{\dagger}(T^{\dagger})^* = S^{\dagger}(T^{\dagger})^*$ and conclude that $T^{\dagger} \leq_* S^{\dagger}$. Since $TS^{\dagger} = ST^{\dagger}$ then

$$\begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} F^{-1}S_1^* & F^{-1}S_1^* \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1 & 0 \\ S_2 & 0 \end{bmatrix} \begin{bmatrix} T_1^*E^{-1} & 0 \\ T_2^*E^{-1} & 0 \end{bmatrix}$$
$$\begin{bmatrix} T_1F^{-1}S_1^* & T_1F^{-1}S_2^* \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1T_1^*E^{-1} & 0 \\ S_2T_1^*E^{-1} & 0 \end{bmatrix}.$$
(35)

So we have $T_1 F^{-1} S_2^* = 0$ and consequently,

$$E^{-1}T_1F^{-1}S_2^* = 0. (36)$$

Using [8, Lemma 2.4], (34) and (36) we compute

$$(T^{\dagger})^{*}T^{\dagger} = \begin{bmatrix} E^{-1}T_{1} & E^{-1}T_{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} T_{1}^{*}E^{-1} & 0 \\ T_{2}^{*}E^{-1} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} E^{-1} & 0 \\ 0 & 0 \end{bmatrix}$$
(37)

and

$$(T^{\dagger})^{*}S^{\dagger} = \begin{bmatrix} E^{-1}T_{1} & E^{-1}T_{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} F^{-1}S_{1}^{*} & F^{-1}S_{2}^{*} \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} E^{-1}T_{1}F^{-1}S_{1}^{*} & E^{-1}T_{1}F^{-1}S_{2}^{*} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} E^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$
(38)

Hence, equations (37) and (38) implies that $(T^{\dagger})^*T^{\dagger} = (T^{\dagger})^*S^{\dagger}$.

In the same way, applying the equation (33) we derive that $T_1^*E^{-1} = F^{-1}S_1^*$. Again, by using [8, Lemma 2.4] and (16) we reach

$$T^{\dagger}(T^{\dagger})^{*} = \begin{bmatrix} T_{1}^{*}E^{-1} & 0 \\ T_{2}^{*}E^{-1} & 0 \end{bmatrix} \begin{bmatrix} E^{-1}T_{1} & E^{-1}T_{2} \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} T_{1}^{*}(E^{-1})^{2}T_{1} & T_{1}^{*}(E^{-1})^{2}T_{2} \\ T_{2}^{*}(E^{-1})^{2}T_{1} & T_{2}^{*}(E^{-1})^{2}T_{2} \end{bmatrix} = \begin{bmatrix} T_{1}^{*}(E^{-1})^{2}T_{1} & 0 \\ 0 & 0 \end{bmatrix}$$
(39)

and

$$S^{\dagger}(T^{\dagger})^{*} = \begin{bmatrix} F^{-1}S_{1}^{*} & F^{-1}S_{2}^{*} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E^{-1}T_{1} & E^{-1}T_{2} \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} F^{-1}S_{1}^{*}E^{-1}T_{1} & F^{-1}S_{1}^{*}E^{-1}T_{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} T_{1}^{*}(E^{-1})^{2}T_{1} & 0 \\ 0 & 0 \end{bmatrix}.$$
(40)

Equations (39) and (40) implies that $T^{\dagger}T^{\dagger^*} = S^{\dagger}T^{\dagger^*}$. Hence $T^{\dagger} \leq_* S^{\dagger}$.

(*iii*) By Theorem 2.4 since $T \leq_* S$, we have $T^{\dagger}T = T^{\dagger}S = S^{\dagger}T$ and $TT^{\dagger} = ST^{\dagger} = TS^{\dagger}$. Let $X = T^{\dagger} - S^{\dagger}$, since

$$(T - S)X(T - S) = (T - S)(T^{\dagger} - S^{\dagger})(T - S)$$

= $TT^{\dagger}T - TT^{\dagger}S - TS^{\dagger}T + TS^{\dagger}S - ST^{\dagger}T + ST^{\dagger}S + SS^{\dagger}T - SS^{\dagger}S$
= $T - ST^{\dagger}S - TT^{\dagger}S + ST^{\dagger}S - SS^{\dagger}T + ST^{\dagger}S + SS^{\dagger}T - S$
= $T - TT^{\dagger}S + ST^{\dagger}S - S - T - ST^{\dagger}S + ST^{\dagger}S - S - T - S$

 $= T - T^{T}S + ST^{T}S - S = T - ST^{T}S + ST^{T}S - S = T - S,$

$$\begin{split} X(T-S)X &= (T^{\dagger} - S^{\dagger})(T-S)(T^{\dagger} - S^{\dagger}) \\ &= T^{\dagger}TT^{\dagger} - T^{\dagger}TS^{\dagger} - T^{\dagger}ST^{\dagger} + T^{\dagger}ST^{\dagger} - S^{\dagger}TT^{\dagger} + S^{\dagger}TS^{\dagger} + S^{\dagger}ST^{\dagger} - S^{\dagger}SS^{\dagger} \\ &= T^{\dagger} - T^{\dagger}TS^{\dagger} - T^{\dagger}ST^{\dagger} + T^{\dagger}ST^{\dagger} - S^{\dagger}TT^{\dagger} + S^{\dagger}TS^{\dagger} + S^{\dagger}ST^{\dagger} - S^{\dagger} \\ &= T^{\dagger} - S^{\dagger}TS^{\dagger} - S^{\dagger}TS^{\dagger} + S^{\dagger}TS^{\dagger} - S^{\dagger}ST^{\dagger} + S^{\dagger}TS^{\dagger} + S^{\dagger}ST^{\dagger} - S^{\dagger} \\ &= T^{\dagger} - S^{\dagger}TS^{\dagger} - S^{\dagger}TS^{\dagger} + S^{\dagger}TS^{\dagger} - S^{\dagger}ST^{\dagger} + S^{\dagger}TS^{\dagger} + S^{\dagger}ST^{\dagger} - S^{\dagger} \\ &= T^{\dagger} - S^{\dagger} = X, \end{split}$$

$$(T-S)X = (T-S)(T^{\dagger} - S^{\dagger}) = TT^{\dagger} - TS^{\dagger} - ST^{\dagger} + SS^{\dagger}$$

= $TT^{\dagger} - TT^{\dagger} - TT^{\dagger} + SS^{\dagger} = SS^{\dagger} - TT^{\dagger}.$

So (T - S)X is hermitian. In the same way, prove that X(T - S) is hermitian. By uniqueness of Moore-Penrose inverse, we have $(T - S)^{\dagger} = T^{\dagger} - S^{\dagger}$.

(*iv*) We know $TT^* \leq_* SS^*$ if and only if $(TT^*)^*TT^* = (TT^*)^*SS^*$ and $TT^*(TT^*)^* = SS^*(TT^*)^*$, or, equivalently,

$$(TT^*)^2 = TT^*SS^* = SS^*(TT^*)^*.$$

Since $T \leq_* S$ then

$$T^*T = T^*S,$$
 (41)
 $TT^* = ST^*.$ (42)

Thus, we get

$$TT^*SS^* = T(T^*S)S^*$$
(by (41)) = $T(T^*T)S^*$

$$= (TT^*)(TS^*)$$
(by (42)) = $(TT^*)(TT^*)$

$$= (TT^*)^2.$$
(43)

Taking conjugate of (41), we obtain that $(TT^*)^2 = TT^*SS^* = SS^*(TT^*)^*$ is satisfied. By using the statement (*iii*) we conclude that $(TT^* - SS^*)^{\dagger} = (TT^*)^{\dagger} - (SS^*)^{\dagger}$.

(*v*) Suppose that $T \leq_* S$. By Theorems 2.1 and 2.4, we obtain $TT^{\dagger} = TS^{\dagger}$. So we get

$$TT^{\dagger} = TS^{\dagger} = TT^{\dagger}TS^{\dagger} = TT^{\dagger}SS^{\dagger}.$$
(44)

By taking conjugate of (44) we conclude that $TT^{\dagger} = SS^{\dagger}TT^{\dagger}$. Hence $TT^{\dagger} \leq_* SS^{\dagger}$. By using the statement (*iii*) we conclude that $(TT^{\dagger} - SS^{\dagger})^{\dagger} = TT^{\dagger} - SS^{\dagger}$.

(*vi*) By using Theorem 2.1 and the statement (*iii*) we conclude that $(TS^* - ST^*)^\dagger = (TS^*)^\dagger - (ST^*)^\dagger$.

Proposition 2.7. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$. If $U \in \mathcal{L}(X)$ is a unitary operator, then $T \leq_* S$ if and only if $TU \leq_* SU$.

Proof. Let *U* be an unitary operator with respect to the decomposition $X = \mathcal{R}(S^*) \oplus \mathcal{N}(S)$. Since $T \leq_* S$ then $T^*T = T^*S$ and $TT^* = ST^*$ therefore, we have

 $(TU)^{*}TU = U^{*}T^{*}TU = U^{*}T^{*}SU = (TU)^{*}SU.$

Also, we compute

 $TU(TU)^* = TUU^*T^* = TT^* = ST^* = SUU^*T^* = SU(SU)^*.$

Hence $TU \leq_* SU$.

Conversely, suppose that $TU \leq SU$, then we have $(TU)^*TU = (TU)^*SU$ and $TU(TU)^* = SU(SU)^*$. So we obtain

 $(TU)^{*}TU = (TU)^{*}SU$ $U^{*}T^{*}TU = U^{*}T^{*}SU$ $UU^{*}T^{*}TUU^{*} = UU^{*}T^{*}SUU^{*}$ $T^{*}T = T^{*}S.$

In the same way,

$$TT^* = TUU^*T^* = TU(TU)^* = SU(TU)^* = SUU^*T^* = ST^*.$$

Therefore, $TT^* = ST^*$ and $T^*T = T^*S$, or, equivalently $T \leq S$.

Theorem 2.8. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S \in \mathcal{L}(X, \mathcal{Y})$, then the following statement are equivalent

(*i*) $T^*T = T^*S$ and $ST^{\dagger} = TT^{\dagger}$,

(ii) $T \leq_* S$,

 $(iii) \ T \leq^* S.$

Proof. (*i*) \Rightarrow (*ii*) Since $T^*T = T^*S$, multiplying by $(T^{\dagger})^*$ on the left we have $(T^{\dagger})^*T^*T = (T^{\dagger})^*T^*S$, therefore $T = TT^{\dagger}S$, multiplying by T^{\dagger} on the left we get $T^{\dagger}T = T^{\dagger}S$. By this fact and assumption $ST^{\dagger} = TT^{\dagger}$ we desired the result.

(*ii*) \Leftrightarrow (*iii*) By Theorem 2.4 is obvious.

 $(iii) \Rightarrow (i)$ Since $T \leq S$ and $T \leq S$ hold, then $ST^{\dagger} = TT^{\dagger}$ and $T^*T = T^*S$. \Box

Theorem 2.9. Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T, S, U \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges. Then \leq_* is an ordering relation.

Proof. It is clear that $T \leq_* T$.

Now suppose that $T \leq_* S$ and $S \leq_* T$. Then we get $T = TT^{\dagger}T = TS^{\dagger}T = SS^{\dagger}T = SS^{\dagger}S = S$. Suppose that $T \leq_* S$ and $S \leq_* U$, we have

$$TT^{\dagger} = ST^{\dagger} = TS^{\dagger}, \tag{45}$$

$$T^{\dagger}T = T^{\dagger}S = S^{\dagger}T, \tag{46}$$

and

$$SS^{\dagger} = US^{\dagger} = SU^{\dagger},$$
 (47)
 $S^{\dagger}S = S^{\dagger}U = U^{\dagger}S.$ (48)

Multiplying the equality (47) by *S* from the right side, leads to $S = US^{\dagger}S$ and consequently, we obtain $TT^{\dagger} = US^{\dagger}ST^{\dagger} = US^{\dagger}TT^{\dagger} = UT^{\dagger}TT^{\dagger} = UT^{\dagger}$. Also, multiplying the equality (48) by *S* from the left side, leads to $S = SS^{\dagger}U$ and consequently, we obtain $T^{\dagger}T = T^{\dagger}S = T^{\dagger}SS^{\dagger}U = T^{\dagger}TS^{\dagger}U = T^{\dagger}TT^{\dagger}U = T^{\dagger}U$.

Remark 2.10. As an application of star order we note that if $T, S \in \mathcal{L}(X, \mathcal{Y})$ have closed ranges and $T \leq_* S$, since $TS^{\dagger} = TT^{\dagger}$. Then the system of operator equations TXS = T = SXT is solvable if and only if $SS^{\dagger}TS^{\dagger}S = T$, in this case T = S. It is obviously $X = T^{\dagger} + V(1 - TT^{\dagger}) + (1 - T^{\dagger}T)W$, where $V, W \in \mathcal{L}(\mathcal{Y}, X)$ are arbitrary operators. Hence, proof [12, Theorem 3.8.] is clear.

References

- [1] J. K. Baksalary, A relationship between the star and minus orderings, Linear Algebra Appl 81, (1986) 145–167.
- [2] J. K. Baksalary and Radoslaw Kala, Partial orderings between matrices one of which is of rank one, Bull. Polish Acad. Sci. Math. 31, (1983) 5–7.
- [3] G. Dolinar, J. Marovt, Star partial order on B(H), Linear Algebra Appl 434 (2011), 319–326
- [4] M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978) 139–141.
- [5] R. Harte, M. Mbekhta, On generalized inverses in C*-algebras, Studia Math 103 (1992) 71-77.
- [6] R. E. Hartwig, A note on the partial ordering of positive semi-definite matrices, Linear and Multilinear Algebra 6, (1978) 223–226.
- [7] R. E. Hartwig, How to partially order regular elements?, Math. Japonica 25, (1980) 1–13.
- [8] M. Jalaeian, M. Mohammadzadeh Karizaki and M. Hassani (2019) Conditions that the product of operators is an EP operator in Hilbert C*-module, Linear and Multilinear Algebra, DOI: 10.080/03081087.2019.1567673
- [9] E. C. LANCE, Hilbert C*-Modules, LMS Lecture Note Series 210 (1995).
- [10] V. Manuilov, E. Troitsky, Hilbert C*-modules. translated from the 2001 russian original by the authors, Translations of Mathematical Monographs 226.
- [11] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari, M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C*-modules, Colloq. Math, 140, (2015), 171–182.
- [12] M. Vosough, M. Moslehian, Solutions of the system of operator equations BXA = B = AXB via the *-order, Electron. J. Linear Algebra 32,(2017) 172–183.
- [13] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Alg. Appl. 428, (2008) 992–1000.