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Abstract. The purpose of this paper is to study a new three-step iteration scheme for three multivalued
nonexpansive mappings of Rafiq [12] type and establish some strong convergence theorems in the setting of
Banach spaces. Our results extend and generalize several corresponding results from the existing literature.

1. Introduction and Preliminaries

Let X be a real Banach space. A subset K is called proximal if for each x ∈ X, there exists an element
k ∈ K such that

d(x, k) = inf{‖x − y‖ : y ∈ K} = d(x,K ).

It is well known that a weakly compact convex subset of a Banach space and closed convex subsets
of a uniformly convex Banach space are Proximal. We shall denote the family of all nonempty bounded
proximal subsets of K by P(K ) and let CB(K ) be the class of all nonempty bounded and closed subsets of
K . Let H denote the Hausdorff metric induced by the metric d of X, that is,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

for every A,B ∈ CB(X), where d(x,B) = inf{‖x − y‖ : y ∈ B}.

A multivalued mapping T : K → P(K ) is said to be a contraction if there exists a constant λ ∈ [0, 1) such
that for any x, y ∈ K ,

H(T x,T y) ≤ λ ‖x − y‖,

and T is said to be nonexpansive if

H(T x,T y) ≤ ‖x − y‖,
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for all x, y ∈ K . A point x ∈ K is called a fixed point of T if x ∈ T x.

In 1969, Nadler [9] combined the ideas of multivalued mapping and Lipschitz mapping and proved
some fixed theorems for multivalued contraction mappings. These results place no severe restrictions on
the images of points and all that is required of the space is that it is a complete metric space. In the setting
of multivalued mappings, the fundamental result of Nadler’s theorem [9] is as follows:

Nadler’s Theorem. Let (X, d) be a complete metric space and T : X → CB(X) be such that H(T x,T y) ≤
a d(x, y) for all x, y ∈ X and some a ∈ [0, 1), where CB(X) denotes the family of all nonempty closed and
bounded subsets of X. Then Fix(T ) is nonempty, that is, there exists x ∈ X such that x ∈ T x.

Later, an interesting and rich fixed point theory for such maps was developed which has applications
in control theory, convex optimization, differential inclusion and economics (see [3] and references cited
therein). Moreover, the existence of fixed points for multivalued nonexpansive mappings in uniformly
convex Banach spaces was proved by Lim [7]. Many authors have studied the fixed point for multivalued
mappings (e.g., see [2, 6, 8, 11, 16, 17, 20]).

In 2005, Sastry and Babu [13] obtained the convergence results from single valued mappings to multi-
valued mappings by defining Ishikawa and Mann iterates for multivalued mappings with a fixed point.
They considered the following:

LetK be a nonempty convex subset of X, T : K → P(K ) is a multivalued mapping with p ∈ T p.

(i) The sequence of Mann iterates is defined by{
x1 = x ∈ K ,

xn+1 = (1 − αn)xn + αnsn, n ≥ 1,
(1)

where {αn} is a real sequence in (0, 1) and sn ∈ T xn such that ‖sn − p‖ = d(p,T xn).

(ii) The sequence of Ishikawa iterates is defined by
x1 = x ∈ K ,

xn+1 = (1 − αn)xn + αnrn,

yn = (1 − βn)xn + βnsn, n ≥ 1,
(2)

where {αn} and {βn} are real sequences in (0, 1), ‖sn − rn‖ = d(T xn,T yn) and ‖rn − p‖ = d(p,T yn) for sn ∈ T xn
and rn ∈ T yn. They established some strong and weak convergence results of the above iterates for multi-
valued nonexpansive mappings T under some appropriate conditions.

In 2007, Panyanak [11] generalized the results of Sastry and Babu [13] to uniformly convex Banach
spaces and proved a convergence theorem of Mann iterates for a mapping defined on a noncompact do-
main. Later in 2008, Song and Wang [15] proved strong convergence theorems of Mann and Ishikawa
iterates for multivalued nonexpansive mappings under some appropriate control conditions. Furthermore,
they also gave an affirmative answer to Panyanak’s open question in [11].

In 2000, Noor [10] introduced and studied the following iteration scheme: letK be a nonempty convex
subset of a uniformly smooth Banach space E and T be a nonlinear mapping of K into itself. Then the
sequence {xn} inK is defined by

x0 = x ∈ K ,
xn+1 = (1 − αn)xn + αnT yn,

yn = (1 − βn)xn + βnT zn,

zn = (1 − γn)xn + γnT xn, n ≥ 0,

(3)
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where {αn}
∞

n=0, {βn}
∞

n=0 and {γn}
∞

n=0 are real sequences in [0, 1] satisfying some conditions.

In 2006, Rafiq [12] introduced the following modified three-step iteration scheme which include Noor,
Ishikawa and Mann iterations as special case and used it to approximate the unique common fixed point
of a family of strongly pseudocontractive operators.

Let T1,T2,T3 : K → K be three mappings. Then the sequence {xn} inK is defined by
x0 = x ∈ K ,

xn+1 = (1 − αn)xn + αnT1yn,

yn = (1 − βn)xn + βnT2zn,

zn = (1 − γn)xn + γnT3xn, n ≥ 0,

(4)

where {αn}
∞

n=0, {βn}
∞

n=0 and {γn}
∞

n=0 are real sequences in [0, 1] satisfying some conditions.

Motivated by Sastry and Babu [13], Panyanak [11] and Song and Wang [15], we first give a multivalued
version of the iteration scheme (4) of Rafiq [12] and then study its convergence analysis in the setting of
Banach spaces. We define our iteration scheme as follows:

x1 = x ∈ K ,
xn+1 = (1 − αn)xn + αnvn,

yn = (1 − βn)xn + βnwn,

zn = (1 − γn)xn + γnun, n ≥ 1,

(5)

where {αn}, {βn} and {γn} are real sequences in (0, 1), un ∈ T3xn, vn ∈ T1yn and wn ∈ T2zn such that
‖wn − un‖ = d(T2zn,T3xn), ‖vn − wn‖ = d(T1yn,T2zn), ‖vn − un‖ = d(T1yn,T3xn), ‖un+1 − vn‖ = d(T3xn+1,T1yn)
and ‖un+1 − wn‖ = d(T3xn+1,T2zn), respectively.

Now, we recall the following definitions.

Definition 1.1. A multivalued nonexpansive mapping T : K → CB(K ) where K a subset of X is said to satisfy
condition (I) if there exists a nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0, f (t) > 0 for all t ∈ (0,∞)
such that d(x,T x) ≥ f (d(x,F(T ))) for all x ∈ K , where F(T ) , ∅ is the fixed point set of the multivalued mapping
T .

Definition 1.2. ([5]) Let f be a nondecreasing self-map on [0,∞) with f (0) = 0, f (t) > 0 for all t ∈ (0,∞) and let
d(x,F(S,T )) = inf{d(x, y) : y ∈ F(S,T )}. Let S,T : K → P(K ) be two multivalued maps with F(S,T ) , ∅. Then
the two maps are said to satisfy condition (A′) if

d(x,T x) ≥ f (d(x,F(S,T )) or d(x,Sx) ≥ f (d(x,F(S,T )) for all x ∈ K .

Now, we generalize the above definition for three mappings.

Definition 1.3. Let f be a nondecreasing self-map on [0,∞) with f (0) = 0, f (t) > 0 for all t ∈ (0,∞) and let
d(x,F ) = inf{d(x, y) : y ∈ F }, where F = F(T1) ∩ F(T2) ∩ F(T3). Let T1,T2,T3 : K → P(K ) be three multivalued
maps with F , ∅. Then the three maps are said to satisfy condition (GA′) if

d(x,T1x) ≥ f (d(x,F )) or d(x,T2x) ≥ f (d(x,F )) or d(x,T3x) ≥ f (d(x,F )),

for all x ∈ K .

Definition 1.4. ([5]) A mapT : K → P(K ) is semi-compact if any bounded sequence {xn} satisfying d(xn,T xn)→ 0
as n→∞ has a convergent subsequence.
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In 2008, Suzuki [18] introduced a condition which is weaker than nonexpansiveness. Suzuki’s condition
which was named by him the condition (C) reads as follows: a mapping T is said to satisfy the condition
(C) on X if

1
2
‖x − T x‖ ≤ ‖x − y‖ ⇒ ‖T x − T y‖ ≤ ‖x − y‖, ∀ x, y ∈ X.

In 2010, Abkar and Eslamian [1] introduced Suzuki’s condition for multivalued mappings. The definition
is as follows:

Definition 1.5. ([1]) A multivalued mapping T : X → CB(X) is said to satisfy condition (C) provided that

1
2

d(x,T x) ≤ ‖x − y‖ ⇒ H(T x,T y) ≤ ‖x − y‖, x, y ∈ X.

We mention that there exist single-valued and multi-valued mappings satisfying the condition (C) which
are not nonexpansive, for example:

Example 1.6. ([18]) Define a mapping T on [0, 3] by

T(x) =

{
0, if x , 3,
1, if x = 3.

Then T is a single-valued mapping satisfying condition (C), but T is not nonexpansive.

Example 1.7. ([1]) Define a mapping T : [0, 5]→ [0, 5] by

T(x) =

{
[0, x

5 ], if x , 5,
{1}, if x = 5,

then it is easy to show that T is a multi-valued mapping satisfying condition (C), but T is not nonexpansive.

We need the following Lemmas to prove our main results.

Lemma 1.8. (See [19]) Let {pn}, {qn}, {rn} be three sequences of nonnegative real numbers satisfying the following
conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,
∞∑

n=0

qn < ∞,
∞∑

n=0

rn < ∞.

Then
(1) limn→∞ pn exists.
(2) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

Lemma 1.9. (See [14]) Let E be a uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for all n ∈ N.
Suppose further that {xn} and {yn} are sequences of E such that lim supn→∞ ‖xn‖ ≤ a, lim supn→∞ ‖yn‖ ≤ a and
limn→∞ ‖tnxn + (1 − tn)yn‖ = a hold for some a ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.10. (See [17]) Let T : K → P(K ) be a multivalued mapping and PT (x) = {y ∈ T x : ‖x− y‖ = d(x,T x)}.
Then the following are equivalent.

(1) x ∈ F(T );
(2) PT (x) = {x};
(3) x ∈ F(PT ).
Moreover, F(T ) = F(PT ).

Lemma 1.11. (See [1]) Let T : X → CB(X) be a multi-valued mapping. If T is nonexpansive, then T satisfies the
condition (C).
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2. Main Results

In this section, we prove some strong convergence theorems using iteration scheme (5). First, we need
the following lemmas to prove main results. Let F = F(T1) ∩ F(T2) ∩ F(T3) denotes the set of all common
fixed points of the mappings T1, T2 and T3.

Lemma 2.1. LetX be a real Banach space andK be a nonempty closed and convex subset ofX. LetT1,T2,T3 : K →
P(K ) be three multivalued mappings such that F , ∅ and PT1 , PT2 and PT3 are nonexpansive mappings. Let {xn} be
the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Then limn→∞ ‖xn − p‖ exists for all
p ∈ F .

Proof. Let p ∈ F . Then p ∈ PT1 (p) = {p}, p ∈ PT2 (p) = {p} and p ∈ PT3 (p) = {p} by Lemma 1.10. It follows from
(5) that

‖zn − p‖ ≤ (1 − γn)‖xn − p‖ + γn‖un − p‖
≤ (1 − γn)‖xn − p‖ + γnH(PT3 (xn),PT3 (p))
≤ (1 − γn)‖xn − p‖ + γn‖xn − p‖
= ‖xn − p‖. (6)

Again using (5) and (6), we obtain

‖yn − p‖ ≤ (1 − βn)‖xn − p‖ + βn‖wn − p‖
≤ (1 − βn)‖xn − p‖ + βnH(PT2 (zn),PT2 (p))
≤ (1 − βn)‖xn − p‖ + βn‖zn − p‖
≤ (1 − βn)‖xn − p‖ + βn‖xn − p‖
= ‖xn − p‖. (7)

Now using (5), (6) and (7), we obtain

‖xn+1 − p‖ ≤ (1 − αn)‖xn − p‖ + αn‖vn − p‖
≤ (1 − αn)‖xn − p‖ + αnH(PT1 (yn),PT1 (p))
≤ (1 − αn)‖xn − p‖ + αn‖yn − p‖
≤ (1 − αn)‖xn − p‖ + αn‖xn − p‖
= ‖xn − p‖. (8)

It follows from Lemma 1.8 that limn→∞ ‖xn − p‖ exists for each p ∈ F . This completes the proof.

Lemma 2.2. Let X be a uniformly convex Banach space and K be a nonempty closed and convex subset of X. Let
T1,T2,T3 : K → P(K ) be three multivalued mappings such that F , ∅ and PT1 , PT2 and PT3 are nonexpansive
mappings. Let {xn} be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Then
limn→∞ d(xn,T1yn) = 0, limn→∞ d(xn,T2zn) = 0 and limn→∞ d(xn,T3xn) = 0.

Proof. From Lemma 2.1, limn→∞ ‖xn − p‖ exists for each p ∈ F . We suppose that limn→∞ ‖xn − p‖ = a for
some a ≥ 0.

Since lim supn→∞ ‖un − p‖ ≤ lim supn→∞H(T3xn,T3p) ≤ lim supn→∞ ‖xn − p‖ = a,

so,

lim sup
n→∞

‖un − p‖ ≤ a. (9)

Again, since lim supn→∞ ‖vn−p‖ ≤ lim supn→∞H(T1yn,T1p) ≤ lim supn→∞ ‖yn−p‖ ≤ lim supn→∞ ‖xn−p‖ = a,
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so,

lim sup
n→∞

‖vn − p‖ ≤ a. (10)

Similarly,

lim sup
n→∞

‖wn − p‖ ≤ a. (11)

Applying Lemma 1.9, we get

lim
n→∞
‖un − vn‖ = 0, (12)

lim
n→∞
‖wn − un‖ = 0, (13)

and

lim
n→∞
‖vn − wn‖ = 0. (14)

Taking lim sup on both sides of (6) and (7), we obtain

lim sup
n→∞

‖zn − p‖ ≤ a, (15)

and

lim sup
n→∞

‖yn − p‖ ≤ a. (16)

Also

‖xn+1 − p‖ = ‖(1 − αn)xn + αnvn − p‖
= ‖(1 − αn)(xn − p) + αn(vn − p)‖
≤ (1 − αn)‖xn − p‖ + αn‖vn − p‖,

it implies that

‖xn − p‖ ≤
‖xn − p‖ − ‖xn+1 − p‖

αn
+ ‖vn − p‖. (17)

Taking the lim inf on both sides of above inequality, we obtain

a ≤ lim inf
n→∞

‖vn − p‖. (18)

Combining (10) and (18), we obtain

lim
n→∞
‖vn − p‖ = a. (19)

Thus

‖vn − p‖ ≤ ‖vn − wn‖ + ‖wn − p‖
≤ ‖vn − wn‖ + H(T2zn,T2p)
≤ ‖vn − wn‖ + ‖zn − p‖,

gives

a ≤ lim inf
n→∞

‖zn − p‖, (20)

and by virtue of (15), we obtain

lim
n→∞
‖zn − p‖ = a. (21)
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By Lemma 1.9, we have

lim
n→∞
‖xn − un‖ = 0. (22)

Now, note that

‖xn − wn‖ ≤ ‖xn − un‖ + ‖un − wn‖.

Using (13) and (22), we obtain

lim
n→∞
‖xn − wn‖ = 0. (23)

Since

‖xn − vn‖ ≤ ‖xn − un‖ + ‖un − vn‖.

Using (14) and (22), we obtain

lim
n→∞
‖xn − vn‖ = 0. (24)

Since d(xn,T3xn) ≤ ‖xn − un‖, we have

lim
n→∞

d(xn,T3xn) = 0. (25)

Again since d(xn,T1yn) ≤ ‖xn − vn‖, we have

lim
n→∞

d(xn,T1yn) = 0. (26)

Similarly, since d(xn,T2zn) ≤ ‖xn − wn‖, we have

lim
n→∞

d(xn,T2zn) = 0. (27)

This completes the proof.

We now give some strong convergence theorems using iteration scheme (5) in real Banach spaces.

Theorem 2.3. Let X be a uniformly convex Banach space and K be a nonempty closed and convex subset of X. Let
T1,T2,T3 : K → P(K ) be three multivalued mappings such that F , ∅ and PT1 , PT2 and PT3 are nonexpansive
mappings. Let {xn} be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Then {xn}

converges strongly to a common fixed point of T1, T2 and T3 if and only if lim infn→∞ d(xn,F ) = 0.

Proof. The necessity is obvious. Conversely, suppose that lim infn→∞ d(xn,F ) = 0. As proved in Lemma 2.1,
we have

‖xn+1 − p‖ ≤ ‖xn − p‖,

which gives

d(xn+1,F ) ≤ d(xn,F ).

This implies that limn→∞ d(xn,F ) exists and so by the hypothesis, lim infn→∞ d(xn,F ) = 0. Therefore, we
must have limn→∞ d(xn,F ) = 0.

Next, we have to show that {xn} is a Cauchy sequence in K . Let ε > 0 be arbitrary chosen. Since
limn→∞ d(xn,F ) = 0, there exists a constant N1 such that for all n ≥ N1 we have

d(xn,F ) <
ε
4
.

In particular, inf{‖xN1 − q‖ : q ∈ F } < ε
4 . There must exists a q1 ∈ F such that

‖xN1 − q1‖ <
ε
2
.
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Now for m,n ≥ N1, we have

‖xn+m − xn‖ ≤ ‖xn+m − q1‖ + ‖xn − q1‖

≤ 2‖xN1 − q1‖

< 2
(ε
2

)
= ε.

Hence {xn} is a Cauchy sequence in a closed subset K of a Banach space X, and hence converges, say to
q2 ∈ K . Now it is left to show that q2 ∈ F . Now

d(q2,PT1 (q2)) ≤ ‖xn − q2‖ + d(xn,PT1 (yn)) + H(PT1 (yn),PT1 (q2))
≤ ‖xn − q2‖ + ‖xn − vn‖ + ‖yn − q2‖

≤ ‖xn − q2‖ + ‖xn − vn‖ + ‖xn − q2‖ + βn‖wn − xn‖

≤ 2‖xn − q2‖ + ‖xn − vn‖ + ‖wn − xn‖

→ 0 as n→∞,

which gives that d(q2,T1q2) = 0 and

d(q2,PT2 (q2)) ≤ ‖xn − q2‖ + d(xn,PT2 (zn)) + H(PT2 (zn),PT2 (q2))
≤ ‖xn − q2‖ + ‖xn − wn‖ + ‖zn − q2‖

≤ ‖xn − q2‖ + ‖xn − wn‖ + ‖xn − q2‖ + γn‖un − xn‖

≤ 2‖xn − q2‖ + ‖xn − wn‖ + ‖un − xn‖

→ 0 as n→∞,

which gives that d(q2,T2q2) = 0. Similarly, we have

d(q2,PT3 (q2)) ≤ ‖xn − q2‖ + d(xn,PT3 (xn)) + H(PT3 (xn),PT3 (q2))
≤ ‖xn − q2‖ + ‖xn − un‖ + ‖xn − q2‖

= 2‖xn − q2‖ + ‖xn − un‖

→ 0 as n→∞,

which gives that d(q2,T3q2) = 0. But PT1 , PT2 and PT3 are nonexpansive mappings and so F is closed.
Therefore, q2 ∈ F as required. Thus {xn} converges strongly to a common point of T1, T2 and T3. This
completes the proof.

Theorem 2.4. LetX be a real Banach space andK be a nonempty compact convex subset ofX. LetT1,T2,T3 : K →
P(K ) be three multivalued mappings such that F , ∅ and PT1 , PT2 and PT3 are nonexpansive mappings. Let {xn} be
the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Then {xn}, {yn} and {zn} converges
strongly to a common point of T1, T2 and T3.

Proof. By Lemma 2.2, we have limn→∞ d(xn,T3xn) = 0. Since by hypothesis K be a nonempty compact
convex subset ofX, so there exists a subsequence {xnk } of {xn} such that limk→∞ ‖xnk −q′‖ = 0 for some q′ ∈ K .
Thus

d(q′,T3q′) ≤ ‖xnk − q′‖ + d(xnk ,T3xnk ) + H(T3xnk ,T3q′)
≤ 2‖xnk − q′‖ + ‖xnk − unk‖

→ 0 as k→∞.
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This shows that q′ is a fixed of T3. From Lemma 2.1, we get that limn→∞ ‖xn − q′‖ = 0. Again from Lemma
2.2, we get that

‖yn − xn‖ = ‖(1 − βn)xn + βnwn − xn‖

≤ βn‖wn − xn‖

≤ ‖wn − xn‖

→ 0 as n→∞,

and

‖zn − xn‖ = ‖(1 − γn)xn + γnun − xn‖

≤ γn‖un − xn‖

≤ ‖un − xn‖

→ 0 as n→∞.

It follows that limn→∞ ‖yn − q′‖ = 0 and limn→∞ ‖zn − q′‖ = 0. Thus the desired conclusion follows. This
completes the proof.

Now, applying Lemma 2.2 and Theorem 2.3, we can easily obtain the following results.

Theorem 2.5. Let X be a uniformly convex Banach space and K be a nonempty closed and convex subset of X. Let
T1,T2,T3 : K → P(K ) be three multivalued mappings such that F , ∅ and PT1 , PT2 and PT3 are nonexpansive
mappings. Let {xn} be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Suppose that
PT1 , PT2 and PT3 satisfies condition (GA′), then the sequence {xn} converges strongly to a common fixed point of T1,
T2 and T3.

Theorem 2.6. Let X be a uniformly convex Banach space and K be a nonempty closed and convex subset of X. Let
T1,T2,T3 : K → P(K ) be three multivalued mappings such that F , ∅ and PT1 , PT2 and PT3 are nonexpansive
mappings. Let {xn} be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Suppose that
one of the map in PT1 , PT2 and PT3 is semi-compact, then the sequence {xn} converges strongly to a common fixed
point of T1, T2 and T3.

Using condition (C), Lemma 1.11, Lemma 2.2 and Theorem 2.3, we can easily obtain the following
results.

Theorem 2.7. LetX be a real Banach space andK be a nonempty closed and convex subset ofX. LetT1,T2,T3 : K →
P(K ) be three multivalued mappings with F , ∅ and such that PT1 , PT2 and PT3 satisfies the condition (C). Let {xn}

be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Then the sequence {xn} converges
strongly to a common fixed point of T1, T2 and T3 if and only if lim infn→∞ d(xn,F ) = 0.

Theorem 2.8. Let X be a uniformly convex Banach space and K be a nonempty closed and convex subset of X. Let
T1,T2,T3 : K → P(K ) be three multivalued mappings with F , ∅ and such that PT1 , PT2 and PT3 satisfies the
condition (C). Let {xn} be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). If the
following condition is satisfied:

(C1) there exists an increasing function 1 : [0,∞)→ [0,∞) with 1(0) = 0 and 1(r) > 0, ∀ r > 0 such that

d(xn,T1xn) ≥ 1(d(xn,F )) or d(xn,T2xn) ≥ 1(d(xn,F )) or √d(xn,T3xn) ≥ 1(d(xn,F )),

then {xn} converges strongly to a common fixed point of T1, T2 and T3.
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Theorem 2.9. Let X be a uniformly convex Banach space and K be a nonempty closed and convex subset of X. Let
T1,T2,T3 : K → P(K ) be three multivalued mappings with F , ∅ and such that PT1 , PT2 and PT3 satisfies the
condition (C). Let {xn} be the sequence defined by (5), where {αn}, {βn} and {γn} are real sequences in (0, 1). Suppose
that one of the map in PT1 , PT2 and PT3 is semi-compact, then the sequence {xn} converges strongly to a common fixed
point of T1, T2 and T3.

Example 2.10. Let K = [0, 1] be equipped with the Euclidean norm ‖.‖ = |.|. Let S,T : K → CB(K ) (family of
closed and bounded subset ofK ) be defined by T1(x) = [0, x

4 ], T2(x) = [0, x
3 ] and T3(x) = [0, x

2 ]. Then any x, y ∈ K

H(T1(x),T1(y)) = max
{∣∣∣∣x4 − y

4

∣∣∣∣, 0} =
∣∣∣∣x4 − y

4

∣∣∣∣ =
∣∣∣∣x − y

4

∣∣∣∣
≤ |x − y|.

H(T3(x),T3(y)) = max
{∣∣∣∣x2 − y

2

∣∣∣∣, 0} =
∣∣∣∣x2 − y

2

∣∣∣∣ =
∣∣∣∣x − y

2

∣∣∣∣
≤ |x − y|.

Similarly,

H(T2(x),T2(y)) = max
{∣∣∣∣x3 − y

3

∣∣∣∣, 0} =
∣∣∣∣x3 − y

3

∣∣∣∣ =
∣∣∣∣x − y

3

∣∣∣∣
≤ |x − y|.

Thus T1, T2 and T3 are multivalued nonexpansive mappings. Clearly, F(T1) ∩ F(T2) ∩ F(T3) = {0}. Hence, T1, T2
and T3 have a unique common fixed point inK .

3. Concluding remarks

In this paper, we establish some strong convergence theorems under some standard conditions applying
on the space in the setting of real Banach spaces. Our results extend and generalize several results from
the current existing literature (see, for example, [4, 11, 13, 15–17] and many others) to the case of three-step
iteration scheme and three multivalued nonexpansive mappings.
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