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A modified generalized viscosity explicit methods for
quasi-nonexpansive mappings in Banach spaces
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Abstract. The main objective of this paper is to introduce and study an iterative algorithm which
is a combination of general iterative method with strongly accretive operators and generalized viscosity
explicit methods (GVEM) for finding fixed points of quasi-nonexpansive mappings in Banach spaces.
Under suitable conditions, some strong convergence theorems for finding a common element of the set
of solutions of fixed points problems involving quasi-nonexpansive mappings and the set of solutions
of variational inequality problems are obtained without imposing any compactness assumption. Finally,
applications of our results to quadratic optimization problems are given.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H . An operator A : H → H is called
monotone if for all x, y ∈ D(A), the following inequality holds:

〈Ax−Ay, x− y〉H ≥ 0,

A is called k-strongly monotone if there exists k ∈ (0, 1) such that for all x, y ∈ D(A),

〈Ax−Ay, x− y〉H ≥ k‖x− y‖2.

An operator A : H → H is said to be strongly positive bounded linear if there exists a constant k > 0 such
that

〈Ax, x〉H ≥ k‖x‖2, ∀ x ∈ H.

Remark 1.1. From the definition of A, we note that strongly positive bounded linear operator A is a ‖A‖-
Lipschitzian and k- strongly monotone operator.
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Let X be a real normed space, K be a nonempty subset of X. A map T : K → X is said to be Lipschitz if
there exists an L ≥ 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ K, (1)

if L < 1, T is called contraction and if L = 1, T is called nonexpansive.
We denote by F (T ) the set of fixed points of the mapping T, that is F (T ) := {x ∈ D(T ) : x = Tx}. We
assume that F (T ) is nonempty. If T is nonexpansive mapping, it is well known F (T ) is closed and convex.
A map T is called quasi-nonexpansive if ‖Tx− p‖ ≤ ‖x− p‖ holds for all x in K and p ∈ F (T ).
The mapping T : K → K is said to be firmly nonexpansive, if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(x− y)− (Tx− Ty)‖2, ∀x, y ∈ K.

We note that the following inclusions hold for the classes of the mappings:

firmly nonexpansive ⊂ nonexpansive ⊂ quasi-nonexpansive.

We illustrate these by the following example.

Example 1.2. Let X = l∞ and C := {x ∈ l∞ : ‖x‖∞ ≤ 1} . Define T : C → C by Tx = (0, x21, x
2
2, x

3
3, ...)

for x = (x1, x2, x3, ...) in C. Then, it is clear that T is continuous and map C into C. Moreover, Tp = p if
and only if p = 0. Futhermore,

‖Tx− p‖∞ = ‖Tx‖∞ = ‖(0, x21, x22, x23, ...)‖∞
≤ ‖(x1, x2, x3, ...)‖∞ = ‖x‖∞
= ‖x− p‖∞.

Therefore, T is quasi-nonexpansive. However, T is not nonexpansive.

Many problems arising in different areas of mathematics such as optimization, variational analysis, differ-
ential equations, mathematical economics, and game theory can be modeled as fixed point equations of the
form x = Tx, where T is a nonexpansive mapping. Until now there have been many effective algorithms
for solving fixed point problems involving nonexpansive mappings (see, e.g., Yao et al. [19], Chidume [4],
Marino et al. [10] and the references therein).

Historically, one of the most investigated methods approximating fixed points of nonexpansive mappings
dates back to 1953 and is known as Mann’s method, in light of Mann [7]. Let C be a nonempty, closed and
convex subset of a Banach space X, Mann’s scheme is defined by{

x0 ∈ C,
xn+1 = αnxn + (1− αn)Txn,

(2)

where {αn} is a sequence in (0, 1). But Mann’s iteration process has only weak convergence, even in Hilbert
spaces setting. Therefore, many authors try to modify Mann’s iteration to have strong convergence for
nonlinear operators.

In the real world, many engineering and science problems can be reformulated as ordinary differential
equations. Several numerical methods have been developed for solving ordinary differential equations (ODEs)
by numerous authors. Consider the following initial value problem:{

x0 = x(t0),

x
′
(t) = f(x(t)),

(3)

where f : RM → RM is a continuous function. The implicit midpoint method (IMR) is an implicit method
given by the following finite difference scheme [6]:{

y0 = x0,

yn+1 = yn + hf
(yn+1 + yn

2

)
,

(4)
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where h > 0 is a time step. It is known that if f : RM → RM is Lipschitz continuous and sufficiently
smooth, then the sequence {yn} converges to the exact solution of (3) as h → 0 uniformly over t ∈ [t0, t

∗]
for any fixed t∗ > 0. If we write the function f in the form f = I − T, where T is a nonlinear mapping, then
equilibrium problem involving differential Equation (3) is the fixed point problem x = Tx. Over the last
several years, the implicit midpoint rule has become a powerful numerical method for numerically solving
time-dependent differential equations (in particular, stiff equations) and differential algebraic equations.

Based on IMR (4), Xu et al. [18] applied the viscosity approximation method introduced by Moudafi
[8] to the IMR for a nonexpansive mapping T and proposed the following viscosity implicit midpoint rule
(VIMR) in Hilbert spaces H as follows:

xn+1 = αnf(xn) + (1− αn)T
(xn+1 + xn

2

)
, n ≥ 1, (5)

where {αn} is a real control condition in (0, 1). They also proved that the sequence {xn} generated by (5)
converges strongly to a point x∗ ∈ F (T ).

In numerical analysis, it is clear that the computation by the IMR is not an easy work in practice.
Because the IMR need to compute at every time steps, it can be much harder to implement. To overcome
this difficulty, for solving (3), we consider the helpful method, the so-called explicit midpoint method (EMR),
given by the following finite difference scheme

y0 = x0,
ȳn+1 = yn + hf(yn),

yn+1 = yn + hf
( ȳn+1 + yn

2

)
,

(6)

It is easy to see that the explicit midpoint method calculates the state of a system at the next time from
the state of the system at the current time [12].

In 2017, Marino et al. [9] based on EMR (6) established the following so-called general viscosity explicit
rule for quasi-nonexpansive mappings T in Hilbert spaces:{

x̄n+1 = βnxn + (1− βn)Txn, n ≥ 0,
xn+1 = αnf(xn) + (1− αn)T

(
snxn + (1− sn)x̄n+1

)
,

(7)

where f is a contraction and {αn}, {βn}, and {sn} are the sequences in (0, 1). They proved, under suitable
conditions on the sequence parameters, that the generalized viscosity explicit rule (7) converges strongly to
a point x∗ ∈ F (T ).

Let C be a nonempty closed convex subset of real Hilbert space H, and F : C → H be a nonlinear map
and T be a map on C, such that F (T ) 6= ∅. The point u ∈ F (T ) is said to be a solution of the variational
inequality problem V I(F, T ) provided that

〈Fu, v − u〉 ≥ 0, ∀ v ∈ F (T ). (8)

Variational inequality theory, which was initially introduced by Stampacchia [14] in 1964 is a branch of appli-
cable mathematics with a wide range of applications in industry, physical, regional, social, pure, and applied
sciences. This field is dynamic and is experiencing an explosive growth in both theory and applications; as a
consequence, research techniques and problems are drawn from various fields. Variational inequalities have
been generalized and extended in different directions using the novel and innovative techniques.
However, there were few results established for fixed point problems involving quasi-nonexpansive mappings
and variational inequality problems in Banach spaces.

The above results naturally bring us to the following questions.
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Question 1: Can results of Marino et al. [9] be extend from Hilbert spaces to Banach spaces?
Question 2: Can we obtain a strong convergence results by using a modified generalized viscosity explicit
methods for finding a common element of the set of solutions of fixed points problems involving quasi-
nonexpansive mappings and the set of solutions of variational inequality problems ?

The purpose of this paper is to give affirmative answers to these questions mentioned above.
Motivated by Marino et al. [9], we construct an iterative algorithm and prove strong convergence theorems
for finding a common element of the set of solutions of fixed points problems involving quasi-nonexpansive
and the set of solutions of variational inequality problem in real Banach spaces having a weakly continuous
duality maps. No compactness assumption is made. The algorithm and results presented in this paper
improve and extend some recents results. Finally, our method of proof is of independent interest.

2. Preliminairies

Let E be a Banach space with norm ‖ · ‖ and dual E∗. For any x ∈ E and x∗ ∈ E∗, 〈x∗, x〉 is used to refer
to x∗(x). Let ϕ : [0,+∞) → [0,∞) be a strictly increasing continuous function such that ϕ(0) = 0 and
ϕ(t)→ +∞ as t→∞. Such a function ϕ is called gauge. Associed to a gauge a duality map Jϕ : E → 2E

∗

defined by:

Jϕ(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||ϕ(||x||), ||x∗|| = ϕ(||x||)}. (9)

If the gauge is defined by ϕ(t) = t, then the corresponding duality map is called the normalized duality map
and is denoted by J . Hence the normalized duality map is given by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, ∀x ∈ E.

Notice that

Jϕ(x) =
ϕ(||x||)
||x||

J(x), x 6= 0.

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth and the limit is attained uniformly
for each x, y ∈ S.
Let E be a normed space with dimE≥ 2. The modulus of smoothness of E is the function ρE : [0,∞)→ [0,∞)
defined by

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

It is known that a normed linear space E is uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

If there exists a constant c > 0 and a real number q > 1 such that ρE(τ) ≤ cτ q, then E is said to be
q-uniformly smooth. Typical examples of such spaces are the Lp, `p and Wm

p spaces for 1 < p <∞ where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p <∞;
2− uniformly convex and p− uniformly smooth if 1 < p < 2.

(10)
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Let Jq denote the generalized duality mapping from E to 2E
∗

defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1

}
.

J2 is called the normalized duality mapping and is denoted by J . It is known that E is smooth if and only
if each duality map Jϕ is single-valued, that E is Frechet differentiable if and only if each duality map Jϕ
is norm-to-norm continuous in E, and that E is uniformly smooth if and only if each duality map Jϕ is
norm-to-norm uniformly continuous on bounded subsets of E. Following Browder [2], we say that a Banach
space has a weakly continuous duality map if there exists a gauge ϕ such that Jϕ is single-valued and is

weak-to-weak∗ sequentially continuous, i.e., if (xn) ⊂ E, xn
w−→ x, then Jϕ(xn)

w∗−−→ Jϕ(x). It is known that
lp (1 < p < ∞) has a weakly continuous duality map with gauge ϕ(t) = tp−1 (see e.g., [3] for more details
on duality maps).

Remark 2.1. Note also that a duality mapping exists in each Banach space. We recall from [1] some of
the examples of this mapping in lp, Lp,W

m,p-spaces, 1 < p <∞.

(i) lp : Jx = ‖x‖2−plp
y ∈ lq, x = (x1, x2, · · · , xn, · · · ), y = (x1|x1|p−2, x2|x2|p−2, · · · , xn|xn|p−2, · · · ),

(ii) Lp : Ju = ‖u‖2−pLp
|u|p−2u ∈ Lq,

(iii) Wm,p : Ju = ‖u‖2−pWm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈W−m,q,

where 1 < q <∞ is such that 1/p+ 1/q = 1.

Finally recall that a Banach space E satisfies Opial property (see, e.g., [11]) if lim sup
n→+∞

‖xn−x‖ < lim sup
n→+∞

‖xn−

y‖ whenever xn
w−→ x, x 6= y. A Banach space E that has a weakly continuous duality map satisfies Opial’s

property. Given a gauge ϕ and E be a smooth real Banach space. A map A : D(A) ⊂ E → E is called
accretive if for each x, y ∈ D(A),〈

Ax−Ay, Jϕ(x− y)
〉
≥ 0.

A is called k- strongly accretive if there exists k ∈ (0, 1) such that for each x, y ∈ D(A),

〈Ax−Ay, Jϕ(x− y)〉 ≥ kϕ(||x− y||)||x− y||. (11)

In a Hilbert space, the normalized duality map is the identity map. Hence, in Hilbert spaces, strongly
monotonicity and strongly accretivity coincide.

Remark 2.2. If ϕ(t) = tq−1, q > 1, inequality (11) becomes

〈Ax−Ay, Jq(x− y)〉 ≥ k‖x− y‖q.

Lemma 2.3. [5] Let E be a Banach space satisfying Opial’s property, K be a closed convex subset of E,
and T : K → K be a nonexpansive mapping such that F (T ) 6= ∅. Then I − T is demiclosed; that is,

{xn} ⊂ K, xn ⇀ x ∈ K and (I − T )xn → y implies that (I − T )x = y.

Lemma 2.4. [4] Let E be a real normed space then for any x, y ∈ E, the following inequality hold:

‖x+ y‖p ≤ ‖x‖p + 〈y, jp(x+ y)〉

for all x,y ∈ E, jp(x+ y) ∈ Jp(x+ y). In particular, if p = 2, then

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉.
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Theorem 2.5. [4] Let q > 1 be a fixed real number and E be a smooth Banach space. Then the following
statements are equivalent:
(i) E is q-uniformly smooth.
(ii) There is a constant dq > 0 such that for all x, y ∈ E

‖x+ y‖q ≤ ‖x‖q + q〈y , Jq(x)〉+ dq‖y‖q.

(iii) There is a constant c1 > 0 such that

〈x− y , Jq(x)− Jq(y)〉 ≤ c1‖x− y‖q, ∀ x, y ∈ E.

Lemma 2.6. [16] Let E be a uniformly convex real Banach space. For arbitrary r > 0, let B(0)r := {x ∈
E : ||x|| ≤ r} and λ ∈ [0, 1]. Then there exists a continuous, strictly increasing and convex function

g : [0, 2r]→ R+, g(0) = 0,

such that for all x, y ∈ B(0)r,

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − (1− λ)λg(‖x− y‖).

Lemma 2.7. [17] Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤ (1 −
αn)an + αnσn + βn, n ≥ 0, where {αn}, {βn} and {σn} satisfy the conditions:

(i) αn ⊂ (0, 1),

∞∑
n=0

αn =∞,

(ii) σn ∈ R, lim sup
n→∞

σn ≤ 0 or

∞∑
n=0

|σnαn| <∞,

(ii) βn ≥ 0 for all n ≥ 0 with

∞∑
n=0

|βn| <∞. Then lim
n→∞

an = 0.

Lemma 2.8. [15] Let H be a real Hilbert space. Let A : H → H be a k-strongly monotone and L-

Lipschitzian operator with k > 0, L > 0. Assume that 0 < η <
2k

L2
and τ = η

(
k − L2η

2

)
. Then for

each t ∈
(

0,min{1, 1

τ
}
)
, we have

‖(I − tηA)x− (I − tηA)y‖ ≤ (1− tτ)‖x− y‖, ∀x, y ∈ H.

Lemma 2.9. Let q > 1 be a fixed real number and E be a q-uniformly smooth real Banach space with
constant dq. Let A : E → E be a k-strongly accretive and L-Lipschitzian operator with k > 0, L > 0.

Assume that η ∈
(

0,min
{

1,
( kq

dqLq

) 1
q−1
})

and τ = η
(
k− dqL

qηq−1

q

)
. Then for each t ∈

(
0,min{1, 1

τ
}
)
,

we have

‖(I − tηA)x− (I − tηA)y‖ ≤ (1− tτ)‖x− y‖, ∀x, y ∈ E. (12)

Proof. Without loss of generality, assume k <
1

q
. Then, as η <

( kq

dqLq

) 1
q−1

, we have 0 < qk − dqLqηq−1.

Furthermore, from k <
1

q
, we have qk − dqLqηq−1 < 1 so that 0 < qk − dqLqηq−1 < 1. By using (ii) of

Theorem 2.5 and properties of A, it follows that

‖(I − tηA)x− (I − tηA)y‖q ≤ ‖x− y‖q + q〈tηAy − tηAx , Jq(x− y)〉+ dq‖tηAx− tηAy‖q

≤ ‖x− y‖q − qtη〈Ax−Ay , Jq(x− y)〉+ dq(tη)q‖Ax−Ay‖q

≤ ‖x− y‖q − qtkη‖x− y‖q + dq(Ltη)q‖x− y‖q

≤
(

1− qtkη + dqL
qtqηq

)
‖x− y‖q.
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Therefore

‖(I − tηA)x− (I − tηA)y‖ ≤
(

1− qtkη + dqL
qtηq

) 1
q ‖x− y‖. (13)

Using definition of τ , inequality (13) and inequality (1 + x)s ≤ 1 + sx, for x > −1 and 0 < s < 1, we have

‖(I − tηA)x− (I − tηA)y‖ ≤
(

1− tkη +
dqL

qtηq

q

)
‖x− y‖

≤
(

1− tη(k − dqL
qηq−1

q
)
)
‖x− y‖

≤ (1− tτ)‖x− y‖,

which gives us the required result (12). This completes the proof.

Remark 2.10. Lemma 2.9 is one generalization of Lemma 2.8.

Let C be a nonempty subsets of real Banach space E. A mapping QC : E → C is said to be sunny if

QC(QCx+ t(x−QCx)) = QCx

for each x ∈ E and t ≥ 0. A mapping QC : E → C is said to be a retraction if QCx = x for each x ∈ C.
Lemma 2.11. [13] Let C and D be nonempty subsets of a real Banach space E with D ⊂ C and QD : C → D
a retraction from C into D. Then QD is sunny and nonexpansive if and only if

〈z −QDz, j(y −QDz)〉 ≤ 0

for all z ∈ C and y ∈ D.
It is noted that Lemma 2.11 still holds if the normalized duality map is replaced by the general duality map
Jϕ, where ϕ is gauge function.

Remark 2.12. If K is a nonempty closed and convex subset of a Hilbert space H, then the nearest point
projection PK from H to K is the sunny nonexpansive retraction.

3. Main results

In this section, we present our explicit iterative method for finding fixed points of quasi-nonexpansive
mappings in real Banach spaces.

Theorem 3.1. Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly convex real
Banach space having a weakly continuous duality map Jϕ. Let T : E → E be a quasi-nonexpansive mapping
such that F (T ) 6= ∅ and I − T is demiclosed at origin. Let f : E → E be an b-Lipschitzian mapping with
a constant b ≥ 0. Let A : E → E be an k-strongly accretive and L-Lipschitzian operator. Assume that

η ∈
(

0,min
{

1,
( kq

dqLq

) 1
q−1
})

and 0 ≤ γb < τ where τ = η
(
k − dqL

qηq−1

q

)
.

Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ E by:{
x̄n+1 = βnxn + (1− βn)Txn,
xn+1 = αnγf(xn) + (I − αnηA)T

(
snxn + (1− sn)x̄n+1

)
, n ≥ 0,

(14)

where {βn}, {sn} and {αn} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii) lim
n→∞

inf(1− sn)βn(1− βn) > 0.

Then, the sequence {xn} generated by (14) converges strongly to x∗ ∈ F (T ), which is a unique solution of
the following variational inequality:

〈ηAx∗ − γf(x∗), Jϕ(x∗ − p)〉 ≤ 0, ∀p ∈ F (T ). (15)
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Proof. We first show that the uniqueness of a solution of the variational inequality (15).
Suppose both x∗ ∈ F (T ) and x∗∗ ∈ F (T ) are solutions to (15), then

〈ηAx∗ − γf(x∗), Jϕ(x∗ − x∗∗)〉 ≤ 0 (16)

and

〈ηAx∗∗ − γf(x∗∗), Jϕ(x∗∗ − x∗)〉 ≤ 0. (17)

Adding up (16) and (17) yields

〈ηAx∗∗ − ηAx∗ + γf(x∗)− γf(x∗∗), Jϕ(x∗∗ − x∗)〉 ≤ 0. (18)

dqL
qηq−1

q
> 0 ⇐⇒ k − dqL

qηq−1

q
< k

⇐⇒ η
(
k − dqL

qηq−1

q

)
< kη

⇐⇒ τ < kη.

It follows that
0 ≤ γb < τ < kη.

Noticing that

〈ηAx∗∗ − ηAx∗ + γf(x∗)− γf(x∗∗), Jϕ(x∗∗ − x∗)〉 ≥ (kη − bγ)ϕ(‖x∗ − x∗∗‖)‖x∗ − x∗∗‖,

which implies that x∗ = x∗∗ and the uniqueness is proved. Below we use x∗ to denote the unique solution

of (15). Without loss of generality, we can assume αn ∈
(

0,min{1 , 1

τ
}
)
.

For each n ≥ 1, we put zn := snxn + (1− sn)x̄n+1. Let p ∈ F (T ), we have

‖zn − p‖ = ‖snxn + (1− sn)x̄n+1 − p‖
≤ sn‖xn − p‖+ (1− sn)‖x̄n+1 − p‖
≤ sn‖xn − p‖+ (1− sn)‖βnxn + (1− βn)Txn − p‖

≤ sn‖xn − p‖+ (1− sn)
[
βn‖xn − p‖+ (1− βn)‖Txn − p‖

]
.

Hence,

‖zn − p‖ ≤ ‖xn − p‖. (19)

By Lemma 2.9 and inequality (19), we have

‖xn+1 − p‖ = ‖αnγf(xn) + (I − αnηA)Tzn − p‖
≤ ‖αnγf(xn) + (I − ηαnA)Tzn − p‖
≤ αnγ‖f(xn)− f(p)‖+ (1− ταn)‖Tzn − p‖+ αn‖γf(p)− ηAp‖
≤ (1− αn(τ − bγ))‖xn − p‖+ αn‖γf(p)− ηAp‖

≤ max {‖xn − p‖,
‖γf(p)− ηAp‖

τ − bγ
}.

By induction, it is easy to see that

‖xn − p‖ ≤ max {‖x0 − p‖,
‖γf(p)− ηAp‖

τ − bγ
}, n ≥ 1.
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Hence {xn} is bounded also are {f(xn)} and {Axn}.
Using Lemma 2.6, convexity of ‖.‖2 and (14), we have

‖Tzn − p‖2 ≤ ‖zn − p‖2

= ‖snxn + (1− sn)x̄n+1 − p‖2

≤ sn‖xn − p‖2 + (1− sn)‖x̄n+1 − p‖2

≤ sn‖xn − p‖2 + (1− sn)‖βnxn + (1− βn)Txn − p‖2

≤ sn‖xn − p‖2 + (1− sn)
[
βn‖xn − p‖2 + (1− βn)‖Txn − p‖2 − βn(1− βn)g(‖xn − Txn‖)

]
≤ ‖xn − p‖2 − (1− sn)βn(1− βn)g(‖xn − Txn‖).

Therefore, by Lemmas 2.6 and 2.9, we have

‖xn+1 − p‖2 = ‖αnγf(xn) + (I − αnηA)Tzn − p‖2

= ‖αnγ
(
f(xn)− f(p)

)
+ (I − αnηA)

(
Tzn − p

)
+ αnγf(p)− αnηAp‖2

≤ ‖αnγ
(
f(xn)− f(p)

)
+ (I − αnηA)

(
Tzn − p

)
‖2 + 2αn〈ηAp− γf(p), J(p− xn+1)〉

≤ αnγb‖xn − p‖2 + (1− ταn)‖Tzn − p‖2 + 2αn〈ηAp− γf(p), J(p− xn+1)〉

≤ αnγb‖xn − p‖2 + (1− ταn)
[
‖xn − p‖2 − (1− sn)βn(1− βn)g(‖xn − Tyn‖)

]
+2αn〈ηAp− γf(p), J(p− xn+1)〉

≤ (1− αn(τ − bγ))‖xn − p‖2 − (1− ταn)(1− sn)βn(1− βn)g(‖xn − Txn‖)
+2αn〈ηAp− γf(p), J(p− xn+1)〉.

Therefore,

(1−ταn)(1−sn)βn(1−βn)g(‖xn−Txn‖) ≤ ‖xn−p‖2−‖xn+1−p‖2+2αn〈ηAp−γf(p), J(p−xn+1)〉. (20)

Since {xn} is bounded, then there exists a constant B > 0 sucht that

〈ηAp− γf(p), J(p− xn+1)〉 ≤ B, ∀n ≥ 0.

Hence,

(1− ταn)(1− sn)βn(1− βn)g(‖xn − Txn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnB. (21)

Now we prove that {xn} converges strongly to x∗.
We divide the proof into two cases.
Case 1. Assume that the sequence {‖xn − p‖} is monotonically decreasing sequence. Then {‖xn − p‖} is
convergent. Clearly, we have

‖xn − p‖2 − ‖xn+1 − p‖2 → 0.

It then implies from (21) that

lim
n→∞

(1− ταn)(1− sn)βn(1− βn)g(‖xn − Txn‖) = 0. (22)

Using the fact that lim
n→∞

inf(1− sn)βn(1− βn) > 0 and property of g, we have

lim
n→∞

‖xn − Txn‖ = 0. (23)

Let t0 be a fixed real number such that t0 ∈
(

0,min{1 , 1

τ
}
)
. We observe that QF (T )(I + (t0γf − t0ηA)) is

a contraction, where QF (T ) is the sunny nonexpansive retraction from E to F (T ). Indeed, for all x, y ∈ E,
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by Lemma 2.9, we have

‖QF (T )(I + (t0γf − t0ηA))x−QF (T )(I + (t0γf − t0ηA))y‖ ≤ ‖(I + (t0γf − t0ηA))x− (I + (t0γf − t0ηA))y‖
≤ t0γ‖f(x)− f(y)‖+ ‖(I − t0ηA)x− (I − t0ηA)y‖
≤ (1− t0(τ − bγ))‖x− y‖.

Banach’s Contraction Mapping Principle guarantees that QF (T )(I+(t0γf− t0ηA)) has a unique fixed point,
say x1 ∈ E. That is, x1 = QF (T )(I + (t0γf − t0ηA))x1. Thus, in view of Lemma 2.11, it is equivalent to the
following variational inequality problem

〈ηAx1 − γf(x1), Jϕ(x1 − p)〉 ≤ 0, ∀ p ∈ F (T ).

By the uniqueness of the solution of (15), we have x1 = x∗.
Next, we prove that lim sup

n→+∞
〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn)〉. Since E is reflexive and {xn} is bounded, there

exists a subsequence {xnk
} of {xn} such that xnk

converges weakly to a in E and

lim sup
n→+∞

〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn)〉 = lim
k→+∞

〈ηAx∗ − γf(x∗), Jϕ(x∗ − xnk
)〉.

From (23) and I − T is demiclosed, we obtain a ∈ F (T ). On other hand, the assumption that the duality
mapping Jϕ is weakly continuous and the fact that x∗ solves variational inequality (15), we then have

lim sup
n→+∞

〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn)〉 = lim
k→+∞

〈ηAx∗ − γf(x∗), Jϕ(x∗ − xnk
)〉

= 〈ηAx∗ − γf(x∗), Jϕ(x∗ − a)〉 ≤ 0.

Finally, we show that xn → x∗. In fact, since Φ(t) =
∫ t
0
ϕ(σ)dσ, ∀t ≥ 0, and ϕ is a gauge function, then for

1 ≥ k ≥ 0, Φ(kt) ≤ kΦ(t). From (14), Lemmas 2.6 and 2.9, we get that

Φ(‖xn+1 − x∗‖) = Φ(‖αnγf(xn) + (I − ηαnA)Tzn − x∗‖)
≤ Φ(‖αn(γf(xn)− γf(x∗) + (I − αnηA)(Tzn − x∗)‖)

+αn〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn+1)〉
≤ Φ(αnγ‖f(xn)− f(x∗)‖+ ‖(I − αnηA)(Tzn − x∗)‖)

+αn〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn+1)〉
≤ Φ(αnbγ‖xn − x∗‖+ (1− αnτ)‖Tzn − x∗‖)

+αn〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn+1)〉
≤ Φ((1− αn(τ − bγ))‖xn − x∗‖) + αn〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn+1)〉
≤ (1− αn(τ − bγ))Φ(‖xn − x∗‖) + αn〈ηAx∗ − γf(x∗), Jϕ(x∗ − xn+1)〉.

From Lemma 2.7, its follows that xn → x∗.
Case 2. Assume that the sequence {‖xn−x∗‖} is not monotonically decreasing sequence. Set Bn = ‖xn−x∗‖
and τ : N→ N be a mapping for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤
Bk+1}.
We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0.
From (21), we have

(1− τατ(n))(1− sτ(n))βτ(n)(1− βτ(n))g(‖xτ(n) − Txτ(n)‖) ≤ 2ατ(n)B → 0 as n→∞.

Hence,

lim
n→∞

‖xτ(n) − Txτ(n)‖ = 0. (24)
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By same argument as in case 1, we can show that xτ(n) converges weakly in E and lim sup
n→+∞

〈ηAx∗ −

γf(x∗), Jϕ(x∗ − xτ(n))〉 ≤ 0. We have for all n ≥ n0,

0 ≤ Φ(‖xτ(n)+1−x∗‖)−Φ(‖xτ(n)−x∗‖) ≤ ατ(n)[−(τ−bγ)Φ(‖xτ(n)−x∗‖)+〈ηAx∗−γf(x∗), Jϕ(x∗−xτ(n)+1)〉],

which implies that

Φ(‖xτ(n) − x∗‖) ≤
1

τ − bγ
〈ηAx∗ − γf(x∗), Jϕ(x∗ − xτ(n)+1)〉.

Then, we have

lim
n→∞

Φ(‖xτ(n) − x∗‖) = 0.

Therefore,

lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n 6= τ(n) (that is, n > τ(n)); because Bj > Bj+1

for τ(n) + 1 ≤ j ≤ n. As consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

We now apply Theorem 3.1 for finding fixed points of nonexpansive mappings without demiclosedness
assumption.

Theorem 3.2. Let q > 1 be a fixed real number and E be a q-uniformly smooth and uniformly convex real
Banach space having a weakly continuous duality map Jϕ. Let T : E → E be a nonexpansive mapping such
that F (T ) 6= ∅. Let f : E → E be an b-Lipschitzian mapping with a constant b ≥ 0. Let A : E → E be an k-

strongly accretive and L-Lipschitzian operator. Assume that η ∈
(

0,min
{

1,
( kq

dqLq

) 1
q−1
})

and 0 ≤ γb < τ

where τ = η
(
k − dqL

qηq−1

q

)
.

Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ E by:{
x̄n+1 = βnxn + (1− βn)Txn,
xn+1 = αnγf(xn) + (I − αnηA)T

(
snxn + (1− sn)x̄n+1

)
, n ≥ 0,

(25)

where {βn}, {sn} and {αn} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii) lim
n→∞

inf(1− sn)βn(1− βn) > 0.

Then, the sequence {xn} generated by (25) converges strongly to x∗ ∈ F (T ), which is a unique solution of
the following variational inequality:

〈ηAx∗ − γf(x∗), Jϕ(x∗ − p)〉 ≤ 0, ∀p ∈ F (T ). (26)

Proof. Since every nonexpansive mapping is quasi-nonexpansive mapping, then the proof follows Lemma
2.3 and Theorem 3.1.

Corollary 3.3. Assume that E = lq, 1 < q < ∞. Let T : E → E be a quasi-nonexpansive mapping such
that F (T ) 6= ∅ and I − T is demiclosed at origin. Let f : E → E be an b-Lipschitzian mapping with
a constant b ≥ 0. Let A : E → E be an k-strongly accretive and L-Lipschitzian operator. Assume that
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η ∈
(

0,min
{

1,
( kq

dqLq

) 1
q−1
})

and 0 ≤ γb < τ where τ = η
(
k − dqL

qηq−1

q

)
.

Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ E by:{
x̄n+1 = βnxn + (1− βn)Txn,
xn+1 = αnγf(xn) + (I − αnηA)T

(
snxn + (1− sn)x̄n+1

)
, n ≥ 0,

(27)

where {βn}, {sn} and {αn} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii) lim
n→∞

inf(1− sn)βn(1− βn) > 0.

Then, the sequence {xn} generated by (27) converges strongly to x∗ ∈ F (T ), which is a unique solution of
the following variational inequality (15).

Proof. Since E = lq, 1 < q <∞ are uniformly convex and has a weakly continuous duality map . The proof
follows from Theorem 3.1.

Corollary 3.4 ( Marino et al. [9] ). Let H be a real Hibert space. Let T : H → H be a quasi-nonexpansive
mapping such that F (T ) 6= ∅ and I−T is demiclosed at origin. Let f : H → H be an b-contraction mapping
with a constant b ∈ [0, 1).
Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ H by:{

x̄n+1 = βnxn + (1− βn)Txn,
xn+1 = αnf(xn) + (1− αn)T

(
snxn + (1− sn)x̄n+1

)
, n ≥ 0,

(28)

where {βn}, {sn} and {αn} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii) lim
n→∞

inf(1− sn)βn(1− βn) > 0.

Then, the sequences {xn} generated by (28) converges strongly to x∗ ∈ F, which is a unique solution of the
following variational inequality

〈x∗ − f(x∗), x∗ − p〉 ≤ 0, ∀p ∈ F (T ). (29)

4. Application

In this section, we apply Theorem 3.1 for quadratic optimization problem.

Problem 4.1. Let H be a real Hilbert space and T be a quasi-nonexpansive mappings on H such that
F (T ) 6= ∅. We consider the following constrained convex minimization problem:

min
x∈F (T )

1

2
〈Ax, x〉, (30)

where A : H → H be a strongly positive bounded linear operator.

Remark 4.2. A necessary condition of optimality for a point x∗ ∈ F (T ) to be a solution of the minimization
problem (30) is that x∗ solves the following variational inequality problem:

〈Ax∗, x∗ − p〉 ≤ 0

for all p ∈ F (T ).

Consequently, the following theorem is obtained.
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Theorem 4.3. Let H be a real Hilbert space. Let A : H → H be strongly bounded linear operator with
coefficient k > 0. Let T : H → H be a quasi-nonexpansive mapping such that F (T ) 6= ∅ and I − T is
demiclosed at origin. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ H by:{

x̄n+1 = βnxn + (1− βn)Txn,
xn+1 = (I − αnηA)T

(
snxn + (1− sn)x̄n+1

)
, n ≥ 0,

(31)

where {βn}, {sn} and {αn} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii) lim
n→∞

inf(1− sn)βn(1− βn) > 0.

Assume that η ∈
(

0,min
{

1,
2k

‖A‖2
})
,

Then, the sequence {xn} generated by (31) converges strongly to a solution of (30).

Proof. We note that strongly positive bounded linear operator A is a ‖A‖-Lipschitzian and k- strongly
monotone operator. Using Remark 4.2, the proof follows Theorem 3.1 with f = 0.

Remark 4.4. Our results are applicable for the family of nonexpansive mappings, for example Wn-mapping,
a countable family of nonexpansive mappings, and nonexpansive semigroups.
The proof methods of our result are very different from the ones Marino et al. [9].

Remark 4.5. Let αn = 1
10n+1 , βn = 1

20n+1 + 0.4 and sn = 1
30n+1 + 0.3. It is easy to see that the sequences

{αn}, {βn}, and {sn} satisfy the conditions (i), (ii) and (iii) of Theorem 3.1.
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