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Polynomials associated by Humbert polynomials
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Abstract. In this note we define the polynomials w(r,s)
n,m(x) where r + s > 1, m ≥ 2, which are related

with the generalized Humbert polynomials u(r)
n,m(x). Here we find many recurrence relations and explicit

representations for w(r,s)
n,m(x). Also, we present some special classes of the polynomials u(r)

n,m(x).

1. Introduction

In the paper [9] the polynomials u(r)
n,m(x) are introduced by

F(x, t) =
(
1 − p(x)t − q(x)tm)−r =

∞∑
n=0

u(r)
n+1,m(x)tn. (1)

Namely, the polynomials u(r)
n,m(x) are the generalized Humbert polynomials Pn(m, x, y, p, c) which are

defined by ([6])

∞∑
n=0

Pn(m, x, y, p, c)tn = (c −mxt + ytm)p. (2)

Clearly, depending on the choice of the functions p(x) and q(x), and also on the choice of the parameters
m and r, the polynomials u(r)

n,m(x) present the wide class of the known polynomials, which we consider at
the end of this manuscript.

First we give some important properties of the polynomials u(r)
n,m(x) ([9]).

Differentiating both sides of (1) to t and comparing the coefficients on tn, we find the following recurrence
relation

nu(r)
n+1,m(x) = p(x)(r + n − 1)u(r)

n,m + q(x)(mr + n −m)u(r)
n+1−m,m(x). (3)
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Using (1) again, we can obtain the explicit formula

u(r)
n+1,m(x) =

∞∑
n=0

(r)n−(m−1)k

k!(n −mk)!
(p(x))n−mk(q(x))k, (4)

where

u(r)
n+1,m(x) =

(r)n

n!
(p(x))n, n = 0, 1, . . . ,m − 1,

and (r)n = r(r + 1) · · · (r + n − 1), r , 0,−1, . . . , 1 − n.

Next, using the relations ([8])

(r)n−k =
(−1)k(r)n

(1 − r − n)k
, (n − k)! =

(−1)kn!
(−n)k

,

we have

(r)n−(m−1)k

(n −mk)!
=

(−1)mk(r)n(−n)mk

n!(1 − r − n)(m−1)k
.

Hence, the representation (4) becomes

u(r)
n+1,m(x) =

(r)n(−p(x))n

n!

[n/m]∑
k=0

(−n)mk(q(x))k

(1 − r − n)(m−1)kk!(−(p(x))mk
. (5)

Further, we introduce the polynomials v(s)
n,m(x) (s ≥ 1) by

V(x, t) =

(
2 − p(x)t

1 − p(x)t − q(x)tm

)s

=

∞∑
n=0

v(s)
n,m(x)tn. (6)

From (1) and (6), we find the following explicit formula

v(s)
n,m(x) = 2s

s∑
j=0

(−1) j
(
s
j

) (
p(x)

2

) j

u(s)
n+1− j,m(x), (7)

or

v(s)
n,m(x) =

s∑
j=0

(−1) j
(
s
j

)
2s− j

[(n− j)/m]∑
k=0

(s)n− j−(m−1)k

k!(n − j −mk)!
(p(x))n−1−mk(q(x))k. (8)

The polynomials v(s)
n,m(x) are the s-th convolutions of the polynomials

v(1)
n,m(x) = vn,m(x).
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2. Mixed convolutions

In this section we introduce the polynomials w(r,s)
n,m(x), r + 1 ≥ 1, by

Fm(x, t) =
(2 − p(x)t)s

(1 − p(x)t − q(x)tm)r+s =

∞∑
n=0

w(r,s)
n,m(x)tn. (9)

Theorem 2.1. The polynomials w(r,s)
n,m(x) have the following explicit representation

w(r,s)
n,m(x) =

s∑
i=0

2s−i
(
s
i

)
(−1)i(p(x))iu(r+s)

n+1−i,m(x). (10)

Proof. Using (1), and from (9), we find

Fm(x, t) = (2 − p(x)t)s
∞∑

n=0

u(r+s)
n+1,m(x)tn

=

∞∑
n=0

s∑
i=0

(−1)i
(
s
i

)
2s−i(p(x))iu(r+s)

n+1,m(x)tn+i

=

∞∑
n=0

s∑
i=0

(−1)i
(
s
i

)
2s−i(p(x))iu(r+s)

n+1−i,m(x)tn.

So, from the last equalities, we conclude that the formula (10) is correct.

Theorem 2.2. The polynomials w(r,s)
n,m(x) satisfy the following explicit formula

w(r,s)
n,m(x) =

s− j∑
i=0

(−1)i
(
s − j

i

)
2s− j−i(p(x))iw(r+s− j, j)

n−i,m (x). (11)

Proof. It holds

(2 − p(x)t)s

(1 − p(x)t − q(x)tm)r+s =
(2 − p(x)t)s− j

(1 − p(x)t − q(x)tm)r+s− j ·

(
2 − p(x)t

1 − p(x)t − q(x)tm

) j

,

so

Fm(x, t) = (2 − p(x)t)s− j
∞∑

n=0

w(r+s− j, j)
n,m (x)tn

=

∞∑
n=0

s− j∑
i=0

(
s − j

i

)
2s− j−i(−1)i(p(x))iw(r+s− j, j)

n−i,m (x)tn.

From the last equalities we conclude that (11) holds.

Remark 2.3. If r = 0, then we get w(0,s)
n,m = v(s)

n,m(x); and if s = 0 then we have w(r,0)
n,m (x) = u(r)

n+1,m(x).

Theorem 2.4. For the polynomials w(r,s)
n,m(x) (r + s > 1) it holds

w(r+s,r+s)
n,m (x) =

n∑
k=0

w(s,r)
n−k,m(x)w(r,s)

k,m (x). (12)
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Proof. It is easy to prove the relation (12) starting from the generating function (9).

Remark 2.5. For r = s the relation (12) yields

w(2r,2r)
n,m (x) =

n∑
k=0

w(r,r)
n−k,m(x)w(r,r)

k,m (x).

3. Some special cases

In this section we consider the special case of the polynomials u(r)
n,m(x) - the generalized Humbert

polynomials ([9]).

1. For p(x) = 2x + 1, q(x) = 1, from (1), we have

F(x, t) = (1 − (2x + 1)t − tm)−r =

∞∑
n=0

u(r)
n+1,m(x)tn. (13)

Differentiating (13) to x, one-by-one, s-times, we get

Dxs {u(r)
n+1,m(x)} = (r)s · 2su(r+s)

n+1−s,m(x).

2. If p(x) = 2x and q(x) = −1, then (1) becomes ([7])

F(x, t) = (1 − 2xt + tm)−r =

∞∑
n=0

pr
n,m(x)tn, (14)

where pr
n,m(x) are the special case of Humbert polynomials:

pr
n,m(x) =

( 2
m

)r

Pn

(
m, x,

m
2
,−r,

m
2

)
,

or

pr
n,m(x) = Πr

n,m

(2x
m

)
,

where Πn,m(x) are the generalized Humbert polynomials.
Many properties of the polynomials pr

n,m(x) are given in [5].

Now we give one of its interesting properties.

The polynomial pr
n,m(x) is a particular solution of the following differential equation

y(m)(x) +

m∑
s=0

asxsy(s)(x) = 0 (15)

with coefficients

as =
2m

s!m
∆s f0 (s = 0, 1, . . . ,m), (16)

where

f (t) = ft = (n − t)
(

n − t + m(r + t)
m

)
m−1

.
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Example 3.1. For m = 2, from (15) and (16), we get the following differential equation

(1 − x2)y′′(x) − (2r + 1)xy′(x) + n(n + 2r)y(x) = 0, (17)

which corresponds to polynomials Gr
n(x) - Gegenbauer polynomials ([7]).

Furthermore, for r =
1
2

in (17), we have the next differential equation

(1 − x2)y′′(x) − 2xy′(x) + n(n + 1)y(x) = 0,

which corresponds to Legendre polynomials.

3. If p(x, y) = 2(x + y) and q(x, y) = −(2xy + 1), then we have the polynomials Gr
n(x, y) - the generalized

Gegenbauer polynomials with two variables x and y:

F = (1 − 2(x + y)t + (2xy + 1)tm)−r =

∞∑
n=0

Gr
n(x, y)tn. (18)

Thus, from (18), we have the following explicit formula

Gr
n(x, y) =

[n/m]∑
k=0

(−1)k(r)n−(m−1)k

k!(n −mk)!
(2x + 2y)n−mk(2xy + 1)k. (19)

Easily, for y = 0 we get Gr
n(x, 0) = Gr

n(x) ([7]).

Next, we are going to prove that the polynomials Gr
n(x, y) have the hypergeometric representation.

Namely, the following statement holds.

Theorem 3.2. We have

Gr
n(x, y) =

2n(r)n

n!
(x + y)n

mFm−1[a; b; z], (20)

where

a = −
n
m
,

1 − n
m

, . . . ,
m − 1 − n

m
; (21)

b =
1 − r − n

m − 1
,

2 − r − n
m − 1

, . . . ,
m − 1 − r − n

m − 1
; (22)

z =
mm(2xy + 1)

(m − 1)m−1(2x + 2y)m . (23)

Proof. Using the known relations, as well as the relations (21) - (23), it is easy to prove the relation (20).

Remark 3.3. For m = 2, from (19) and (21) - (23), we obtain

Gr
n(x, y) =

2n(r)n

n! 2F1

[
−

n
2
,

1 − n
2

; 1 − r − n;
2xy + 1
(x + y)2

]
.
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4. If p(x) = x and q(x) = −1, then we have ([4])

F(x, t) = (1 − xt + tm)−r =

∞∑
n=0

Vr−1
n,m(x)tn,

where Vr−1
n,m(x) are the convolutions of the generalized Chebyshev polynomials.

5. If p(x) = 1 + x + x2 and q(x) = −λx2, for m = 2, then we get the polynomials f (λ,r)
n (x) - Dilcher

polynomials ([1]):

(1 − (1 + x + x2)t + λx2t2)−r =

∞∑
n=0

f (λ,r)
n (x)tn, λ > 0, r > 1/2. (24)

Easily, these polynomials are related by Gegenbauer polynomials Gr
n(x) as follows

f (λ,r)
n (x) = xnλn/2Gr

n

(
1 + x + x2

2x
√
λ

)
.

6. If p(x) = x, q(x) = 1 and r = 1, then

F(x, t) = (1 − xt − tm)−1 =

∞∑
n=0

fn+1,m(x)tn, (25)

where fn,m(x) are the generalized Fibonacci polynomials.

So, differentiating (25) to x, one-by-one r-times, we get

∂rF(x, t)
∂xr =

r! tr+1

(1 − xt − tm)r+1 =

∞∑
n=0

Dxr { fn+1,m(x)}tn−1−k. (26)

Thus, we see that, by (1) and (26),

Dxr { fn+1,m(x)} = r! u(r+1)
n−r,m(x).

7. For p(x) = x and q(x) = −2, by (1) it follows

F(x, t) = (1 − xt + 2tm)−r =

∞∑
n=0

a(r−1)
n,m (x)tn,

where a(r−1)
0,m (x) = 0 , a(r−1)

n,m (x) =
(r)nxn

n!
, n = 0, 1, . . . ,m − 1.

The polynomials a(r−1)
n,m (x) are the generalized Fermat polynomials.

Also, the polynomials a(r−1)
n,m (x) are the particular solution of the homogenous differential equation of the

m-th order

y(m)(x) +

m∑
s=0

asxsy(s)(x) = 0, (27)
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where as (s = 0, 1, . . . ,m) can be computed as

as =
1

2ms!
∆s f0, (28)

and

f (t) = ft = (n − t)
(

n − t + m(r + t)
m

)
m−1

. (29)

Using (28) and (29), we find a0, a1, am:

a0 =
1

2m
n
(n + mr

m

)
m−1

,

a1 =
1

2m
(n − 1)

(
n − 1 + m(r + 1)

m

)
m−1
−

1
2m

n
(n + mr

m

)
m−1

,

am = −
1

2m

(m − 1
m

)m−1

.

For m = 2, the differential equation (27) becomes(
1 −

1
8

x2
)

y′′(x) −
1 + 2r

8
xy′(x) +

1
8

n(n + 2r)y(x) = 0, (30)

and, for r = 1 the differential equation (30) becomes the next equation(
1 −

1
8

x2
)

y′′(x) −
3
8

xy′(x) +
1
8

n(n + 2)y(x) = 0,

which corresponds to Fermat polynomials.

8. For p(x) = x + p, q(x) = −q and r = 1, (p and q are arbitrary real parameters (q , 0)), we have

f (x, t) = (1 − (x + p)t + qtm)−1 =

∞∑
n=0

u(1)
n+1,m(x)tn. (31)

Differentiating (31), one-by-one r-times, with respect to x, we get the following relation

Dxr {un+1,m(x)} = r! u(r+1)
n+1−r,m(x),

where

u0,m(p; q; x) = 0, un,m(p; q; x) = (x + p)n−1, n = 1, 2, . . . ,m − 1.

9. If p(x) = 1 , q(x) = 2x and r = 1, from (1) we obtain

F(x, t) = (1 − t − 2xtm)−1 =

∞∑
n=1

Jn,m(x)tn−1, (32)

where Jn,m(x) are the generalized Jacobsthal polynomials ([3]).

Next, using the known method, from (32), we find the following relation

Dxr {Jn,m(x)} = (2r)!! u(r+1)
n−mr,m(x).
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