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Available at: http://www.pmf.ni.ac.rs/faac

The existence and uniqueness of almost periodic and
asymptotically almost periodic solutions of semilinear Cauchy
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Abstract. The main aim of this paper is to investigate almost periodicity and asymptotic almost
periodicity of abstract semilinear Cauchy inclusions of first order with (asymptotically) Stepanov almost
periodic coefficients. To achieve our goal, we employ fixed point theorems and the well known results on
the generation of infinitely differentiable degenerate semigroups with removable singularites at zero.

1. Introduction and preliminaries

Almost periodic and asymptotically almost periodic solutions of differential equations in Banach spaces
have been considered by many authors so far (for the basic information on the subject, we refer the reader
to the monographs by D. N. Cheban [6] and Y. Hino, T. Naito, N. V. Minh, J. S. Shin [16]). In the
paper under review, we continue our recent research studies [18]-[19] by enquiring into the existence of a
unique almost periodic solution or a unique asymptotically almost periodic solution for a class of abstract
semilinear Cauchy inclusions of first order with (asymptotically) Stepanov almost periodic coefficients. For
this purpose, we introduce the class of asymptotically Stepanov almost periodic functions depending on two
parameters and prove some new composition principles in this direction (see e.g. [4], [27] and references
therein). It seems that our main results, Theorem 2.8-Theorem 2.11, are new even for abstract semilinear
non-degenerate differential equations with almost sectorial operators ([29]-[30]). For some other applications
obtained, see [22]-[23].

The organization and main ideas of this paper can be briefly described as follows. In Proposition 1.4, we
reconsider the notion of an asymptotically almost periodic function depending on two parameters, while in
Definition 1.5 we introduce the class of asymptotically Stepanov almost periodic two-parameter functions.
A useful characterization of this class is proved in Lemma 1.6 following the ideas of W. M. Ruess, W.
H. Summers [31] and H. R. Henŕıquez [15]. We open the second section of paper by proving some new
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composition principles for Stepanov almost periodic two-parameter functions and asymptotically Stepanov
almost periodic two-parameter functions. The main aim of Theorem 2.1 is to clarify that the composition
principle [27, Theorem 2.2], proved by W. Long and H.-S. Ding, continues to hold for the functions defined
on the real semi-axis I = [0,∞). The use of usual Lipschitz assumption has some advantages compared
to the condition f ∈ Lr(R × X : X) used in the formulation of the above-mentioned theorem since, in
this case, we can include the order of (asymptotic) Stepanov almost periodicity p = 1 in our analyses (cf.
Theorem 2.2 for more details). In Proposition 2.3-Proposition 2.4, we analyze composition principles for
asymptotically Stepanov almost periodic two-parameter functions. The main aim of Lemma 2.7 is to prove
that the function defined through the infinite convolution product (2.5) is asymptotically almost periodic
provided that the operator family in its definition is exponentially decaying at infinity and has a removable
singularity at zero, as well as that the coefficient f(·) is asymptotically Stepanov almost periodic. In the
remaining part of paper, we examine the class of multivalued linear operators A satisfying the condition [13,
(P), p. 47] introduced by A. Favini and A. Yagi:

(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ := Ψc :=
{
λ ∈ C : <λ ≥ −c

(
|=λ|+ 1

)}
⊆ ρ(A)

and
‖R(λ : A)‖ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

The main goal of Theorem 2.8-Theorem 2.9 is to prove the existence of a unique almost periodic mild
solution of the following semilinear differential inclusion of first order

u′(t) ∈ Au(t) + f(t, u(t)), t ∈ R, (1.1)

where f : R×X → X is Stepanov almost periodic and some extra conditions are satisfied. Also, of concern
is the following semilinear Cauchy inclusion of first order

(DFP)f,s :

{
u′(t) ∈ Au(t) + f(t, u(t)), t ≥ 0,
u(0) = u0.

In Theorem 2.10-Theorem 2.11, we analyze the existence of a unique asymptotically almost periodic solution
of semilinear differential inclusion (DFP )f,s provided that the coefficient f(·, ·) behaves asymptotically in
time as a Stepanov almost periodic function. Some simple consequences of Theorem 2.11 are stated in
Corollary 2.12 and Corollary 2.13. The main purpose of Remark 2.14(i) is to explain how we can use the
established results of ours with a view to prove a slight extension of [7, Theorem 4.4], one of the main
results of investigation [7] carried out by B. de Andrade and C. Lizama. In Example 2, we present some
applications to the abstract higher-order semilinear differential equations in Hölder spaces, while in Example
2 we analyze the existence of a unique (asymptotically) almost periodic solution for semilinear Poisson heat
equations in Lp-spaces. The analysis of existence and uniqueness of pseudo-almost periodic solutions for a
class of Sobolev inclusions will be considered in our forthcoming paper [20] (see [10], [12] and [24] for some
researches about Stepanov-like almost automorphic solutions of abstract differential equations).

We use the standard notation throughout the paper. By X we denote a complex Banach space. If Y
is also such a space, then by L(X,Y ) we denote the space of all continuous linear mappings from X into
Y ; L(X) ≡ L(X,X). If A is a linear operator acting on X, then the domain, kernel space and range of A
will be denoted by D(A), N(A) and R(A), respectively. By Cb([0,∞) : X) we denote the space consisted
of all bounded continuous functions from [0,∞) into X; the symbol C0([0,∞) : X) denotes the closed
subspace of Cb([0,∞) : X) consisting of functions vanishing at infinity. By BUC([0,∞) : X) we denote the
space consisted of all bounded uniformly continuous functions from [0,∞) to X. This space becomes one of
Banach’s when equipped with the sup-norm.

Given s ∈ R in advance, set bsc := sup{l ∈ Z : s ≥ l} and dse := inf{l ∈ Z : s ≤ l}. The Gamma function
is denoted by Γ(·) and the principal branch is always used to take the powers.
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As it is well known, the notion of an almost periodic function was introduced by H. Bohr in 1925 and
later generalized by many other mathematicians (cf. [8], [14] and [26] for more details on the subject). Let
I = R or I = [0,∞), and let f : I → X be continuous. Given ε > 0, we call τ > 0 an ε-period for f(·) iff
‖f(t+ τ)− f(t)‖ ≤ ε, t ∈ I. The set constituted of all ε-periods for f(·) is denoted by ϑ(f, ε). It is said that
f(·) is almost periodic, a.p. for short, iff for each ε > 0 the set ϑ(f, ε) is relatively dense in I, which means
that there exists l > 0 such that any subinterval of I of length l meets ϑ(f, ε). The space consisted of all
almost periodic functions from the interval I into X will be denoted by AP (I : X).

The class of asymptotically almost periodic functions was introduced by M. Fréchet in 1941 (for more
details concerning the vector-valued asymptotically almost periodic functions, see e.g. [6], [8] and [14]). A
function f ∈ Cb([0,∞) : X) is said to be asymptotically almost periodic iff for every ε > 0 we can find
numbers l > 0 and M > 0 such that every subinterval of [0,∞) of length l contains, at least, one number
τ such that ‖f(t + τ) − f(t)‖ ≤ ε for all t ≥ M. The space consisted of all asymptotically almost periodic
functions from [0,∞) into X will be denoted by AAP ([0,∞) : X). It is well known that for any function
f ∈ C([0,∞) : X), the following statements are equivalent:

(i) f ∈ AAP ([0,∞) : X).

(ii) There exist uniquely determined functions g ∈ AP ([0,∞) : X) and φ ∈ C0([0,∞) : X) such that
f = g + φ.

(iii) The set H(f) := {f(·+ s) : s ≥ 0} is relatively compact in Cb([0,∞) : X).

Let 1 ≤ p <∞. Then we say that a function f ∈ Lploc(I : X) is Stepanov p-bounded, Sp-bounded shortly,
iff

‖f‖Sp := sup
t∈I

(∫ t+1

t

‖f(s)‖p ds

)1/p

<∞.

The space LpS(I : X) consisted of all Sp-bounded functions becomes a Banach space when equipped with
the above norm. A function f ∈ LpS(I : X) is said to be Stepanov p-almost periodic, Sp-almost periodic

shortly, iff the function f̂ : I → Lp([0, 1] : X), defined by

f̂(t)(s) := f(t+ s), t ∈ I, s ∈ [0, 1]

is almost periodic (cf. M. Amerio, G. Prouse [2] for more details). It is said that f ∈ LpS([0,∞) : X)

is asymptotically Stepanov p-almost periodic, asymptotically Sp-almost periodic shortly, iff f̂ : [0,∞) →
Lp([0, 1] : X) is asymptotically almost periodic. By APSp([0,∞) : X) and AAPSp([0,∞) : X) we denote
the classes consisting of all Stepanov p-almost periodic functions and asymptotically Stepanov p-almost
periodic functions, respectively.

It is a well-known fact that if f(·) is an almost periodic (respectively, a.a.p.) function then f(·) is also
Sp-almost periodic (resp., Sp-a.a.p.) for 1 ≤ p <∞. The converse statement is false, however.

We need the assertion of [15, Lemma 1]:

Lemma 1.1. Suppose that f : [0,∞) → X is an asymptotically Sp-almost periodic function. Then there
are two locally p-integrable functions g : R→ X and q : [0,∞)→ X satisfying the following conditions:

(i) g is Sp-almost periodic,

(ii) q̂ belongs to the class C0([0, 1] : Lp([0, 1] : X)),

(iii) f(t) = g(t) + q(t) for all t ≥ 0.

Moreover, there exists an increasing sequence (tn)n∈N of positive reals such that limn→∞ tn =∞ and g(t) =
limn→∞f(t+ tn) a.e. t ≥ 0.

Example. ([25]) Define sign(0) := 0. Then, for every almost periodic function f : R → R, we have that the
function sign(f(·)) is Stepanov 1-almost periodic.
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We continue by providing the following illustrative example from [21]:

Example. (i) Let ε > 0 be given and let ε0 := εp/2p−1. By conclusion from the previous example, we know
that there exists l0 > 0 such that any subinterval I of R which do have length l0 contains a point τ ∈ I
such that∫ t+1

t

|sign(f(x+ τ))− sign(f(x))| dx < ε0, t ∈ R. (1.2)

For every t, τ ∈ R, define

Bt,τ,1 :={x ∈ [t, t+ 1] : f(x+ τ)f(x) < 0}
and Bt,τ,2 := {x ∈ [t, t+ 1] : f(x+ τ)f(x) = 0}.

All that we need to prove is that (1.2) implies(∫
Bt,τ,1

+

∫
Bt,τ,2

)∣∣sign(f(x+ τ))− sign(f(x))
∣∣p dx < εp, t ∈ R. (1.3)

Towards this end, observe that we already know from (1.2) that
(
∫
Bt,τ,1

+
∫
Bt,τ,2

)|sign(f(x+ τ))− sign(f(x))| dx < ε0 for all t ∈ R as well as that(∫
Bt,τ,1

+

∫
Bt,τ,2

)∣∣sign(f(x+ τ))− sign(f(x))
∣∣p dx

=2pm
(
Bt,τ,1

)
+

∫
Bt,τ,2

|sign(f(x+ τ))− sign(f(x))|p dx

=2pm
(
Bt,τ,1

)
+

∫
Bt,τ,2

|sign(f(x+ τ))− sign(f(x))| dx

≤2p−1

[
2m
(
Bt,τ,1

)
+

∫
Bt,τ,2

|sign(f(x+ τ))− sign(f(x))| dx

]
≤2p−1ε0 = εp,

as claimed; here, m(Bt,τ,1) denotes the Lebesgue measure of set Bt,τ,1.

(ii) For every almost periodic function f : [0,∞) → R, we have that the function sign(f(·)) is Stepanov
p-almost periodic. This can be simply deduced with the help of (i) and the fact that
sign(f(t)) =sign([Ef ](t)) for all t ≥ 0; here, E : AP ([0,∞) : X)→ AP (R : X) denotes the well-known
extension mapping (see e.g. [21]).

By C0([0,∞) × Y : X) we denote the space of all continuous functions h : [0,∞) × Y → X such that
limt→∞ h(t, y) = 0 uniformly for y in any compact subset of Y. A continuous function f : I×Y → X is called
uniformly continuous on bounded sets, uniformly for t ∈ I iff for every ε > 0 and every bounded subset K
of Y there exists a number δε,K > 0 such that ‖f(t, x)− f(t, y)‖ ≤ ε for all t ∈ I and all x, y ∈ K satisfying

that ‖x − y‖ ≤ δε,K . If f : I × Y → X, then we define f̂ : I × Y → Lp([0, 1] : X) by f̂(t, y) := f(t + ·, y),
t ≥ 0, y ∈ Y.

For the purpose of research of (asymptotically) almost periodic properties of solutions to semilinear
Cauchy inclusions, we need to remind ourselves of the following well-known definitions and results (see e.g.
C. Zhang [33], W. Long, H.-S. Ding [27], and Proposition 1.4 below):

Definition 1.2. Let 1 ≤ p <∞.

(i) A function f : I×Y → X is called almost periodic iff f(·, ·) is bounded, continuous as well as for every
ε > 0 and every compact K ⊆ Y there exists l(ε,K) > 0 such that every subinterval J ⊆ I of length
l(ε,K) contains a number τ with the property that ‖f(t+ τ, y)− f(t, y)‖ ≤ ε for all t ∈ I, y ∈ K. The
collection of such functions will be denoted by AP (I × Y : X).
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(ii) A function f : [0,∞)×Y → X is said to be asymptotically almost periodic iff it is bounded continuous
and admits a decomposition f = g + q, where g ∈ AP ([0,∞) × Y : X) and q ∈ C0([0,∞) × Y : X).
Denote by AAP ([0,∞)× Y : X) the vector space consisting of all such functions.

(iii) A function f : I × Y → X is called Stepanov p-almost periodic, Sp-almost periodic shortly, iff

f̂ : I × Y → Lp([0, 1] : X) is almost periodic.

Lemma 1.3. (i) Let f ∈ AP (I × Y : X) and h ∈ AP (I : Y ). Then the mapping t 7→ f(t, h(t)), t ∈ I
belongs to the space AP (I : X).

(ii) Let f ∈ AAP ([0,∞) × Y : X) and h ∈ AAP ([0,∞) : Y ). Then the mapping t 7→ f(t, h(t)), t ≥ 0
belongs to the space AAP ([0,∞) : X).

In Definition 1.2(ii), a great number of authors assumes a priori that g ∈ AP (R×Y : X). This is slightly
redundant on account of the following proposition:

Proposition 1.4. Let f : [0,∞) × Y → X, and let S ⊆ Y. Suppose that, for every ε > 0, there exists
l(ε, S) > 0 such that every subinterval J ⊆ [0,∞) of length l(ε, S) contains a number τ with the property that
‖f(t+ τ, y)− f(t, y)‖ ≤ ε for all t ≥ 0, y ∈ S (this, in particular, holds provided that f ∈ AP (I × Y : X)).
Denote by F (t, y) the unique almost periodic extension of function f(t, y) from the interval [0,∞) to the
whole real line, for fixed y ∈ S (cf. [3, Proposition 4.7.1]). Then, for every ε > 0, with the same l(ε, S) > 0
chosen as above, we have that every subinterval J ⊆ R of length l(ε, S) contains a number τ with the property
that ‖F (t+ τ, y)− F (t, y)‖ ≤ ε for all t ∈ R, y ∈ S.

Proof. Let ε > 0 be given in advance, let l(ε, S) > 0 be as above, and let J = [a, b] ⊆ R. The assertion
is clear provided that a ≥ 0. Suppose now that a < 0; then we choose a number τ0 > 0 arbitrarily. Then
there exists τ ′ ∈ J = [τ0, τ0 + b− a] ⊆ [0,∞) such that ‖f(t+ τ ′, y)− f(t, y)‖ ≤ ε for all t ≥ 0, y ∈ S. Since
τ := τ ′−τ0−|a| ∈ J, it suffices to show that ‖F (t+τ, y)−F (t, y)‖ ≤ ε for all t ∈ R, y ∈ S. Towards this end,
fix a number t ∈ R and an element y ∈ S. Since the mapping s 7→ F (s+ τ ′ − τ0 − |a|, y)−F (s− τ0 − |a|, y),
s ∈ R is almost periodic, the equation [3, (4.24)] shows that∥∥F (t+ τ ′ − τ0 − |a|, y)− F (t− τ0 − |a|, y)

∥∥
≤
∥∥F (·+ τ ′ − τ0 − |a|, y)− F (· − τ0 − |a|, y)

∥∥
∞

= sup
s≥τ0+|a|

∥∥F (s+ τ ′ − τ0 − |a|, y)− F (s− τ0 − |a|, y)
∥∥

= sup
s≥τ0+|a|

∥∥f(s+ τ ′ − τ0 − |a|, y)− f(s− τ0 − |a|, y)
∥∥

= sup
s≥0

∥∥f(s+ τ ′, y)− f(s, y)
∥∥ ≤ ε.

This ends the proof of proposition.

It is very simple to deduce Lemma 1.3(i) with I = [0,∞) by using Proposition 1.4 and the corresponding
result in the case that I = R (see e.g. [7, Lemma 2.6]). Definition 1.2(iii) seems to be new for I = [0,∞),
and slightly different from the corresponding notion introduced in [27, Definition 1.8], given in the case that
I = R. Observe also that we automatically assume the boundedness of function f(·, ·) in the parts (i) and
(ii) of Definition 1.2, following the approach used in [33].

By [33, Theorem 2.6], we have that a bounded continuous function f : [0,∞)×Y → X is asymptotically
almost periodic iff for every ε > 0 and every compact K ⊆ Y there exist l(ε,K) > 0 and M(ε,K) >
0 such that every subinterval J ⊆ [0,∞) of length l(ε,K) contains a number τ with the property that
‖f(t+τ, y)−f(t, y)‖ ≤ ε for all t ≥M(ε,K), y ∈ K. We introduce the notion of an asymptotically Stepanov
p-almost periodic function f(·, ·) as follows:

Definition 1.5. Let 1 ≤ p < ∞. A function f : [0,∞) × Y → X is said to be asymptotically Sp-almost

periodic iff f̂ : [0,∞)×Y → Lp([0, 1] : X) is asymptotically almost periodic. The collection of such functions
will be denoted by AAPSp([0,∞)× Y : X).
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It is very elementary to prove that any asymptotically almost periodic function is also asymptotically
Stepanov p-almost periodic (1 ≤ p <∞). Now we state the following two-variable analogue of Lemma 1.1:

Lemma 1.6. Suppose that f : [0,∞) × Y → X is an asymptotically Sp-almost periodic function. Then
there are two functions g : R× Y → X and q : [0,∞)× Y → X satisfying that for each y ∈ Y the functions
g(·, y) and q(·, y) are locally p-integrable, as well as that the following holds:

(i) ĝ : R× Y → Lp([0, 1] : X) is almost periodic,

(ii) q̂ ∈ C0([0,∞)× Y : Lp([0, 1] : X)),

(iii) f(t, y) = g(t, y) + q(t, y) for all t ≥ 0 and y ∈ Y.

Moreover, for every compact set K ⊆ Y, there exists an increasing sequence (tn)n∈N of positive reals such
that limn→∞ tn =∞ and g(t, y) = limn→∞f(t+ tn, y) for all y ∈ Y and a.e. t ≥ 0.

Proof. By the foregoing, we have that f̂ : [0,∞)×Y → X is bounded continuous and admits a decomposition

f̂ = G + Q, where G ∈ AP ([0,∞) × Y : Lp([0, 1] : X)) and Q ∈ C0([0,∞) × Y : Lp([0, 1] : X)). Moreover,
the proof of [33, Theorem 2.6] shows that, for every compact set K ⊆ Y, there exists an increasing sequence

(tn)n∈N of positive reals such that limn→∞ tn = ∞ and G(t, y) = limn→∞ f̂(t + tn, y) for all y ∈ Y and

t ≥ 0. The remaining part of proof follows by applying Lemma 1.1 to the function f̂(·, y), for fixed element
y ∈ Y, and the uniqueness of decomposition g(·) + q(·) in this lemma.

For the theory of abstract degenerate differential equations, we refer the reader to the monographs by R.
W. Carroll, R. W. Showalter [5], A. Favini, A. Yagi [13], I. V. Melnikova, A. I. Filinkov [28] and M. Kostić
[17]. In what follows, we will present a brief overview of definitions from the theory of multivalued linear
operators in Banach spaces.

Suppose that X and Y are Banach spaces. Let us recall that a multivalued map (multimap) A : X →
P (Y ) is said to be a multivalued linear operator (MLO) iff the following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of X;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y, then we say that A is an MLO in X.
The fundamental equality used below says that, if x, y ∈ D(A) and λ, η ∈ C with |λ| + |η| 6= 0, then

λAx+ ηAy = A(λx+ ηy). Assuming A is an MLO, then A0 is a linear submanifold of Y and Ax = f +A0
for any x ∈ D(A) and f ∈ Ax. Set R(A) := {Ax : x ∈ D(A)}. Then the set A−10 = {x ∈ D(A) : 0 ∈ Ax} is
called the kernel of A and it is denoted by either N(A) or Kern(A). The inverse A−1 of an MLO is defined
by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It can be simply checked that A−1 is an MLO in
X, as well as that N(A−1) = A0 and (A−1)−1 = A; A is said to be injective iff A−1 is single-valued.

For any mapping A : X → P (Y ) we define Ǎ := {(x, y) : x ∈ D(A), y ∈ Ax}. Then A is an MLO iff Ǎ
is a linear relation in X × Y, i.e., iff Ǎ is a linear subspace of X × Y.

Assume thatA, B : X → P (Y ) are two MLOs. Then we define its sumA+B by D(A+B) := D(A)∩D(B)
and (A+ B)x := Ax+ Bx, x ∈ D(A+ B). It is clear that A+ B is likewise an MLO.

Let A : X → P (Y ) and B : Y → P (Z) be two MLOs, where Z is an SCLCS. The product of operators
A and B is defined by D(BA) := {x ∈ D(A) : D(B) ∩ Ax 6= ∅} and BAx := B(D(B) ∩ Ax). Then
BA : X → P (Z) is an MLO and (BA)−1 = A−1B−1. The scalar multiplication of an MLO A : X → P (Y )
with the number z ∈ C, zA for short, is defined by D(zA) := D(A) and (zA)(x) := zAx, x ∈ D(A). It is
clear that zA : X → P (Y ) is an MLO and (ωz)A = ω(zA) = z(ωA), z, ω ∈ C.

Assume now that A is an MLO in X. Then the resolvent set of A, ρ(A) for short, is defined as the union
of those complex numbers λ ∈ C for which

(i) X = R(λ−A);

(ii) (λ−A)−1 is a single-valued bounded operator on X.
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The operator λ 7→ (λ−A)−1 is called the resolvent of A (λ ∈ ρ(A)); R(λ : A) ≡ (λ−A)−1 (λ ∈ ρ(A)). The
basic properties of resolvent sets of single-valued linear operators continue to hold in our framework ([13],
[17]).

For the notions of various types of degenerate regularized solution operator families subgenerated by
multivalued linear operators, we refer the reader to [17].

2. Almost periodic and asymptotically almost periodic solutions of abstract semilinear Cauchy
inclusions

Composition theorems for two-parameter Stepanov p-almost periodic functions have been considered in
[27, Theorem 2.2]. We start this section by investigating composition theorems for Stepanov two-parameter
almost periodic and asymptotically Stepanov two-parameter almost periodic functions.

The following result states that the assertion of [27, Theorem 2.2] continues to hold for the functions
defined on the real semi-axis I = [0,∞). The proof of theorem is similar to that of afore-mentioned and
therefore omitted.

Theorem 2.1. Suppose that the following conditions hold:

(i) f ∈ APSp(I × X : X) with p > 1, and there exist a number r ≥ max(p, p/p − 1) and a function
Lf ∈ LrS(I) such that:

‖f(t, x)− f(t, y)‖ ≤ Lf (t)‖x− y‖, t ∈ I, x, y ∈ X; (2.1)

(ii) x ∈ APSp(I : X), and there exists a set E ⊆ I with m(E) = 0 such that K := {x(t) : t ∈ I \ E} is
relatively compact in X; here, m(·) denotes the Lebesgue measure.

Then q := pr/p+ r ∈ [1, p) and f(·, x(·)) ∈ APSq(I : X).

As observed in [11, Remark 2.5], the condition (2.1) seems to be more conventional for dealing with than
the usual Lipschitz assumption. But, then we cannot consider the value p = 1 in Theorem 2.1: this is not
the case if we accept the existence of a Lipschitz constant L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, t ∈ I, x, y ∈ X. (2.2)

Speaking-matter-of-factly, an insignificant modification of the proof of [27, Theorem 2.2] shows that the
following result holds true:

Theorem 2.2. Suppose that the following conditions hold:

(i) f ∈ APSp(I ×X : X) with p ≥ 1, L > 0 and (2.2) holds.

(ii) x ∈ APSp(I : X), and there exists a set E ⊆ I with m(E) = 0 such that K = {x(t) : t ∈ I \ E} is
relatively compact in X.

Then f(·, x(·)) ∈ APSp(I : X).

Concerning asymptotically two-parameter Stepanov p-almost periodic functions, we can prove the fol-
lowing composition principle (cf. Lemma 1.1 and Lemma 1.6; the use of symbol q is clear from the context):

Proposition 2.3. Let I = [0,∞). Suppose that the following conditions hold:

(i) g ∈ APSp(I × X : X) with p > 1, and there exist a number r ≥ max(p, p/p − 1) and a function
Lg ∈ LrS(I : X) such that (2.1) holds with the function f(·, ·) replaced by the function g(·, ·) therein.

(ii) y ∈ APSp(I : X), and there exists a set E ⊆ I with m(E) = 0 such that K = {y(t) : t ∈ I \ E} is
relatively compact in X.
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(iii) f(t, x) = g(t, x) + q(t, x) for all t ≥ 0 and x ∈ X, where q̂ ∈ C0([0,∞) × X : Lq([0, 1] : X)) and
q := pr/p+ r.

(iv) x(t) = y(t) + z(t) for all t ≥ 0, where ẑ ∈ C0([0,∞) : Lp([0, 1] : X)).

(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K ′ = {x(t) : t ∈ I \E′} is relatively compact in X.

Then q ∈ [1, p) and f(·, x(·)) ∈ AAPSq(I : X).

Proof. By Theorem 2.1, we have that the function t 7→ g(t, y(t)), t ≥ 0 is Stepanov q-almost periodic. Since

f(t, x(t)) =
[
g(t, x(t))− g(t, y(t))

]
+ g(t, y(t)) + q(t, x(t)), t ≥ 0,

it suffices to show that

lim
t→+∞

(∫ t+1

t

∥∥g(s, x(s))− g(s, y(s))
∥∥q ds)1/q

= 0 (2.3)

and

lim
t→+∞

(∫ t+1

t

∥∥q(s, x(s))
∥∥q ds)1/q

= 0. (2.4)

To see that (2.3) holds, we can argue as in the proof of estimate [27, (2.12)]. More precisely, by (2.2) and
the Hölder inequality, we have that(∫ t+1

t

∥∥g(s, x(s))− g(s, y(s))
∥∥q ds)1/q

≤

(∫ t+1

t

Lg(s)
q
∥∥x(s)− y(s)

∥∥q ds)1/q

≤

(∫ t+1

t

Lg(s)
r ds

)1/r(∫ t+1

t

∥∥x(s)− y(s)
∥∥p ds)1/p

=

(∫ t+1

t

Lg(s)
r ds

)1/r(∫ t+1

t

∥∥z(s)∥∥p ds)1/p

, t ≥ 0.

Hence, (2.3) holds on account of Sr-boundedness of function Lg(·) and inclusion ẑ ∈ C0([0,∞) : Lp([0, 1] :
X)). The proof of (2.4) follows immediately from the facts that q̂ ∈ C0([0,∞) × X : Lq([0, 1] : X)) and
K ′ = {x(t) : t ∈ I \ E′} is relatively compact in X.

If we accept the Lipschitz assumption (2.2), then the following result holds true:

Proposition 2.4. Let I = [0,∞). Suppose that the following conditions hold:

(i) g ∈ APSp(I × X : X) with p ≥ 1, and there exists a constant L > 0 such that (2.2) holds with the
function f(·, ·) replaced by the function g(·, ·) therein.

(ii) y ∈ APSp(I : X), and there exists a set E ⊆ I with m(E) = 0 such that K = {y(t) : t ∈ I \ E} is
compact in X.

(iii) f(t, x) = g(t, x) + q(t, x) for all t ≥ 0 and x ∈ X, where q̂ ∈ C0([0,∞)×X : Lp([0, 1] : X)).

(iv) x(t) = y(t) + z(t) for all t ≥ 0, where ẑ ∈ C0([0,∞) : Lp([0, 1] : X)).
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(v) There exists a set E′ ⊆ I with m(E′) = 0 such that K ′ = {x(t) : t ∈ I \E′} is relatively compact in X.

Then f(·, x(·)) ∈ AAPSp(I : X).

For the sequel, we need to remind ourselves of the following result recently established in [19]:

Lemma 2.5. Suppose that 1 ≤ p < ∞, 1/p + 1/q = 1 and (R(t))t>0 ⊆ L(X) is a strongly continuous
operator family satisfying that M :=

∑∞
k=0 ‖R(·)‖Lq [k,k+1] < ∞. If f : R → X is Sp-almost periodic, then

the function F (·), given by

F (t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R, (2.5)

is well-defined and almost periodic.

Remark 2.6. Suppose that t 7→ ‖R(t)‖, t ∈ (0, 1] is an element of the space Lq[0, 1]. Then the inequality∑∞
k=0 ‖R(·)‖Lq [k,k+1] <∞ holds provided that

(R(t))t>0 is exponentially decaying at infinity or that there exists a finite number ζ < 0 such that ‖R(t)‖ =
O(tζ), t→ +∞ and

(i) p = 1 and ζ < −1, or

(ii) p > 1 and ζ < (1/p)− 1.

We need to prove the following extension of [7, Lemma 4.1], as well.

Lemma 2.7. Suppose that (R(t))t>0 ⊆ L(X) is strongly continuous and ‖R(t)‖ = O(e−ωttβ−1), t > 0 for
some numbers ω > 0 and β > 0. Let f ∈ AAPSq([0,∞) : X) with some q ∈ [1,∞), let 1/q + 1/q′ = 1, and
let the following hold:

q′(β − 1) > −1, provided q > 1 and β = 1, provided q = 1. (2.6)

Define

H(t) :=

∫ t

0

R(t− s)f(s) ds, t ≥ 0.

Then H ∈ AAP ([0,∞) : X).

Proof. Suppose that the locally p-integrable functions g : R→ X, q : [0,∞)→ X satisfy the conditions from
Lemma 1.1. Let the function G(·) be given by (2.5), with R(·) replaced therein by T (·); then we know from
Lemma 2.5 that G(·) is almost periodic. Set

F (t) :=

∫ t

0

T (t− s)q(s) ds−
∫ ∞
t

T (s)g(t− s) ds, t ≥ 0.

Using Hölder inequality, we can simply prove that H(·) is well-defined. Since H(t) = G(t) + F (t) for all
t ≥ 0, it suffices to show that F ∈ C0([0,∞) : X). It is clear that∥∥∥∥∥

∫ ∞
t

T (s)g(t− s) ds

∥∥∥∥∥ ≤
∞∑
k=0

‖R(·)‖Lq′ [t+k,t+k+1]‖g‖Sq

≤
∞∑
k=0

‖R(·)‖L∞[t+k,t+k+1]‖g‖Sq ≤
∞∑
k=0

‖R(·)‖L∞[t+k,t+k+1]‖g‖Sq

≤ Const. ‖g‖Sqe−ct, t > 1,
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so that limt→∞
∫∞
t
T (s)g(t− s) ds = 0. Arguing as above, we get that∥∥∥∥∥

∫ t/2

0

T (t− s)q(s) ds

∥∥∥∥∥ ≤ ‖g‖Sq
dt/2e∑
k=0

‖R(t− ·)‖Lq′ [k,k+1]

≤M(1 + dt/2e)e−c(t−dt/2e−1)‖g‖Sq , t ≥ 2,

so that limt→∞
∫ t/2

0
T (t−s)q(s) ds = 0. Therefore, it remains to be proved that limt→∞

∫ t
t/2

T (t−s)q(s) ds =

0 (observe that the integral in this limit expression converges by (2.6) and the Sq-boundedness of function

q(·)). For that, fix a number ε > 0. Then there exists t0 > 0 such that
∫ t+1

t
‖q(s)‖q ds < εq, t ≥ t0. Let

t > 2t0 + 6. Then the Hölder inequality implies the existence of a finite constant c > 0 such that:∥∥∥∥∥
∫ t

t/2

T (t− s)q(s) ds

∥∥∥∥∥
≤ c

bt/2c−2∑
k=0

‖R(t− ·)‖Lq′ [t/2+k,t/2+k+1]ε+ ε
∥∥·β−1

∥∥
Lq′ [0,2]

≤ c
bt/2c−2∑
k=0

‖R(t− ·)‖L∞[t/2+k,t/2+k+1]ε+ ε
∥∥·β−1

∥∥
Lq′ [0,2]

≤ cεM
bt/2c−2∑
k=0

e−c(t/2+k) + ε
∥∥·β−1

∥∥
Lq′ [0,2]

≤ cεMe−ct/2
∞∑
k=0

e−ck + ε
∥∥·β−1

∥∥
Lq′ [0,2]

.

This yields the final conclusion.

Suppose now that the condition (P) holds. Then there exists a degenerate strongly continuous semigroup
(T (t))t>0 ⊆ L(X) generated by A and ‖T (t)‖ = O(e−cttβ−1), t > 0 ([19]). By a mild solution of (1.1), we
mean any continuous function u(·) such that u(t) = (Λu)(t), t ∈ R, where

t 7→ (Λu)(t) :=

∫ t

−∞
T (t− s)f(s, u(s)) ds, t ∈ R.

Theorem 2.8. Suppose that f ∈ APSp(R×X : X) with p > 1, and there exist a number r ≥ max(p, p/p−1)
and a function Lf ∈ LrS(R) such that (2.1) holds with I = R. Let the following condition hold:

β = 1, provided r = p/p− 1 and
pr

pr − p− r
<

1

1− β
, provided r > p/p− 1. (2.7)

Set

q′ :=∞, provided r = p/p− 1 and q′ :=
pr

pr − p− r
, provided r > p/p− 1.

Assume that M :=
∑∞
k=0 ‖T (·)‖Lq′ [k,k+1] <∞ and M‖Lf‖Sr < 1. Then there exists a unique almost periodic

mild solution of (1.1).

Proof. Since the range of any function u ∈ AP (R : X) is relatively compact in X, Theorem 2.1 yields
that f(·, u(·)) ∈ APSq(R : X), where q = pr/p + r. Since (T (t))t>0 is exponentially decaying at infinity
and 1/q′ + 1/q = 1, the condition (2.7) yields that M < ∞. Therefore, we can apply Lemma 2.5 (see also
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Remark 2.6) in order to see that the mapping Λ : AP (R : X) → AP (R : X) is well-defined. Furthermore,
for every t ∈ R, we have by Hölder inequality:∥∥∥(Λu)(t)− (Λv)(t)

∥∥∥ =

∥∥∥∥∥
∫ ∞

0

T (s)
[
f(t− s, u(t− s))− f(t− s, v(t− s))

]
ds

∥∥∥∥∥
≤
∞∑
k=0

∫ k+1

k

∥∥T (s)
∥∥∥∥f(t− s, u(t− s))− f(t− s, v(t− s))

∥∥ ds
≤
∞∑
k=0

∥∥T (·)
∥∥
Lq′ [k,k+1]

∥∥f(t− ·, u(t− ·))− f(t− ·, v(t− ·))
∥∥
Lq [k,k+1]

≤
∞∑
k=0

∥∥T (·)
∥∥
Lq′ [k,k+1]

∥∥Lf (t− ·)
[
u(t− ·)− v(t− ·)

]∥∥
Lq [k,k+1]

≤
∞∑
k=0

∥∥T (·)
∥∥
Lq′ [k,k+1]

‖Lf‖Sr
∥∥u(t− ·)− v(t− ·)

∥∥
Lp[k,k+1]

≤
∞∑
k=0

∥∥T (·)
∥∥
Lq′ [k,k+1]

‖Lf‖Sr
∥∥u(·)− v(·)

∥∥
L∞(R)

.

Since M‖Lf‖Sr < 1, we can apply the Banach contraction principle to complete the proof of theorem.

We can similarly prove the following result provided that the Lipschitz type condition (2.2) holds:

Theorem 2.9. Suppose that f ∈ APSp(R×X : X) with p ≥ 1, L > 0 and (2.2) holds with I = R. Let the
following condition hold:

β = 1, provided p = 1 and
p

p− 1
<

1

1− β
, provided p > 1.

Set

q′ :=∞, provided p = 1 and q′ :=
p

p− 1
, provided p > 1.

Assume that M :=
∑∞
k=0 ‖T (·)‖Lq′ [k,k+1] < ∞ and ML < 1. Then there exists a unique almost periodic

mild solution of (1.1).

Let the initial value u0 be a point of the continuity of semigroup (T (t))t>0; see e.g. [13, Theorem 3.3,
Theorem 3.5]. Let ‖T (t)‖ ≤Me−cttβ−1, t > 0 for some constant M > 0.

By a mild solution u(·) = u(·;u0) of problem (DFP)f,s we mean any function u ∈ C([0,∞) : X) such
that

u(t) = (Υu)(t) := T (t)u0 +

∫ t

0

T (t− s)f(s, u(s)) ds, t ≥ 0.

Suppose that (2.1) holds for a.e. t > 0 (I = [0,∞)), with locally integrable positive function Lf (·). Set, for
every n ∈ N,

Mn := Mn sup
t≥0

e−ct
∫ t

0

∫ xn

0

· · ·
∫ x2

0

ecx1
(
t− xn

)β−1

×
n∏
i=2

(
xi − xi−1

)β−1
n∏
i=1

Lf (xi) dx1 dx2 · · · dxn.

Then a simple calculation shows that∥∥∥(Υnu
)
−
(
Υnv

)∥∥∥
∞
≤Mn

∥∥u− v∥∥∞, u, v ∈ BUC([0,∞) : X), n ∈ N. (2.8)

Now we are able to state the main result of this paper:
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Theorem 2.10. Suppose that I = [0,∞) and the following conditions hold:

(i) g ∈ APSp(I × X : X) with p > 1, and there exist a number r ≥ max(p, p/p − 1) and a function
Lg ∈ LrS(I : X) such that (2.1) holds with the function f(·, ·) replaced by the function g(·, ·) therein.

(ii) f(t, x) = g(t, x)+q(t, x) for all t ≥ 0 and x ∈ X, where q̂ ∈ C0(I×X : Lq([0, 1] : X)) and q = pr/p+r.

(iii) β = 1, provided r = p/p− 1 and pr
pr−p−r <

1
1−β , provided r > p/p− 1.

(iv) (2.1) holds for a.e. t > 0, with locally bounded positive function Lf (·) satisfying Mn < 1 for some
n ∈ N.

Then there exists a unique asymptotically almost periodic solution of inclusion (DFP)f,s.

Proof. Define the number q′ as in the formulation of Theorem 2.8. By (i)-(ii) and Proposition 2.3, we have
that f(·, x(·)) ∈ AAPSq(I : X) for any x ∈ AAP (I : X), where q = pr/p + r; here, it is only worth
observing that the range of an X-valued asymptotically almost periodic function is relatively compact in X
by [33, Theorem 2.4]. Due to (iii), the condition (2.6) holds. Using Lemma 2.7 and the obvious equality
limt→+∞ T (t)u0 = 0, we get that the mapping Υ : AAP (X) → AAP (X) is well-defined. Making use of
(2.8), (iv) and a well-known extension of the Banach contraction principle, we obtain the existence of an
asymptotically almost periodic solution of inclusion (DFP )f,s. The uniqueness of solutions can be proved
as follows: let u(·) and v(·) be two mild solutions of inclusion (DFP )f,s. Then we have

‖u(t)− v(t)‖ ≤M
∫ t

0

e−c(t−s)
(
t− s

)β−1
Lf (s)‖u(s)− v(s)‖ ds, t ≥ 0.

This implies by the boundedness of function s 7→ e−c(t−s)L(s), s ∈ (0, t] and [9, Lemma 6.19, p. 111] that
u(s) = v(s) for all s ∈ [0, t] (t > 0 fixed). The proof of the theorem is thereby complete.

Using Proposition 2.4 in place of Proposition 2.3, we can simply formulate and prove the following
analogue of Theorem 2.10 in the case of consideration of classical Lipschitz condition (2.2):

Theorem 2.11. Let I = [0,∞). Suppose that the following conditions hold:

(i) g ∈ APSp(I × X : X) with p ≥ 1, and there exists a constant L > 0 such that (2.2) holds with the
function f(·, ·) replaced by the function g(·, ·) therein.

(ii) f(t, x) = g(t, x) + q(t, x) for all t ≥ 0 and x ∈ X, where q̂ ∈ C0(I ×X : Lp([0, 1] : X)).

(iii) β = 1, provided p = 1 and p
p−1 <

1
1−β , provided p > 1.

(iv) (2.1) holds for a.e. t > 0, with locally bounded positive function Lf (·) satisfying Mn < 1 for some
n ∈ N.

Then there exists a unique asymptotically almost periodic solution of inclusion (DFP)f,s.

Now we would like to formulate the following important consequence of Theorem 2.11:

Corollary 2.12. Suppose that I = [0,∞), the function f(·, ·) is asymptotically almost periodic and (2.1)
holds for a.e. t > 0, with locally bounded positive function Lf (·) satisfying Mn < 1 for some n ∈ N. Then
there exists a unique asymptotically almost periodic solution of inclusion (DFP)f,s.

Especially, in the case that M1 < 1 in Corollary 2.12, we obtain the following corollary:

Corollary 2.13. Suppose that I = [0,∞), the function f(·, ·) is asymptotically almost periodic and (2.2)
holds for some L ∈ [0, cβM−1Γ(β)−1). Then there exists a unique asymptotically almost periodic solution of
inclusion (DFP)f,s.
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Remark 2.14. (i) In the case that β = 1 and Lf ∈ L∞([0,∞))∩L1([0,∞)), the proof of [7, Theorem 4.4]
shows that

∑∞
n=1Mn < ∞, so that the uniqueness of solutions follows immediately by applying the

Weissinger’s fixed point theorem [9, Theorem D.7]. If the above conditions are satisfied, then the proof
of Theorem 2.10 can be used to state a proper extension of [7, Theorem 4.4]; speaking-matter-of-factly,
in our approach the term f(·, u(·)) need not be asymptotically almost periodic and it can be of the
form (iii) from the formulation of Theorem 2.10, or asymptotically Stepanov almost periodic if we
consider Theorem 2.11. Applications in the study of abstract semilinear Cauchy problems of third
order:

αu′′′(t) + u′′(t)− βAu(t)− γAu′(t) = f(t, u(t)), α, β, γ > 0, t ≥ 0, (2.9)

appearing in the theory of dynamics of elastic vibrations of flexible structures [7], are immediate.

(ii) If 0 < β < 1, then it is not trvial to state a satisfactory criterion which would enable one to see that
the inequality Mn < 1 holds for some integer n ∈ N.

As already mentioned, it seems that the assertions of Theorem 2.8-Theorem 2.11 are new even for non-
degenerate semilinear differential equations with almost sectorial operators. Here we will remind ourselves
of the following important result of W. von Wahl [32], which is most commonly used for applications in the
existing literature:

Example. Assume that α ∈ (0, 1), m ∈ N, Ω is a bounded domain in Rn with boundary of class C4m and
X := Cα(Ω). Define the operator A : D(A) ⊆ Cα(Ω) → Cα(Ω) by D(A) := {u ∈ C2m+α(Ω) : Dβu|∂Ω =
0 for all |β| ≤ m− 1} and

Au(x) :=
∑
|β|≤2m

aβ(x)Dβu(x) for all x ∈ Ω.

Here, β ∈ Nn0 , |β| =
∑n
i=1 βj , D

β =
∏n
i=1( 1

i
∂
∂xi

)βi , and aβ : Ω→ C satisfy the following conditions:

(i) aβ(x) ∈ R for all x ∈ Ω and |β| = 2m.

(ii) aβ ∈ Cα(Ω) for all |β| ≤ 2m, and

(iii) there is a constant M > 0 such that

M−1|ξ|2m ≤
∑
|β|=2m

aβ(x)ξβ ≤M |ξ|2m for all ξ ∈ Rn and x ∈ Ω.

Then there exists a sufficiently large number σ > 0 such that the single-valued operator A ≡ −(A + σ)
satisfies the condition (P) with β = 1− α

2m and some finite constants c, M > 0 (recall that A is not densely
defined and that the value of exponent β in (P) is sharp).

Concerning semilinear differential inclusions of first order, we would like to present the following illus-
trative example:

Example. (A. Favini, A. Yagi [13, Example 3.6]) Let Ω be a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e.
x ∈ Ω, m ∈ L∞(Ω), 1 < p < ∞ and X := Lp(Ω). Suppose that the operator A := ∆ − b acts on X with
the Dirichlet boundary conditions, and that B is the multiplication operator by the function m(x). Then
we know that the multivalued linear operator A := AB−1 satisfies the condition (P) with β = 1/p and some
finite constants c, M > 0; recall also that the validity of additional condition [13, (3.42)] on the function
m(x) enables us to get the better exponent β in (P), provided that p > 2. Now it becomes clear how we
can apply Theorem 2.8-Theorem 2.9 in the study of existence and uniqueness of almost periodic solutions
of semilinear Poisson heat equation{

∂
∂x [m(x)v(t, x)] = (∆− b)v(t, x) + f(t,m(x)v(t, x)), t ∈ R, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,
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and how we can appply Theorem 2.10-Theorem 2.11 in the study of existence and uniqueness of asymptot-
ically almost periodic solutions of semilinear Poisson heat equation

∂
∂x [m(x)v(t, x)] = (∆− b)v(t, x) + f(t,m(x)v(t, x)), t ≥ 0, x ∈ Ω;
v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,
m(x)v(0, x) = u0(x), x ∈ Ω

in the space X, by using the substitution u(t, x) = m(x)v(t, x) and passing to the corresponding semilinear
differential inclusions of first order. For more details on the subject, we refer the reader to the monographs
[17] and [21].
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