Functional Analysis, Approximation and Computation 11 (2) (2019), 13–21

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Class of (*A*, *n*)-power-hyponormal operators in semi-hilbertian space

Cherifa Chellali^a, Abdelkader Benali^b

^a The Higher School of Economics Oran, Algeria.
 ^b Faculty of The Exact sciences And computer, Mathematics Department, University of Hassiba Benbouali, Chlef Algeria. B.P. 151 Hay Essalem, chlef 02000, Algeria

Abstract. In this paper, the concept of *n*-power- hyponormal operators on a Hilbert space defined by Messaoud Guesba and Mostefa Nadir in [11] is generalized when an additional semi-inner product is considered. This new concept is described by means of oblique projections. For a Hilbert space operator $T \in B(H)$ is (A, n)-power-hyponormal operator for some positive operator A and for some positive integer n if

 $T^{\sharp}T^{n} - T^{n}T^{\sharp} \ge_{A} 0, n = 1, 2, \dots$

1. Introduction

A bounded linear operator *T* on a complex Hilbert space is *n*-hyponormal operator if $T^*T^n - T^nT^* \ge 0$. The class of *p*-hyponormal operator was introduced and studied by A. Aluthge [2], from the definition, it is easily seen that this class contrains hyponormal operators, in [8] the authors Messaoud Guesba and Mostefa Nadir introduced the class of *n*-power-hyponormal operators and study some proprietes of such class for different values of the parameter *n*, in particular for n = 2, n = 3 in Hilbert space.

The propose of this paper is to study the class of (A, n)-power-hyponormal operators in semi-hilbertian spaces.

2. (A, n)-power-hyponormal operators

Definition 2.1. An operator $T \in \mathcal{B}_A(H)$ is said to be (A, n)-power-hyponormal operator for a positive integer n, if

$$T^n T^{\sharp} \leq_A T^{\sharp} T^n$$

We denote the set of all (A, n)-power-hyponormal operators by $[nH]_A$

²⁰¹⁰ Mathematics Subject Classification. Primary 46C05; Secondary 47A05.

Keywords. Semi-Hilbertian space; (*A*, 2)-power-hyponormal operators; (*A*, *n*)-power-hyponormal operators; *A*-positive operators; idempotent.

Received: 30 September 2018; Accepted: 26 June 2019

Communicated by Dragan S. Djordjević

Email addresses: chchellali@gmail.com (Cherifa Chellali), benali4848@gmail.com (Abdelkader Benali)

Remark 2.2. Clearly n = 1, then (A, 1)-power-hyponormal operator is precisely A-hyponormal operator.

Definition 2.3. An operator $T \in \mathcal{B}_A(\mathcal{H})$ is said to be (A, n)-power-hyponormal if $T^{\sharp}T^n - T^nT^{\sharp}$ is A-positive i.e., $T^{\sharp}T^n - T^nT^{\sharp} \geq_A 0$ or equivalently

$$\langle (T^{\sharp}T^n - T^nT^{\sharp})u \mid u \rangle_A \ge 0 \text{ for all } u \in \mathcal{H}.$$

Example 2.4. Let $T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $S = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \in \mathcal{B}(\mathbb{R}^2)$. A simple computation shows that $T^{\sharp} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$, $S^{\sharp} = \begin{pmatrix} -2 & 0 \\ -2 & 0 \end{pmatrix}$.

$$T^{\sharp} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right), S^{\sharp} = \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array}\right).$$

Then T is not (A, 2)-power-hyponormal operator, because

$$\left\langle \left(T^{\sharp}T^{2} - T^{2}T^{\sharp} \right) \left(\begin{array}{c} u \\ v \end{array} \right) \mid \left(\begin{array}{c} u \\ v \end{array} \right) \right\rangle_{A} = -2u^{2} - 2v^{2} \leq 0.$$

For all $(u, v) \in (\mathbb{R}^2)$

and S is (A, 1)-power-hyponormal operator, because

$$\left\langle \left(S^{\sharp}S - SS^{\sharp} \right) \left(\begin{array}{c} u \\ v \end{array} \right) \mid \left(\begin{array}{c} u \\ v \end{array} \right) \right\rangle_{A} = u^{2} + v^{2} \ge 0.$$

11

For all $(u, v) \in (\mathbb{R}^2)$

Proposition 2.5. *If* S, $T \in B_A(H)$ *are unitarily equivalent and if* T *is* (A, n)*-power-hyponormal operators then so is* S

Proof. Let *T* be an (*A*, *n*)-power-hyponormal operator and *S* be unitary equivalent of *T*. Then there exists unitary operator *U* such that $S = UTU^{\sharp}$ so $S^n = UT^nU^{\sharp}$. We have

$$S^{n}S^{\sharp} = UT^{n}U^{\sharp}(UTU^{\sharp})^{\sharp}$$
$$= UT^{n}U^{\sharp}UT^{\sharp}U^{\sharp}$$
$$= UT^{n}P_{\overline{\mathcal{R}(A)}}T^{\sharp}U^{\sharp}$$
$$= UT^{n}T^{\sharp}U^{\sharp}$$
$$\leq UT^{\sharp}T^{n}U^{\sharp}$$
$$= S^{\sharp}S^{n}$$

Hence, $S^n S^{\sharp} \leq_A S^{\sharp} S^n \square$

Theorem 2.6. If $S, T \in B_A(H)$ are commuting (A, n)-power-hyponormal operators and $ST^{\sharp} = T^{\sharp}S$ is an (A, n)-power-hyponormal operators

Proof. Since ST = TS, so $S^nT^n = (ST)^n$ and $S^nT^{\sharp} = T^{\sharp}S^n$. Now, $ST^{\sharp} = T^{\sharp}S \Rightarrow TS^{\sharp} = S^{\sharp}T$

Then
$$T^n S^{\sharp} = S^{\sharp} T^n$$
.
We have
 $(ST)^n (ST)^{\sharp} = S^n T^n T^{\sharp} S^{\sharp}$
 $\leq_A S^n T^{\sharp} T^n S^{\sharp}$
 $= T^{\sharp} S^n S^{\sharp} T^n$
 $\leq_A T^{\sharp} S^{\sharp} S^n T^n$

Hence $(ST)^{n} (ST)^{\sharp} \leq_{A} (ST)^{\sharp} (ST)^{n}$. Then *ST* is an (*A*, *n*)-power-hyponormal operator. \Box

Proposition 2.7. Let $T \in B_A(H)$ be an (A, n)-power-hyponormal operator. Then T^{\sharp} is co-(A, n)-power-hyponormal operator

Proof. Since *T* is (*A*, *n*)-power-hyponormal operator. We have

$$T^{n}T^{\sharp} \leq_{A} T^{\sharp}T^{n} \Rightarrow (T^{\sharp}T^{n})^{n} \leq_{A} (T^{n}T^{\sharp})^{n} \Rightarrow (T^{\sharp})^{\sharp} (T^{n})^{\sharp} \leq_{A} (T^{n})^{\sharp} (T^{\sharp})^{\sharp}$$
$$\Rightarrow T (T^{n})^{\sharp} \leq_{A} (T^{n})^{\sharp} T$$
$$\Rightarrow (T^{n})^{\sharp} T \geq_{A} T (T^{n})^{\sharp}.$$

Hence, T^{\sharp} is co-(*A*, *n*)-power-hyponormal operator. \Box

Theorem 2.8. If *T*, T^{\sharp} are two (*A*, *n*)-power-hyponormal operator, then T^{\sharp} is an (*A*, *n*)-power-hyponormal operator.

Proposition 2.9. If T is (A, 3)-power-hyponormal operator and $T^2 = -(T^{\sharp})^2$. Then T is (A, 3)-power-normal operator.

Proof. Since $T^{3}T^{\sharp} = TT^{2}T^{\sharp} = -T(T^{\sharp})^{3}$ and $T^{\sharp}T^{3} = T^{\sharp}T^{2}T = -(T^{\sharp})^{3}T$ *T* is (*A*, 3)-power-hyponormal, then

$$T^{3}T^{\sharp} \leq_{A} T^{\sharp}T^{3} \implies -T\left(T^{\sharp}\right)^{3} \leq_{A} -\left(T^{\sharp}\right)^{3}T$$
$$\implies T\left(T^{\sharp}\right)^{3} \geq_{A} \left(T^{\sharp}\right)^{3}T$$
$$\implies \left(T\left(T^{\sharp}\right)^{3}\right)^{\sharp} \geq_{A} \left(\left(T^{\sharp}\right)^{3}T\right)^{\sharp}$$
$$\implies T^{3}T^{\sharp} \geq_{A} T^{\sharp}T^{3}.$$

Hence $T^3T^{\sharp} = T^{\sharp}T^3$. \Box

Proposition 2.10. If T is (A, 4)-power-hyponormal and T is skew-normal operator, then T is (A, 4)-normal operator.

Proof. T is skew-normal operator, then $(T^{\sharp})^2 = T^2$. Since $T^4T^{\sharp} = T^2T^2T^{\sharp} = (T^{\sharp})^5$ and $T^{\sharp}T^4 = T^{\sharp}T^2T^2 = (T^{\sharp})^5$. Hence $T^4T^{\sharp} = T^{\sharp}T^4$. \Box **Example 2.11.** Let $T = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\in \mathcal{B}(\mathbb{C}^2)$. A simple computation shows that $T^{\sharp} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$, .

Then T is (A, 2)-power-hyponormal, but is not (A, 3)-power-hyponormal

Example 2.12. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^3)$. It easy to check that $A \ge 0, \mathcal{R}(T^*A) \subset \mathcal{R}(A)$ and $T^{\sharp} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix}, T^{\sharp}T \ne TT^{\sharp}and ||Tu||_A \not\ge ||T^{\sharp}u||_A$.

Proposition 2.13. Let $T, S \in \mathcal{B}_A(\mathcal{H})$ are (A, 1)-hyponormal operator operators Then If. $S(T^{\sharp}T) = (T^{\sharp}T)S$ and $T(S^{\sharp}S) = (S^{\sharp}S)T$ then ST and TS are (A, 1)-power-hyponormal operators.

Proof. We have

$$(ST) (ST)^{\sharp} = STT^{\sharp}S^{\sharp}$$
$$= TT^{\sharp}SS^{\sharp}$$
$$\leq_{A} T^{\sharp}TSS^{\sharp}$$
$$\leq_{A} T^{\sharp}SS^{\sharp}T$$
$$\leq_{A} T^{\sharp}S^{\sharp}ST$$
$$= (ST)^{\sharp}ST$$

Then *ST* is (*A*, 1)-power-hyponormal operator. Now,

$$TS (TS)^{\sharp} = TSS^{\sharp}T^{\sharp}$$
$$= TT^{\sharp}SS^{\sharp}$$
$$\leq_{A} T^{\sharp}TSS^{\sharp}$$
$$\leq_{A} T^{\sharp}SS^{\sharp}T$$
$$\leq_{A} T^{\sharp}S^{\sharp}ST$$
$$= (ST)^{\sharp}ST$$

Then *ST* is (*A*, 1)-power-hyponormal operator. \Box

this proposition remains true for any natural numbers n

Proposition 2.14. Let $T, S \in \mathcal{B}_A(\mathcal{H})$ are (A, n)-power-hyponormal operator operators Then If. $S^n(T^nT^{\sharp}) = (T^nT^{\sharp})S^n$ and $T^n(S^{\sharp}S^n) = (S^{\sharp}S^n)T^n$ then $(ST)^n$ and is $(TS)^n$ are (A, n)-power-hyponormal operators.

Proof. We have

$$(ST)^{n} (ST)^{\sharp} = S^{n}T^{n}T^{\sharp}S^{\sharp}$$
$$= T^{n}T^{\sharp}S^{n}S^{\sharp}$$
$$\leq_{A} T^{\sharp}T^{n}S^{\sharp}S^{n}$$
$$\leq_{A} T^{\sharp}S^{\sharp}S^{n}T^{n}$$
$$\leq_{A} T^{\sharp}S^{\sharp}(ST)^{n}$$
$$= (ST)^{\sharp} (ST)^{n}$$

Then $(ST)^n$ is (A, n)-power-hyponormal operator. Now,

 $(TS)^{n} (TS)^{\sharp} = T^{n} S^{n} S^{\sharp} T^{\sharp}$ $= T^{n} T^{\sharp} S^{n} S^{\sharp}$ $\leq_{A} T^{\sharp} T^{n} S^{\sharp} S^{n}$ $\leq_{A} T^{\sharp} SS^{\sharp} T$ $\leq_{A} T^{\sharp} S^{\sharp} ST$ $= (ST)^{\sharp} ST$

Then $(ST)^n$ is (A, n)-hyponormal operator.

Lemma 2.15. Let $T_k, S_k \in \mathcal{B}(\mathcal{H}), k = 1, 2$ and Let $A, B \in \mathcal{B}(\mathcal{H})^+$, such that $T_1 \ge_A T_2 \ge_A 0$ and $S_1 \ge_B S_2 \ge_B 0$, then $(T_1 \otimes S_1) \ge_{A \otimes B} (T_2 \otimes S_2) \ge_{A \otimes B} 0.$

Theorem 2.16. Let $A, B \in \mathcal{B}(\mathcal{H})^+$. If $T \in \mathcal{B}_A(\mathcal{H})$ and $S \in \mathcal{B}_B(\mathcal{H})$ are nonzero operators, then .

 $T \otimes S$ is $(A \otimes B, n)$ -power-hyponormal if and only if T is (A, n)-power-hyponormal and S is (B, n)-power-hyponormal.

Proof. Assume that T is (A, n)-power-hyponormal and S is (B, n)-power-hyponormal operators. Then

$$(T \otimes S)^{\sharp} (T \otimes S)^{n} = (T^{\sharp} \otimes S^{\sharp}) (T^{n} \otimes S^{n})$$

= $T^{\sharp} T^{n} \otimes S^{\sharp} S^{n}$
 $\geq_{A \otimes B} T^{n} T^{\sharp} \otimes S^{n} S^{\sharp} = (T \otimes S)^{n} (T \otimes S)^{\sharp}.$

Which implies that $T \otimes S$ is $(A \otimes B, n)$ -power-hyponormal operator.

Conversely, assume that $T \otimes S$ is $(A \otimes B, n)$ -power-hyponormal operator. We aim to show that T is (A, n)-power-hyponormal and S is (B, n)-power-hyponormal. Since $T \otimes S$ is a $(A \otimes A, n)$ -power-hyponormal operator, we obtain

$$(T \otimes S) \text{ is } (A \otimes B, n) \text{-power-hyponormal} \iff (T \otimes S)^{\sharp} (T \otimes S)^{n} \ge_{(A \otimes B, n)} (T \otimes S)^{n} (T \otimes S)^{\sharp} \\ \iff T^{\sharp} T^{n} \otimes S^{n} S^{\sharp} \ge_{A \otimes B} T^{n} T^{\sharp} \otimes S^{n} S^{\sharp}.$$

Then, there exists d > 0 such that

$$\begin{cases} d T^{\sharp}T^{n} \geq_{A} T^{n}T^{\sharp} \\ \text{and} \\ d^{-1}S^{\sharp}S^{n} \geq_{B} S^{n}S^{\sharp} \end{cases}$$

a simple computation shows that d = 1 and hence

$$T^{\sharp}T^n \ge_A T^n T^{\sharp}$$
 and $S^{\sharp}S^n \ge_B S^n S^{\sharp}$.

Therefore, *T* is (A, n)-power-hyponormal and *S* is (B, n)-power-hyponormal.

Proposition 2.17. If $T, S \in \mathcal{B}_A(\mathcal{H})$ are (A, n)-power-hyponormal, then $TS \otimes T, TS \otimes S, ST \otimes T$ and $ST \otimes S \in \mathcal{B}_{A \otimes A}(\mathcal{H} \otimes \mathcal{H})$ are $(A \otimes A, n)$ -power-hyponormal if the following assertions hold:

(1) $S^n T^n T^{\sharp} = T^n T^{\sharp} S^n$.

(2) $T^n S^{\sharp} S^n = S^{\sharp} S^n T^n$.

Proof. Assume that the conditions (1) and (2) are hold. Since T and S are (A, n)-power-hyponormal, we have

$$(TS \otimes T)^{\sharp} (TS \otimes T)^{n} = (S^{\sharp}T^{\sharp} \otimes T^{\sharp}) (T^{n}S^{n} \otimes T^{n}) = (S^{\sharp}T^{\sharp}T^{n}S^{n}) \otimes (T^{\sharp}T^{n}).$$

Since $T^{\sharp}T^n \geq_A T^n T^{\sharp}$ it follows from Lemma 2.1 see [11]. That

$$S^{\sharp}T^{\sharp}T^{n}S^{n} \geq_{A} S^{\sharp}T^{n}T^{\sharp}S^{n} = S^{\sharp}S^{n}T^{n}T^{\sharp} = T^{n}S^{\sharp}S^{n}T^{\sharp} \geq_{A} T^{n}S^{n}S^{\sharp}T^{\sharp} = (TS)^{n}(TS)^{\sharp}$$

Thus,

$$\begin{cases} S^{\sharp}T^{\sharp}T^{n}S^{n} \geq_{A} T^{n}S^{n}(TS)^{\sharp} \geq_{A} 0\\ \text{and}\\ T^{\sharp}T^{n} \geq_{A} T^{n}T^{\sharp} \geq_{A} 0 \end{cases}$$

Lemma 2.1 implies that

$$\left(TS\otimes T\right)^{\sharp}\left(TS\otimes T\right)^{n}\geq_{A\otimes A}\left(TS\right)^{n}\left(TS\right)^{\sharp}\otimes T^{n}T^{\sharp}=\left(TS\otimes T\right)^{n}\left(TS\otimes T\right)^{\sharp}.$$

In the same way, we may deduce the ($A \otimes A$, n)-power-hyponormality of $TS \otimes S$, $ST \otimes T$ and $ST \otimes S$.

Theorem 2.18. If $T \in \mathcal{B}_A(\mathcal{H})$ and $S \in \mathcal{B}_A(\mathcal{H})$ such that $\mathcal{N}(A)$ is invariant for T and S. Then :

S is (*A*, 1)-power-hyponormal then $T \boxplus S$ is ($A \otimes A$, 1)-power-hyponormal.

Proof. Firstly, observe that if $T^{\sharp}T \geq_A TT^{\sharp}$ and $S^{\sharp}S \geq_A SS^{\sharp}$ then we have following inequalities

$$(T \otimes I)^{\sharp} (T \otimes I) \ge_{A \otimes A} (T \otimes I) (T \otimes I)^{\sharp}$$

and

$$(S \otimes I)^{\sharp} (S \otimes I) \ge_{A \otimes A} (S \otimes I) (S \otimes I).$$

Taking into account that $TP_{\overline{\mathcal{R}}(A)} = P_{\overline{\mathcal{R}}(A)}T$ and $SP_{\overline{\mathcal{R}}(A)} = P_{\overline{\mathcal{R}}(A)}S$ we infer

$$(T \boxplus S)^{\sharp}(T \boxplus S) = (T \otimes I + I \otimes S)^{\sharp}(T \otimes I + I \otimes S)$$

$$= (T \otimes I)^{\sharp}(T \otimes I) + (T \otimes I)^{\sharp}(I \otimes S) + (I \otimes S)^{\sharp}(T \otimes I) + (I \otimes S)^{\sharp}(I \otimes S)$$

$$\geq_{A \otimes A} (T \otimes I)(T \otimes I)^{\sharp} + (I \otimes S)(T \otimes I)^{\sharp} + (T \otimes)(I \otimes S)^{\sharp} + (I \otimes S)(I \otimes S)^{\sharp}$$

$$\geq_{A \otimes A} (T \otimes I + I \otimes S)(T \otimes I + I \otimes S)^{\sharp}$$

$$\geq_{A \otimes A} (T \boxplus S)(T \boxplus S)^{\sharp},$$

then $T \boxplus S$ is $(A \otimes A, 1)$ -power-hyponormal.

Theorem 2.19. Let $T_1, T_2, ..., T_m$ be (A, n)-power-hyponormal operator in $\mathcal{B}_A(\mathcal{H})$. Then $(T_1 \oplus T_2 \oplus ..., \oplus T_m)$ is $(A \oplus A \oplus ... \oplus A, n)$ -power-hyponormal operators and $(T_1 \otimes T_2 \otimes ... \otimes T_m)$ is $(A \otimes A \otimes ... \otimes A, n)$ -power-hyponormal operators.

Proof. Since

$$(T_1 \oplus T_2 \oplus \dots \oplus T_m)^n (T_1 \oplus T_2 \oplus \dots \oplus T_m)^{\sharp} = (T_1^n \oplus T_2^n \oplus \dots \oplus T_m^n) (T_1^{\sharp} \oplus T_2^{\sharp} \oplus \dots \oplus T_m^{\sharp})$$
$$= T_1^n T_1^{\sharp} \oplus T_2^n T_2^{\sharp} \oplus \dots \oplus T_m^n T_m^{\sharp}$$
$$\leq_{A \oplus A \dots \oplus A} T_1^{\sharp} T_1^n \oplus T_2^{\sharp} T_2^n \oplus \dots \oplus T_m^{\sharp} T_m^n$$
$$= (T_1^{\sharp} \oplus T_2^{\sharp} \oplus \dots \oplus T_m^{\sharp}) (T_1^n \oplus T_2^n \oplus \dots \oplus T_m^n)$$
$$= (T_1 \oplus T_2 \oplus \dots \oplus T_m)^{\sharp} (T_1 \oplus T_2 \oplus \dots \oplus T_m)^n.$$

Then $(T_1 \oplus T_2 \oplus \oplus T_m)$ is $(A \oplus A \oplus ... \oplus A, n)$ -power-hyponormal operators. Now,

$$(T_1 \otimes T_2 \otimes \dots \otimes T_m)^n (T_1 \otimes T_2 \otimes \dots \otimes T_m)^{\sharp} = (T_1^n \otimes T_2^n \otimes \dots \otimes T_m^n) (T_1^{\sharp} \otimes T_2^{\sharp} \otimes \dots \otimes T_m^{\sharp})$$

$$= T_1^n T_1^{\sharp} \otimes T_2^n T_2^{\sharp} \otimes \dots \otimes T_m^n T_m^{\sharp}$$

$$\leq_{A \otimes A \dots \otimes A} \quad T_1^{\sharp} T_1^n \oplus T_2^{\sharp} T_2^n \otimes \dots \otimes T_m^{\sharp} T_m^n$$

$$= (T_1^{\sharp} \otimes T_2^{\sharp} \otimes \dots \otimes T_m) (T_1^n \otimes T_2^n \otimes \dots \oplus T_m^n)$$

$$= (T_1 \otimes T_2 \otimes \dots \otimes T_m)^{\sharp} (T_1 \otimes T_2 \otimes \dots \otimes T_m)^n.$$

Then $(T_1 \otimes T_2 \otimes ... \otimes T_m)$ is $(A \otimes A \otimes ... \otimes A, n)$ -power-hyponormal operators. \Box

Proposition 2.20. If T is (A, 2)-power-hyponormal and T is idempotent. Then T is (A, 1)-power-hyponormal operator

Proof. Since *T* is (*A*, 2)-power-hyponormal operator, then $T^2T^{\sharp} \leq_A T^{\sharp}T^2$ since *T* is idempotent $T^2 = T$, wich implies $TT^{\sharp} \leq_A T^{\sharp}T$ Thus *T* is is (*A*, 1)-power-hyponormal operator \Box

Proposition 2.21. If T is (A, 3)-power-hyponormal and T is idempotent. Then T is (A, 2)-power-hyponormal operator

Proof. Since *T* is (*A*, 2)-power-hyponormal operator, then $T^3T^{\sharp} \leq_A T^{\sharp}T^3$ since *T* is idempotent $T^2 = T$, wich implies $TT^{\sharp} \leq_A T^{\sharp}T$ Thus *T* is is (*A*, 1)-power-hyponormal operator \Box

Proposition 2.22. If T, S are (A, 2)-power-hyponormal operators, such that $TS^{\sharp} = S^{\sharp}T$ and TS + ST = 0, then ST and S + T are (A, 2)-power-normal operator.

Proof. Since ST + TS = 0, hence $S^2T^2 = T^2S^2$, so $(S + T)^2 = S^2 + T^2$.

$$(S+T)^{2} (S+T)^{\sharp} = (S^{2} + T^{2}) (S^{\sharp} + T^{\sharp})$$

= $S^{2}S^{\sharp} + S^{2}T^{\sharp} + T^{2}S^{\sharp} + T^{2}T^{\sharp}$
= $S^{2}S^{\sharp} + T^{\sharp}S^{2} + S^{\sharp}T^{2} + T^{2}T^{\sharp}$
 $\leq_{A} S^{\sharp}S^{2} + T^{\sharp}S^{2} + S^{\sharp}T^{2} + T^{\sharp}T^{2}$
= $(S+T)^{\sharp} (S+T)^{2}$

Now,

$$(ST)^{2} (ST)^{\sharp} = S^{2}T^{2}T^{\sharp}S^{\sharp}$$
$$\leq_{A} S^{2}T^{\sharp}T^{2}S^{\sharp}$$
$$= T^{\sharp}S^{2}S^{\sharp}T^{2}$$
$$\leq_{A} T^{\sharp}S^{\sharp}S^{2}T^{2}$$
$$= (ST)^{\sharp} (ST)^{2}$$

Hence $(ST)^2 (ST)^{\sharp} \leq_A (ST)^{\sharp} (ST)^2$. Then *ST* is an (*A*, 2)-power-hyponormal operator. \Box

Example 2.23. Let
$$T = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $S = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{B}(\mathbb{C}^2)$. A simple computation shows that
$$T^{\sharp} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, S^{\sharp} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix},.$$

Then T is (A, 2)-power-hyponormal operator, but

$$\left\langle \left(T^{\sharp}T^{2}-T^{2}T^{\sharp}\right)\left(\begin{array}{c}u\\v\end{array}\right)+\left(\begin{array}{c}u\\v\end{array}\right)\right\rangle _{A}=0.$$

For all $(u, v) \in (\mathbb{C}^2)$ and *S* is (A, 2)-power-hyponormal operator, but

$$\left\langle \left(S^{\sharp}S^{2} - S^{2}S^{\sharp} \right) \left(\begin{array}{c} u \\ v \end{array} \right) \mid \left(\begin{array}{c} u \\ v \end{array} \right) \right\rangle_{A} = 0.$$

For all $(u, v) \in (\mathbb{C}^2)$ Such that TS + ST = 0 and $TS^{\sharp} \neq S^{\sharp}T$ but S + T and ST are (A, 2)-power-hyponormal operator the following example shows that proposition 8.14 is not necessarily true if $TS^{\sharp} \neq S^{\sharp}T$

Proposition 2.24. Let $T \in \mathcal{B}_A(\mathcal{H})$. If T is (A, n)-power-hyponormal, then T is (A, 2)-power-hyponormal operator

Proposition 2.25. Let $T, S \in \mathcal{B}_A(\mathcal{H})$ are commuting (A, n)-power-hyponormal operators, such that $TS^{\sharp} = S^{\sharp}T$ and $(T + S)^{\sharp}$ is commutes with

$$\sum_{1 \le p \le n-1} \binom{n}{p} \left(T^p S^{n-p} \right).$$

Then (T + S) is an (A, n)-power-hyponormal

Proof. Since

$$(T+S)^{n} (T+S)^{\sharp} = \left[\sum_{0 \le p \le n} {n \choose p} (T^{p} S^{n-p}) \right] (T+S)^{\sharp}$$

$$= S^{n} S^{\sharp} + \sum_{1 \le p \le n-1} {n \choose p} (T^{p} S^{n-p}) (T+S)^{\sharp} + T^{n} S^{\sharp} + S^{n} T^{\sharp} + T^{n} T^{\sharp}$$

$$= S^{n} S^{\sharp} + \sum_{1 \le p \le n-1} {n \choose p} (T^{p} S^{n-p}) (T+S)^{\sharp} + S^{\sharp} T^{n} + T^{\sharp} S^{n} + T^{n} T^{\sharp}$$

$$\le_{A} S^{\sharp} S^{n} + (T+S)^{\sharp} \sum_{1 \le p \le n-1} {n \choose p} (T^{p} S^{n-p}) + S^{\sharp} T^{n} + T^{\sharp} S^{n} + T^{n} T^{\sharp}$$

$$\le_{A} (T+S)^{\sharp} \left[\sum_{0 \le p \le n} {n \choose p} (T^{p} S^{n-p}) \right]$$

$$= (T+S)^{\sharp} (T+S)^{n}.$$

Then (T + S) is an (A, n)-power-hyponormal. \Box

References

- A.Benali, On the class of *n*-Real Power Positive Operators On A Hilbert Space .Functional Analysis, Approximation and Computation 10 (2) (2018), 23-31.
- [2] A.Aluthge, On *p*-hyponormal Operators for 0 , Integral Equations Operators Theory , 13(1990), 307-315.
- [3] A.Benali and Ould Ahmed Mahmoud Sid Ahmed. (α, β)-A-Normal Operators In Semi-Hilbertian Spaces .Afrika Matematika ISSN 1012-9405, (2019).
- [4] A.Benali, On The Class Of (A,n)-Real Power Positive Operators In Semi-Hilbertian Space (Soumis).
- [5] A. Brown, On a class of operators, Proc. Amer. Math. Soc, 4 (1953), 723-728.
- [6] A. A.S. Jibril, On *n*-Power Normal Operators. The Journal for Science and Engenering . Volume 33, Number 2A. (2008) 247-251.
- [7] A. A.S. Jibril, On 2-Normal Operators, Dirasat, Vol.(23) No.2.
- [8] A. A. S, Jibril, On subprojection sperators, International Mathematical Journal, 4(3), (2003), pp. 229–238.
- [9] Dr.T.Veluchamy, and K.M.Manikandan, n-power-Quasi Normal operators on the Hilbert Space IOSR Journal of Mathematics .e-ISSN 2278-5728, p-ISSN: 2319-765WX. Volume 12, Issue 1Ver. IV 1 (jan. Feb2016), pp 06-09.
- [10] M. H. Mortad, On The Normality of the Sum of Two Normal Operators. Complexe Analysis And Operator Theory .Volume 6, (2012), pp. 105-112.
- [11] M.Guesba and M.Nadir, On *n*-Power-hponormal operators, Global Journal Of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number1 (2016), pp. 473-479.
- [12] M.Guesba and M.Nadir, On operators for wich T² ≥ −T^{*2}. The Australian Journal of Mathematical Analysis and Applications.Volume 13, Issue 1, Article 6, pp. 1–5, 2016.
- [13] Ould Ahmed Mahmoud Sid Ahmed, On the class of n-power quasi-normal operators on Hilbert spaces, Bull. Math. Anal. Appl., 3(2), (2011), 213–228.
- [14] Ould Ahmed Mahmoud Sid Ahmed, On Some Normality-Like Properties and Bishops Property (β) for a Class of Operators on Hilbert Spaces Spaces, International Journal of Mathematics and Mathematical Sciences, (2012). doi:10.1155/2012/975745.
- [15] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali, Hyponormal And k-Quasi-hyponormal Operators On Semi-Hilbertian Spaces, The Australian Journal of Mathematical Analysis and Applications, Received 13 April 2016, accepted 25 May 2016. published 20 Juine 2016.
- [16] Riyandh R. Al-Mosawi and Hadeel A. Hassan A Note on Normal and n-Normal Operators (2003).
- [17] Sidi Hamidou Jah, Class Of (A, n)-Power-Quasi-hyponormal Operators In Semi-Hilbertian Spaces, International Journal of Pure and Applied Mathematics. Volume 93 No.1 (2014), 61-83.
- [18] S.Panayappan and N.Sivamani , On n-binormal operators Gen. Math. Notes, Volume 10, No. 2, June 2012, PP. 1-8.