Class of (A, n)-power-hyponormal operators in semi-hilbertian space

Cherifa Chellali ${ }^{\text {a }}$, Abdelkader Benali ${ }^{\text {b }}$
${ }^{a}$ The Higher School of Economics Oran, Algeria.
${ }^{b}$ Faculty of The Exact sciences And computer, Mathematics Department, University of Hassiba Benbouali, Chlef Algeria. B.P. 151 Hay Essalem, chlef 02000, Algeria

Abstract

In this paper, the concept of n-power- hyponormal operators on a Hilbert space defined by Messaoud Guesba and Mostefa Nadir in [11] is generalized when an additional semi-inner product is considered. This new concept is described by means of oblique projections. For a Hilbert space operator $T \in B(H)$ is (A, n)-power-hyponormal operator for some positive operator A and for some positive integer n if $$
T^{\sharp} T^{n}-T^{n} T^{\sharp} \geq_{A} 0, n=1,2, \ldots .
$$

1. Introduction

A bounded linear operator T on a complex Hilbert space is n-hyponormal operator if $T^{*} T^{n}-T^{n} T^{*} \geq 0$. The class of p-hyponormal operator was introduced and studied by A. Aluthge [2], from the definition, it is easily seen that this class contrains hyponormal operators, in [8] the authors Messaoud Guesba and Mostefa Nadir introduced the class of n-power-hyponormal operators and study some proprietes of such class for different values of the parameter n, in particular for $n=2, n=3$ in Hilbert space.
The propose of this paper is to study the class of (A, n)-power-hyponormal operators in semi-hilbertian spaces.

2. (A, n)-power-hyponormal operators

Definition 2.1. An operator $T \in \mathcal{B}_{A}(H)$ is said to be (A, n)-power-hyponormal operator for a positive integer n, if

$$
T^{n} T^{\sharp} \leq_{A} T^{\sharp} T^{n}
$$

We denote the set of all (A, n)-power-hyponormal operators by $[n H]_{A}$

[^0]Remark 2.2. Clearly $n=1$, then $(A, 1)$-power-hyponormal operator is precisely A-hyponormal operator.
Definition 2.3. An operator $T \in \mathcal{B}_{A}(\mathcal{H})$ is said to be (A, n)-power-hyponormal if $T^{\sharp} T^{n}-T^{n} T^{\sharp}$ is A-positive i.e., $T^{\sharp} T^{n}-T^{n} T^{\sharp} \geq_{A} 0$ or equivalently

$$
\left\langle\left(T^{\sharp} T^{n}-T^{n} T^{\sharp}\right) u \mid u\right\rangle_{A} \geq 0 \text { for all } u \in \mathcal{H} .
$$

Example 2.4. Let $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right), S=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right), A=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right) \in \mathcal{B}\left(\mathbb{R}^{2}\right)$. A simple computation shows that

$$
T^{\sharp}=\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right), S^{\sharp}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right), .
$$

Then T is not $(A, 2)$-power-hyponormal operator, because

$$
\left\langle\left.\left(T^{\sharp} T^{2}-T^{2} T^{\sharp}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle_{A}=-2 u^{2}-2 v^{2} \leq 0 .
$$

For all $(u, v) \in\left(\mathbb{R}^{2}\right)$
and S is $(A, 1)$-power-hyponormal operator, because

$$
\left\langle\left.\left(S^{\sharp} S-S S^{\sharp}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle_{A}=u^{2}+v^{2} \geq 0 .
$$

For all $(u, v) \in\left(\mathbb{R}^{2}\right)$
Proposition 2.5. If $S, T \in B_{A}(H)$ are unitarily equivalent and if T is (A, n)-power-hyponormal operators then so is S

Proof. Let T be an (A, n)-power-hyponormal operator and S be unitary equivalent of T. Then there exists unitary operator U such that $S=U T U^{\sharp}$ so $S^{n}=U T^{n} U^{\sharp}$
We have

$$
\begin{aligned}
S^{n} S^{\sharp} & =U T^{n} U^{\sharp}\left(U T U^{\sharp}\right)^{\sharp} \\
& =U T^{n} U^{\sharp} U T^{\sharp} U^{\sharp} \\
& =U T^{n} P_{\overline{\mathcal{R}(A)}} T^{\sharp} U^{\sharp} \\
& =U T^{n} T^{\sharp} U^{\sharp} \\
& \leq U T^{\sharp} T^{n} U^{\sharp} \\
& =S^{\sharp} S^{n}
\end{aligned}
$$

Hence, $S^{n} S^{\sharp} \leq{ }_{A} S^{\sharp} S^{n}$
Theorem 2.6. If $S, T \in B_{A}(H)$ are commuting (A, n)-power-hyponormal operators and $S T^{\sharp}=T^{\sharp} S$ is an (A, n) -power-hyponormal operators

Proof. Since $S T=T S$, so $S^{n} T^{n}=(S T)^{n}$ and $S^{n} T^{\sharp}=T^{\sharp} S^{n}$.
Now,
$S T^{\sharp}=T^{\sharp} S \Rightarrow T S^{\sharp}=S^{\sharp} T$

Then $T^{n} S^{\sharp}=S^{\sharp} T^{n}$.
We have

$$
\begin{aligned}
&(S T)^{n}(S T)^{\sharp}=S^{n} T^{n} T^{\sharp} S^{\sharp} \\
& \leq_{A} S^{n} T^{\sharp} T^{n} S^{\sharp} \\
&= \\
& T^{\sharp} S^{n} S^{\sharp} T^{n} \\
& \leq_{A} \quad T^{\sharp} S^{\sharp} S^{n} T^{n}
\end{aligned}
$$

Hence
$(S T)^{n}(S T)^{\sharp} \leq_{A}(S T)^{\sharp}(S T)^{n}$.
Then $S T$ is an (A, n)-power-hyponormal operator.
Proposition 2.7. Let $T \in B_{A}(H)$ be an (A, n)-power-hyponormal operator. Then T^{\sharp} is co- (A, n)-power-hyponormal operator

Proof. Since T is (A, n)-power-hyponormal operator. We have

$$
\begin{aligned}
T^{n} T^{\sharp} \leq_{A} T^{\sharp} T^{n} \Rightarrow\left(T^{\sharp} T^{n}\right)^{n} \leq_{A}\left(T^{n} T^{\sharp}\right)^{n} & \Rightarrow\left(T^{\sharp}\right)^{\sharp}\left(T^{n}\right)^{\sharp} \leq_{A}\left(T^{n}\right)^{\sharp}\left(T^{\sharp}\right)^{\sharp} \\
& \Rightarrow T\left(T^{n}\right)^{\sharp} \leq_{A}\left(T^{n}\right)^{\sharp} T \\
& \Rightarrow\left(T^{n}\right)^{\sharp} T \geq_{A} T\left(T^{n}\right)^{\sharp} .
\end{aligned}
$$

Hence, T^{\sharp} is co- (A, n)-power-hyponormal operator.
Theorem 2.8. If T, T^{\sharp} are two (A, n)-power-hyponormal operator, then T^{\sharp} is an (A, n)-power-hyponormal operator.
Proposition 2.9. If T is ($A, 3$)-power-hyponormal operator and $T^{2}=-\left(T^{\sharp}\right)^{2}$. Tthen T is $(A, 3)$-power-normal operator.

Proof. Since $T^{3} T^{\sharp}=T T^{2} T^{\sharp}=-T\left(T^{\sharp}\right)^{3}$
and
$T^{\sharp} T^{3}=T^{\sharp} T^{2} T=-\left(T^{\sharp}\right)^{3} T$
T is ($A, 3$)-power-hyponormal, then

$$
\begin{aligned}
T^{3} T^{\sharp} \leq_{A} T^{\sharp} T^{3} & \Rightarrow-T\left(T^{\sharp}\right)^{3} \leq_{A}-\left(T^{\sharp}\right)^{3} T \\
& \Rightarrow T\left(T^{\sharp}\right)^{3} \geq_{A}\left(T^{\sharp}\right)^{3} T \\
& \Rightarrow\left(T\left(T^{\sharp}\right)^{3}\right)^{\sharp} \geq_{A}\left(\left(T^{\sharp}\right)^{3} T\right)^{\sharp} \\
& \Rightarrow T^{3} T^{\sharp} \geq_{A} T^{\sharp} T^{3} .
\end{aligned}
$$

Hence $T^{3} T^{\sharp}=T^{\sharp} T^{3}$.
Proposition 2.10. If T is $(A, 4)$-power-hyponormal and T is skew-normal operator, then T is $(A, 4)$-normal operator.
Proof. T is skew-normal operator, then $\left(T^{\sharp}\right)^{2}=T^{2}$. Since
$T^{4} T^{\sharp}=T^{2} T^{2} T^{\sharp}=\left(T^{\sharp}\right)^{5}$
and
$T^{\sharp} T^{4}=T^{\sharp} T^{2} T^{2}=\left(T^{\sharp}\right)^{5}$.
Hence $T^{4} T^{\sharp}=T^{\sharp} T^{4}$.

Example 2.11. Let $T=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right), A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \in \mathcal{B}\left(\mathbb{C}^{2}\right)$. A simple computation shows that

$$
T^{\sharp}=\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right)
$$

Then T is $(A, 2)$-power-hyponormal, but is not $(A, 3)$-power-hyponormal
Example 2.12. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $T=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & -1\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{3}\right)$. It easy to check that

$$
A \geq 0, \mathcal{R}\left(T^{*} A\right) \subset \mathcal{R}(A) \text { and } T^{\sharp}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & -1
\end{array}\right), T^{\sharp} T \neq T T^{\sharp} \text { and }\|T u\|_{A} \not \geq\left\|T^{\sharp} u\right\|_{A} .
$$

Proposition 2.13. Let $T, S \in \mathcal{B}_{A}(\mathcal{H})$ are $(A, 1)$-hyponormal operator operators Then If. $S\left(T^{\sharp} T\right)=\left(T^{\sharp} T\right) S$ and $T\left(S^{\sharp} S\right)=\left(S^{\sharp} S\right) T$ then $S T$ and $T S$ are $(A, 1)$-power-hyponormal operators.
Proof. We have

$$
\begin{aligned}
(S T)(S T)^{\#} & =S T T^{\sharp} S^{\sharp} \\
& =T T^{\sharp} S S^{\sharp} \\
& \leq_{A} T^{\sharp} T S S^{\sharp} \\
& \leq_{A} T^{\sharp} S S^{\sharp} T \\
& \leq_{A} T^{\sharp} S^{\sharp} S T \\
& =(S T)^{\sharp} S T
\end{aligned}
$$

Then $S T$ is $(A, 1)$-power-hyponormal operator.
Now,

$$
\begin{aligned}
& T S(T S)^{\sharp}=T S S^{\sharp} T^{\sharp} \\
&=T T^{\sharp} S S^{\sharp} \\
& \leq_{A} \\
& T^{\sharp} T S S^{\sharp} \\
& T^{\sharp} S S^{\sharp} T \\
& \leq_{A} T^{\sharp} S^{\sharp} S T \\
&=(S T)^{\sharp} S T
\end{aligned}
$$

Then $S T$ is $(A, 1)$-power-hyponormal operator.
this proposition remains true for any natural numbers n
Proposition 2.14. Let $T, S \in \mathcal{B}_{A}(\mathcal{H})$ are (A, n)-power-hyponormal operator operators Then If. $S^{n}\left(T^{n} T^{\sharp}\right)=\left(T^{n} T^{\sharp}\right) S^{n}$ and $T^{n}\left(S^{\sharp} S^{n}\right)=\left(S^{\sharp} S^{n}\right) T^{n}$ then $(S T)^{n}$ and is $(T S)^{n}$ are (A, n)-power-hyponormal operators.
Proof. We have

$$
\begin{aligned}
(S T)^{n}(S T)^{\sharp} & =S^{n} T^{n} T^{\sharp} S^{\sharp} \\
& =T^{n} T^{\sharp} S^{n} S^{\sharp} \\
& \leq_{A} T^{\sharp} T^{n} S^{\sharp} S^{n} \\
& \leq_{A} T^{\sharp} S^{\sharp} S^{n} T^{n} \\
& \leq_{A} T^{\sharp} S^{\sharp}(S T)^{n} \\
& =(S T)^{\sharp}(S T)^{n}
\end{aligned}
$$

Then $(S T)^{n}$ is (A, n)-power-hyponormal operator.
Now,

$$
\begin{aligned}
(T S)^{n}(T S)^{\sharp} & =T^{n} S^{n} S^{\sharp} T^{\sharp} \\
& =T^{n} T^{\sharp} S^{n} S^{\sharp} \\
& \leq_{A} T^{\sharp} T^{n} S^{\sharp} S^{n} \\
& \leq_{A} T^{\sharp} S S^{\sharp} T \\
& \leq_{A} T^{\sharp} S^{\sharp} S T \\
& =(S T)^{\sharp} S T
\end{aligned}
$$

Then $(S T)^{n}$ is (A, n)-hyponormal operator.

Lemma 2.15. Let $T_{k}, S_{k} \in \mathcal{B}(\mathcal{H}), k=1,2$ and Let $A, B \in \mathcal{B}(\mathcal{H})^{+}$, such that $T_{1} \geq_{A} T_{2} \geq_{A} 0$ and $S_{1} \geq_{B} S_{2} \geq_{B} 0$, then

$$
\left(T_{1} \otimes S_{1}\right) \geq_{A \otimes B}\left(T_{2} \otimes S_{2}\right) \geq_{A \otimes B} 0
$$

Theorem 2.16. Let $A, B \in \mathcal{B}(\mathcal{H})^{+}$. If $T \in \mathcal{B}_{A}(\mathcal{H})$ and $S \in \mathcal{B}_{B}(\mathcal{H})$ are nonzero operators, then .
$T \otimes S$ is $(A \otimes B, n)$-power-hyponormal if and only if T is (A, n)-power-hyponormal and S is (B, n)-power-hyponormal.

Proof. Assume that T is (A, n)-power-hyponormal and S is (B, n)-power-hyponormal operators. Then

$$
\begin{aligned}
(T \otimes S)^{\sharp}(T \otimes S)^{n} & =\left(T^{\sharp} \otimes S^{\sharp}\right)\left(T^{n} \otimes S^{n}\right) \\
& =T^{\sharp} T^{n} \otimes S^{\sharp} S^{n} \\
& \geq_{A \otimes B} \quad T^{n} T^{\sharp} \otimes S^{n} S^{\sharp}=(T \otimes S)^{n}(T \otimes S)^{\sharp}
\end{aligned}
$$

Which implies that $T \otimes S$ is $(A \otimes B, n)$-power-hyponormal operator.
Conversely, assume that $T \otimes S$ is $(A \otimes B, n)$-power-hyponormal operator.We aim to show that T is (A, n) -power-hyponormal and S is (B, n)-power-hyponormal. Since $T \otimes S$ is a $(A \otimes A, n)$-power-hyponormal operator, we obtain

$$
\begin{aligned}
(T \otimes S) \text { is }(A \otimes B, n) \text {-power-hyponormal } & \Longleftrightarrow(T \otimes S)^{\sharp}(T \otimes S)^{n} \geq_{(A \otimes B, n)}(T \otimes S)^{n}(T \otimes S)^{\sharp} \\
& \Longleftrightarrow T^{\sharp} T^{n} \otimes S^{n} S^{\sharp} \geq_{A \otimes B} T^{n} T^{\sharp} \otimes S^{n} S^{\sharp} .
\end{aligned}
$$

Then, there exists $d>0$ such that

$$
\left\{\begin{array}{l}
d T^{\sharp} T^{n} \geq_{A} T^{n} T^{\sharp} \\
\text { and } \\
d^{-1} S^{\sharp} S^{n} \geq_{B} S^{n} S^{\sharp}
\end{array}\right.
$$

a simple computation shows that $d=1$ and hence

$$
T^{\sharp} T^{n} \geq_{A} T^{n} T^{\sharp} \quad \text { and } \quad S^{\sharp} S^{n} \geq_{B} S^{n} S^{\sharp} .
$$

Therefore, T is (A, n)-power-hyponormal and S is (B, n)-power-hyponormal.

Proposition 2.17. If $T, S \in \mathcal{B}_{A}(\mathcal{H})$ are (A, n)-power-hyponormal, then $T S \otimes T, T S \otimes S, S T \otimes T$ and $S T \otimes S \in$ $\mathcal{B}_{A \otimes A}(\mathcal{H} \bar{\otimes} \mathcal{H})$ are $(A \otimes A, n)$-power-hyponormal if the following assertions hold:
(1) $S^{n} T^{n} T^{\sharp}=T^{n} T^{\sharp} S^{n}$.
(2) $T^{n} S^{\sharp} S^{n}=S^{\sharp} S^{n} T^{n}$.

Proof. Assume that the conditions (1) and (2) are hold. Since T and S are (A, n)-power-hyponormal, we have

$$
(T S \otimes T)^{\sharp}(T S \otimes T)^{n}=\left(S^{\sharp} T^{\sharp} \otimes T^{\sharp}\right)\left(T^{n} S^{n} \otimes T^{n}\right)=\left(S^{\sharp} T^{\sharp} T^{n} S^{n}\right) \otimes\left(T^{\sharp} T^{n}\right) .
$$

Since $T^{\sharp} T^{n} \geq_{A} T^{n} T^{\sharp}$ it follows from Lemma 2.1 see [11].
That

$$
S^{\sharp} T^{\sharp} T^{n} S^{n} \geq_{A} S^{\sharp} T^{n} T^{\sharp} S^{n}=S^{\sharp} S^{n} T^{n} T^{\sharp}=T^{n} S^{\sharp} S^{n} T^{\sharp} \geq_{A} T^{n} S^{n} S^{\sharp} T^{\sharp}=(T S)^{n}(T S)^{\sharp}
$$

Thus,

$$
\left\{\begin{array}{l}
S^{\sharp} T^{\sharp} T^{n} S^{n} \geq_{A} T^{n} S^{n}(T S)^{\sharp} \geq_{A} 0 \\
\text { and } \\
T^{\sharp} T^{n} \geq_{A} T^{n} T^{\sharp} \geq_{A} 0
\end{array}\right.
$$

Lemma 2.1 implies that

$$
(T S \otimes T)^{\sharp}(T S \otimes T)^{n} \geq_{A \otimes A}(T S)^{n}(T S)^{\sharp} \otimes T^{n} T^{\sharp}=(T S \otimes T)^{n}(T S \otimes T)^{\sharp} .
$$

In the same way, we may deduce the $(A \otimes A, n)$-power-hyponormality of $T S \otimes S, S T \otimes T$ and $S T \otimes S$.
Theorem 2.18. If $T \in \mathcal{B}_{A}(\mathcal{H})$ and $S \in \mathcal{B}_{A}(\mathcal{H})$ such that $\mathcal{N}(A)$ is invariant for T and S. Then :
S is $(A, 1)$-power-hyponormal then $T \boxplus S$ is $(A \otimes A, 1)$-power-hyponormal.
Proof. Firstly, observe that if $T^{\sharp} T \geq_{A} T T^{\sharp}$ and $S^{\sharp} S \geq_{A} S S^{\sharp}$ then we have following inequalities

$$
(T \otimes I)^{\sharp}(T \otimes I) \geq_{A \otimes A}(T \otimes I)(T \otimes I)^{\sharp}
$$

and

$$
(S \otimes I)^{\sharp}(S \otimes I) \geq_{A \otimes A}(S \otimes I)(S \otimes I) .
$$

Taking into account that $T P_{\overline{\mathcal{R}}(A)}=P_{\overline{\mathcal{R}(A)}} T$ and $S P_{\overline{\mathcal{R}(A)}}=P_{\overline{\mathcal{R}}(A)} S$ we infer

$$
\begin{aligned}
(T \boxplus S)^{\sharp}(T \boxplus S) & =(T \otimes I+I \otimes S)^{\sharp}(T \otimes I+I \otimes S) \\
& =(T \otimes I)^{\sharp}(T \otimes I)+(T \otimes I)^{\sharp}(I \otimes S)+(I \otimes S)^{\sharp}(T \otimes I)+(I \otimes S)^{\sharp}(I \otimes S) \\
& \geq_{A \otimes A}(T \otimes I)(T \otimes I)^{\sharp}+(I \otimes S)(T \otimes I)^{\sharp}+(T \otimes)(I \otimes S)^{\sharp}+(I \otimes S)(I \otimes S)^{\sharp} \\
& \geq_{A \otimes A}(T \otimes I+I \otimes S)(T \otimes I+I \otimes S)^{\sharp} \\
& \geq_{A \otimes A} \quad(T \boxplus S)(T \boxplus S)^{\sharp},
\end{aligned}
$$

then $T \boxplus S$ is $(A \otimes A, 1)$-power-hyponormal.

Theorem 2.19. Let $T_{1}, T_{2}, \ldots ., T_{m}$ be (A, n)-power-hyponormal operator in $\mathcal{B}_{A}(\mathcal{H})$. Then $\left(T_{1} \oplus T_{2} \oplus \ldots . \oplus T_{m}\right)$ is $(A \oplus A \oplus \ldots \oplus A, n)$-power-hyponormal operators and $\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)$ is $(A \otimes A \otimes \ldots \otimes A, n)$-power-hyponormal operators.

Proof. Since

$$
\begin{aligned}
\left(T_{1} \oplus T_{2} \oplus \ldots . \oplus T_{m}\right)^{n}\left(T_{1} \oplus T_{2} \oplus \ldots . \oplus T_{m}\right)^{\sharp} & =\left(T_{1}^{n} \oplus T_{2}^{n} \oplus \ldots . \oplus T_{m}^{n}\right)\left(T_{1}^{\sharp} \oplus T_{2}^{\sharp} \oplus \ldots . \oplus T_{m}^{\sharp}\right) \\
& =T_{1}^{n} T_{1}^{\sharp} \oplus T_{2}^{n} T_{2}^{\sharp} \oplus \ldots \oplus T_{m}^{n} T_{m}^{\sharp} \\
\leq_{A \oplus A \ldots \oplus A} & T_{1}^{\sharp} T_{1}^{n} \oplus T_{2}^{\sharp} T_{2}^{n} \oplus \ldots . \oplus T_{m}^{\sharp} T_{m}^{n} \\
& =\left(T_{1}^{\sharp} \oplus T_{2}^{\sharp} \oplus \ldots . \oplus T_{m}^{\sharp}\right)\left(T_{1}^{n} \oplus T_{2}^{n} \oplus \ldots \oplus T_{m}^{n}\right) \\
& =\left(T_{1} \oplus T_{2} \oplus \ldots . \oplus T_{m}\right)^{\sharp}\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)^{n} .
\end{aligned}
$$

Then $\left(T_{1} \oplus T_{2} \oplus \ldots \oplus T_{m}\right)$ is $(A \oplus A \oplus \ldots \oplus A, n)$-power-hyponormal operators.
Now,

$$
\begin{aligned}
\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{n}\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{\sharp} & =\left(T_{1}^{n} \otimes T_{2}^{n} \otimes \ldots \otimes T_{m}^{n}\right)\left(T_{1}^{\sharp} \otimes T_{2}^{\sharp} \otimes \ldots \otimes T_{m}^{\sharp}\right) \\
& =T_{1}^{n} T_{1}^{\sharp} \otimes T_{2}^{n} T_{2}^{\sharp} \otimes \ldots \otimes T_{m}^{n} T_{m}^{\sharp} \\
\leq A \otimes A \ldots \otimes A & T_{1}^{\sharp} T_{1}^{n} \oplus T_{2}^{\sharp} T_{2}^{n} \otimes \ldots \otimes T_{m}^{\sharp} T_{m}^{n} \\
& =\left(T_{1}^{\sharp} \otimes T_{2}^{\sharp} \otimes \ldots \otimes T_{m}^{\sharp}\right)\left(T_{1}^{n} \otimes T_{2}^{n} \otimes \ldots \oplus T_{m}^{n}\right) \\
& =\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{\sharp}\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)^{n} .
\end{aligned}
$$

Then $\left(T_{1} \otimes T_{2} \otimes \ldots \otimes T_{m}\right)$ is $(A \otimes A \otimes \ldots \otimes A, n)$-power-hyponormal operators.
Proposition 2.20. If T is $(A, 2)$-power-hyponormal and T is idempotent. Then T is $(A, 1)$-power-hyponormal operator
Proof. Since T is $(A, 2)$-power-hyponormal operator, then
$T^{2} T^{\sharp} \leq_{A} T^{\sharp} T^{2}$
since T is idempotent $T^{2}=T$, wich implies
$T T^{\sharp} \leq{ }_{A} T^{\sharp} T$
Thus T is is $(A, 1)$-power-hyponormal operator
Proposition 2.21. If T is $(A, 3)$-power-hyponormal and T is idempotent. Then T is $(A, 2)$-power-hyponormal operator
Proof. Since T is $(A, 2)$-power-hyponormal operator, then
$T^{3} T^{\sharp} \leq_{A} T^{\sharp} T^{3}$
since T is idempotent $T^{2}=T$, wich implies
$T T^{\sharp} \leq_{A} T^{\sharp} T$
Thus T is is ($A, 1$)-power-hyponormal operator
Proposition 2.22. If T, S are $(A, 2)$-power-hyponormal operators, such that $T S^{\sharp}=S^{\sharp} T$ and $T S+S T=0$, then $S T$ and $S+T$ are $(A, 2)$-power-normal operator.

Proof. Since $S T+T S=0$, hence $S^{2} T^{2}=T^{2} S^{2}$, so $(S+T)^{2}=S^{2}+T^{2}$.

$$
\begin{aligned}
(S+T)^{2}(S+T)^{\sharp} & =\left(S^{2}+T^{2}\right)\left(S^{\sharp}+T^{\sharp}\right) \\
& =S^{2} S^{\sharp}+S^{2} T^{\sharp}+T^{2} S^{\sharp}+T^{2} T^{\sharp} \\
& =S^{2} S^{\sharp}+T^{\sharp} S^{2}+S^{\sharp} T^{2}+T^{2} T^{\sharp} \\
& \leq_{A} S^{\sharp} S^{2}+T^{\sharp} S^{2}+S^{\sharp} T^{2}+T^{\sharp} T^{2} \\
& =(S+T)^{\sharp}(S+T)^{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
(S T)^{2}(S T)^{\sharp} & =S^{2} T^{2} T^{\sharp} S^{\sharp} \\
& \leq_{A} S^{2} T^{\sharp} T^{2} S^{\sharp} \\
& =T^{\sharp} S^{2} S^{\sharp} T^{2} \\
& \leq_{A} T^{\sharp} S^{\sharp} S^{2} T^{2} \\
& =(S T)^{\sharp}(S T)^{2}
\end{aligned}
$$

Hence

$(S T)^{2}(S T)^{\sharp} \leq_{A}(S T)^{\sharp}(S T)^{2}$.
Then $S T$ is an ($A, 2$)-power-hyponormal operator.

Example 2.23. Let $T=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), S=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right), A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{2}\right)$. A simple computation shows that

$$
T^{\sharp}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), S^{\sharp}=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right),
$$

Then T is $(A, 2)$-power-hyponormal operator, but

$$
\left\langle\left.\left(T^{\sharp} T^{2}-T^{2} T^{\sharp}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle_{A}=0 .
$$

For all $(u, v) \in\left(\mathbb{C}^{2}\right)$
and S is $(A, 2)$-power-hyponormal operator, but

$$
\left\langle\left.\left(S^{\sharp} S^{2}-S^{2} S^{\sharp}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle_{A}=0 .
$$

For all $(u, v) \in\left(\mathbb{C}^{2}\right)$
Such that $T S+S T=0$ and $T S^{\sharp} \neq S^{\sharp} T$
but $S+T$ and ST are $(A, 2)$-power-hyponormal operator
the following example shows that proposition 8.14 is not necessarily true if $T S^{\sharp} \neq S^{\sharp} T$

Proposition 2.24. Let $T \in \mathcal{B}_{A}(\mathcal{H})$. If T is (A, n)-power-hyponormal, then T is $(A, 2)$-power-hyponormal operator

Proposition 2.25. Let $T, S \in \mathcal{B}_{A}(\mathcal{H})$ are commuting (A, n)-power-hyponormal operators, such that $T S^{\sharp}=S^{\sharp} T$ and $(T+S)^{\sharp}$ is commutes with

$$
\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(T^{p} S^{n-p}\right)
$$

Then $(T+S)$ is an (A, n)-power-hyponormal

Proof. Since

$$
\begin{aligned}
(T+S)^{n}(T+S)^{\sharp} & =\left[\sum_{0 \leq p \leq n}\binom{n}{p}\left(T^{p} S^{n-p}\right)\right](T+S)^{\sharp} \\
& =S^{n} S^{\sharp}+\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(T^{p} S^{n-p}\right)(T+S)^{\sharp}+T^{n} S^{\sharp}+S^{n} T^{\sharp}+T^{n} T^{\sharp} \\
& =S^{n} S^{\sharp}+\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(T^{p} S^{n-p}\right)(T+S)^{\sharp}+S^{\sharp} T^{n}+T^{\sharp} S^{n}+T^{n} T^{\sharp} \\
& \leq_{A} S^{\sharp} S^{n}+(T+S)^{\sharp} \sum_{1 \leq p \leq n-1}\binom{n}{p}\left(T^{p} S^{n-p}\right)+S^{\sharp} T^{n}+T^{\sharp} S^{n}+T^{n} T^{\sharp} \\
& \leq_{A}(T+S)^{\sharp}\left[\sum_{0 \leq p \leq n}\binom{n}{p}\left(T^{p} S^{n-p}\right)\right] \\
& =(T+S)^{\sharp}(T+S)^{n} .
\end{aligned}
$$

Then $(T+S)$ is an (A, n)-power-hyponormal.

References

[1] A.Benali, On the class of n-Real Power Positive Operators On A Hilbert Space .Functional Analysis, Approximation and Computation 10 (2) (2018), 23-31.
[2] A.Aluthge, On p-hyponormal Operators for $0<p<1$, Integral Equations Operators Theory , 13(1990), 307-315.
[3] A.Benali and Ould Ahmed Mahmoud Sid Ahmed. (α, β)-A-Normal Operators In Semi-Hilbertian Spaces .Afrika Matematika ISSN 1012-9405, (2019) .
[4] A.Benali, On The Class Of (A,n)-Real Power Positive Operators In Semi-Hilbertian Space (Soumis).
[5] A. Brown, On a class of operators, Proc. Amer. Math. Soc, 4 (1953), 723-728.
[6] A. A.S. Jibril, On n-Power Normal Operators.The Journal for Science and Engenering . Volume 33, Number 2A.(2008) 247-251.
[7] A. A.S. Jibril, On 2-Normal Operators, Dirasat, Vol.(23) No.2.
[8] A. A. S, Jibril, On subprojection sperators, International Mathematical Journal, 4(3), (2003), pp. 229-238.
[9] Dr.T.Veluchamy, and K.M.Manikandan, n-power-Quasi Normal operators on the Hilbert Space IOSR Journal of Mathematics .e-ISSN 2278-5728, p-ISSN: 2319-765WX. Volume 12,Issue 1Ver. IV 1 (jan. Feb2016), pp 06-09.
[10] M. H. Mortad, On The Normality of the Sum of Two Normal Operators. Complexe Analysis And Operator Theory .Volume 6, (2012), pp. 105-112.
[11] M.Guesba and M.Nadir, On n-Power-hponormal operators, Global Journal Of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number1 (2016), pp. 473-479.
[12] M.Guesba and M.Nadir, On operators for wich $T^{2} \geq-T^{* 2}$. The Australian Journal of Mathematical Analysis and Applications.Volume 13, Issue 1, Article 6, pp. 1-5, 2016.
[13] Ould Ahmed Mahmoud Sid Ahmed, On the class of n-power quasi-normal operators on Hilbert spaces, Bull. Math. Anal. Appl., 3(2), (2011), 213-228.
[14] Ould Ahmed Mahmoud Sid Ahmed, On Some Normality-Like Properties and Bishops Property (β) for a Class of Operators on Hilbert Spaces Spaces, International Journal of Mathematics and Mathematical Sciences, (2012). doi:10.1155/2012/975745.
[15] Ould Ahmed Mahmoud Sid Ahmed and Abdelkader Benali, Hyponormal And k-Quasi-hyponormal Operators On SemiHilbertian Spaces, The Australian Journal of Mathematical Analysis and Applications, Received 13 April 2016, accepted 25 May 2016 .published 20 Juine 2016.
[16] Riyandh R. Al-Mosawi and Hadeel A. Hassan A Note on Normal and n-Normal Operators (2003).
[17] Sidi Hamidou Jah, Class Of (A, n)-Power-Quasi-hyponormal Operators In Semi-Hilbertian Spaces, International Journal of Pure and Applied Mathematics . Volume 93 No. 1 (2014), 61-83.
[18] S.Panayappan and N.Sivamani, On n-binormal operators Gen. Math. Notes, Volume 10, No. 2, June 2012, PP. 1-8.

[^0]: 2010 Mathematics Subject Classification. Primary 46C05; Secondary 47A05.
 Keywords. Semi-Hilbertian space; $(A, 2)$-power-hyponormal operators; (A, n)-power-hyponormal operators; A-positive operators; idempotent.

 Received: 30 September 2018; Accepted: 26 June 2019
 Communicated by Dragan S. Djordjević
 Email addresses: chchellali@gmail.com (Cherifa Chellali), benali4848@gmail.com (Abdelkader Benali)

