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Abstract. We characterize generalized and hypergeneralized projection i.e. bounded linear operators
which satisfy conditions A2 = A∗, or A2 = A†, respectively. We establish their matrix representations and
examine conditions which imply that the product, difference and sum of these operators belongs to same
class of operators.

1. Introducton

Let H be a Hilbert space and let L(H) be a space of all bounded linear operators on H. The symbols
R(A), N(A), A∗ and σ(A), respectively, will denote the range, the null space, the adjoint operator, and the
spectrum of A ∈ L(H). Recall that A ∈ L(H) is a projection if A2 = A, while it is an orthogonal projection
if A∗ = A = A2. An operator A is hermitian (self adjoined) if A = A∗, normal if AA∗ = A∗A, and unitary if
AA∗ = A∗A = I.

The Moore-Penrose inverse of A ∈ L(H), denoted by A†, is the unique solution to the equations

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

Notice that A† exists if and only if R(A) is closed. Then AA† is the orthogonal projection onto R(A) parallel
to N(A∗), and A†A is orthogonal projection onto R(A∗) parallel to N(A). Consequently, I − AA† is the
orthogonal projection ontoN(A∗), and I − A†A is the orthogonal projection ontoN(A).

For A ∈ L(H), an element B ∈ L(H) is the Drazin inverse of A, if the following hold:

BAB = B, BA = AB, An+1B = An,

for some non-negative integer n. The smallest such n is called the Drazin index of A, denoted by ind(A). By
AD we denote Drazin inverse of A. Recall that AD is unique if it exsits. Also, if AD exists then 0 is not the
accumulation point of σ(A).
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An operator A is invertible if and only if ind(A) = 0.
If ind(A) ≤ 1, then A is group invertible and AD is the group inverse of A, usually denoted by A#.
An operator A ∈ L(H) is EP if AA† = A†A, or equivalently, if A† = AD = A#. The set of all EP operators

on H will be denoted by EP(H). Self-adjoint and normal operators with closed range are important subset
of set of all EP operators. However, converse is not true even in a finite dimensional case.

Recall that an operator A ∈ L(H) is a partial isometry, if and only if A∗ = A†.
In this paper we will consider pairs of generalized and hypergeneralized projections on a Hilbert space,

whose concept was introduced in [7]. These operators extend the idea of orthogonal projections by removing
the idempotency requirement. Namely, we have the following definition:

Definition 1.1. An operator A ∈ L(H) is

(a) a generalized projection if A2 = A∗,
(b) a hypergeneralized projection if A2 = A†.

The set of all generalized projectons on H is denoted by GP(H), and the set of all hypergeneralized projectons is
denoted byHGP(H).

We rely upon operator matrix representations whenever it is possible, which makes our proofs much
simpler in several occasions.

2. Characterization of generalized and hypergeneralized projections

We begin this section by giving characterizations of generalized and hypergeneralized projection. The
following result is in [4]. For the sake of completeness, we give a proof which is shorter than the one in [4].

Theorem 2.1. Let A ∈ L(H). Then the following conditions are equivalent:

(a) A is a generalized projection,
(b) A is a normal operator and A4 = A,
(c) A ia a partial isometry and A4 = A.

Proof. (a) =⇒ (b): Since
AA∗ = AA2 = A3 = A2A = A∗A,

A4 = (A2)2 = (A∗)2 = (A2)∗ = (A∗)∗ = A,

the implication is obvious.
(b) =⇒ (a): If AA∗ = A∗A, recall that then there exists a unique spectral measure E on the Borrel subsets

of σ(A) such that A has the following spectral representation

A =

∫

σ(A)
λdEλ.

From A4 = A we conclude σ(A) ⊂ {0, 1, e 2πi
3 , e

−2πi
3 }. Now,

A = 0E(0) ⊕ 1E(1) ⊕ e
2πi
3 E(e

2πi
3 ) ⊕ e

−2πi
3 E(e

−2πi
3 ),

where E(α) is the spectral projection of the normal operator A associated with spectral point α, E(α) , 0 if
α ∈ σ(A), E(α) = 0 if α ∈ {0, 1, e 2πi

3 , e
−2πi

3 }\σ(A) and
∑
α∈σ(A) ⊕E(α) = I. It is easy to see that A2 = A∗.

(a) =⇒ (c): If A∗ = A2, then we know A = A4 = AA2A = AA∗A. Multiplying from the left side (or
from the right side) by A∗, we get A∗AA∗A = A∗A (or AA∗AA∗ = AA∗), which proves that A∗A (or AA∗) is the
orthogonal projection onto R(A∗A) = R(A∗) = N(A)⊥ (or R(AA∗) = R(A) = N(A∗)⊥) i.e. A∗ = A† and A is a
partial isometry.

(c) =⇒ (a): If A is a partial isometry, we know that A∗ = A† and AA∗ is the orthogonal projection onto
R(AA∗) = R(A). Thus, AA∗A = PR(A)A = A. Now, A4 = AA2A = A implies A2 = A∗.
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Now we prove a similar result for hypergeneralized projections.

Theorem 2.2. Let A ∈ L(H). Then the following conditions are equivalent:
(a) A is a hypergeneralized projecton,
(b) A3 is an orthogonal projection onto R(A),
(c) A is an EP operator and A4 = A

Proof. (a) =⇒ (b): If A2 = A†, then from A3 = AA† = PR(A) conclusion follows.
(b) =⇒ (a): If A3 = PR(A), a direct verification of the Moore-Penrose equations shows that A2 = A†.
(a) =⇒ (c): Since

AA† = AA2 = A3 = A2A = A†A,

we conclude that A is EP, A† = A#, (A†)n = (An)† and

A4 = (A2)2 = (A†)2 = (A2)† = (A†)† = A.

(c ⇒ a) If A is an EP operator, then A† = A# and ind(A) = 1 or, equivalently, A2A† = A. Since
A4 = A2A2 = A, from uniqueness of A† follows A2 = A†.

We can give matrix representatons of generalized and hypergeneralized projections based upon previous
characterizatons.

Theorem 2.3. Let A ∈ L(H) be a generalized projection. Then A is a closed range operator, H = R(A) ⊕ N(A∗) =
R(A) ⊕N(A). Restriction A1 = A|R(A) is unitary on R(A) and A3 is an orthogonal projection on R(A). Moreover, A
has the following matrix representaton with the respect to decomposition of the space

A =

[
A1 0
0 0

]
:
[
R(A)
N(A)

]
→

[
R(A)
N(A)

]
.

Proof. If A2 = A∗, A is a partial isometry (i.e. orthogonal projection) onto R(A) = R(A∗) = N(A)⊥. Thus,
R(A) is a closed subset in H as a range of an orthogonal projection on a Hilbert space and we have the
following decomposition of the space H = R(A) ⊕N(A).

Now, A has the following matrix representation in accordance with decomposition H = R(A) ⊕N(A)

A =

[
A1 0
0 0

]
:
[
R(A)
N(A)

]
→

[
R(A)
N(A)

]
,

where A2
1 = A∗1, A4

1 = A1 and A1A∗1 = A∗1A1 = A3
1 = IR(A).

Theorem 2.4. Let A ∈ L(H) be a hypergeneralized projection. Then A is a closed range operator, H = R(A)⊕N(A∗) =
R(A) ⊕ N(A). Restriction A1 = A|R(A) satisfies A3

1 = IR(A), A2
1 = A†1 and A has the following matrix representaton

with the respect to decomposition of the space

A =

[
A1 0
0 0

]
:
[
R(A)
N(A)

]
→

[
R(A)
N(A)

]
.

Proof. If A is hypergeneralized projecton, A is EP and we have the following decomposition of the space
H = R(A) ⊕N(A) and A has the required representation.

Notice that since R(A) is closed for both generalized and hypergeneralized projections, these operators
have the Moore-Penrose and Drazin inverses. Besides, they are EP operators, which implies that A† = AD =
A# = A2 = A4. For generalized projections we can be more precise:

A† = AD = A# = A2 = A∗ = A4.

We can also write
GP(H) ⊆ HGP(H) ⊆ EP(H).
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Theorem 2.5. Let A ∈ L(H). Then the following holds:

(a) A ∈ GP(H) if and only if A∗ ∈ GP(H);
(b) A ∈ GP(H) if and only if A† ∈ GP(H);
(c) If ind(A) ≤ 1, then A ∈ GP(H) if and only if A# ∈ GP(H).

Proof. (a) If A ∈ GP(H), then (A∗)2 = (A2)∗ = (A∗)∗ = A meaning that A∗ ∈ GP(H). Conversely, if A∗ ∈ GP(H),
then A2 = ((A∗)∗)2 = ((A∗)2)∗ = A∗ and A ∈ GP(H).

(b) If A ∈ GP(H), then A† = A# = A∗ = A2 and (A†)2 = (A2)† = (A∗)† = (A†)∗ implying A† ∈ GP.
If A† ∈ GP(H), then A and A† have the representation

A =

[
A1 A2
0 0

]
:
[
R(A)
N(A∗)

]
→

[
R(A)
N(A∗)

]
, A† =

[
A∗1B 0
A∗2B 0

]
,

where B = (A1A∗1 + A2A∗2)−1. From (A†)2 = (A†)∗, we get

[
A∗1BA∗1B 0
A∗2BA∗1B 0

]
=

[
BA1 BA2

0 0

]
,

which implies A∗2 = 0, B = (A1A∗1)−1 and

A =

[
A1 0
0 0

]
, A† =

[
A−1

1 0
0 0

]
.

Since (A−1
1 )2 = (A−1

1 )∗, the same equality is also satisfied for A1 and A ∈ GP.
(c) If A ∈ GP(H), then A is EP and ”⇒ ” part is established in (b) of this theorem.
To prove ”⇐ ”, assume that H = R(A) ⊕N(A∗) and ind(A) ≤ 1. Then

A =

[
A1 A2
0 0

]
, A# =

[
A#

1 (A#
1)2A2

0 0

]
.

Since (A#)2 = (A#)∗, we get A2 = 0 and (A#
1)2 = (A#

1)∗. Fron the fact that A1 is surjective on R(A) and
R(A1) ∩N(A1) = {0}, we have A#

1 = A−1
1 . Consequently, (A−1

1 )2 = (A−1
1 )∗ and A2

1 = A∗1.

Theorem 2.6. Let A ∈ L(H). Then the following holds:

(a) A ∈ HGP(H) if and only if A∗ ∈ HGP(H);
(b) A ∈ HGP(H) if and only if A† ∈ HGP(H);
(c) If ind(A) ≤ 1, then A ∈ HGP(H) if and only if A# ∈ HGP(H).

Proof. Proofs of (a) and (b) are similar to proofs of Theorem 2.5 (a) and (b).
(c) We should only prove that A# ∈ HGP(H) implies A ∈ HGP(H), since the ” ⇒ ” is analogous to the

sema part of Theorem 2.5.
Let H = R(A) ⊕N(A∗) and ind(A) ≤ 1. Then

A =

[
A1 A2
0 0

]
, A# =

[
A−1

1 (A−1
1 )2A2

0 0

]
, (A#)† =

[
(A−1

1 )∗B 0
(A−1

2 )∗B 0

]
,

where B = (A−1
1 (A−1

1 )∗ + A−1
2 (A−1

2 )∗)−1. From (A#)† = (A#)2, we get A2 = 0 and A1 = A−2
1 . Multiplying with A2

1,
the last equation becomes A3

1 = IR(A) and A ∈ HGP(H).

As we know, if A is a projection (orthogonal projection), I−A is also a projection (orthogonal projection).
It is of interest to examine whether generalized and hypergeneralized projections keep the same property.
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Example 2.7. If H = C2 and A =

[
e

2πi
3 0

0 0

]
, then A2 = A∗, but I−A =

[
1 − e

2πi
3 0

0 1

]
and, clearly, I−A , (I−A)4

implying that I − A is not a generalized projection.

Thus, we have the following theorem.

Theorem 2.8. Let A ∈ L(H) be a generalized projection. Then I − A is a normal operator. Moreover, I − A is a
generalized projection if and only if A is an orthogonal projection.

If I − A is a generalized projection, then A is a normal operator and A is a generalized projection if and only if
I − A is an orthogonal projection.

Proof. Let us assume that A has representation

A =

[
A1 0
0 0

]
:
[
R(A)
N(A)

]
→

[
R(A)
N(A)

]
.

Then

I − A =

[
IR(A) − A1 0

0 IN(A)

]

and it is obvious that normality of A implies normality of I − A. Also,

(I − A)2 =

[
(IR(A) − A1)2 0

0 IN(A)

]
=

[
(IR(A) − A1)∗ 0

0 IN(A)

]
= (I − A)∗

holds if and only if (IR(A) − A1)2 = (IR(A) − A1)∗. Since A2 = A∗, we get

IR(A) − 2A1 + A2
1 = IR(A) − 2A1 + A∗ = IR(A) − A∗1,

which is satisfied if and only if A1 = A∗1. Hence, A = A∗ = A2.

Next example shows that Theorem 2.6 does not hold for hypergeneralized projections.

Example 2.9. Let H = C2 and A =

[
1 1
0 e

2πi
3

]
. Then A2 =

[
1 1 + e

2πi
3

0 e
−2πi

3

]
, A3 = IR(A), A4 = A and A is a

hypergeneralizes projection. However, I − A =

[
0 −1
0 1 − e

2πi
3

]
and it is not normal.

3. Properties of product, difference and sum of generalized and hypergeneralized projections

In this section we will examine under what conditions product, difference and sum of generalized
(hypergeneralized) projections is a generalized (hypergeneralized) projection. Next theorem gives very
useful matrix representations of generalized projections.

Theorem 3.1. Let A,B ∈ GP(H) and H = R(A) ⊕ N(A). Then B has the following representation with respect to
decomposition of the space:

B =

[
B1 B2
B3 B4

]
:
[
R(A)
N(A)

]
→

[
R(A)
N(A)

]
,

where

B∗1 = B2
1 + B2B3,

B∗2 = B3B1 + B4B3,

B∗3 = B1B2 + B2B4,

B∗4 = B3B2 + B2
4.
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Proof. Let B has a representation

B =

[
B1 B2
B3 B4

]
.

Then, if

B2 =

[
B2

1B2B3 B1B2 + B2B4
B3B1 + B4B3 B3B2 + B2

4

]
=

[
B∗1 B∗3
B∗2 B∗4

]
= B∗,

conclusion follows directly.

Theorem 3.2. Let A,B ∈ GP(H). Then the following conditions are equivalent:

(a) AB ∈ GP(H)
(b) AB = BA;
(c) AB is normal.

Proof. ((a)⇒ (b) and (c)) Assume that A,B have representations given in Theorem 3.1. Then

AB =

[
A1B1 A1B2

0 0

]
, BA =

[
B1A1 B1A2
B3A1 B3A2

]
.

It is easy to see that

(AB)2 =

[
(A1B1)2 A1B1A1B2

0 0

]
=

[
(A1B1)∗ 0
(A1B2)∗ 0

]
= (AB)∗

if and only if A1B1 = B1A1, A1B1A1B2 = 0 and (A1B2)∗ = 0, if and only if A1 and B1 commute and B2 = 0.
Again form Theorem 3.1 we conclude that B3 = 0, B∗1 = B2

1 and B∗4 = B2
4. Now, B has the form

B =

[
B1 0
0 B4

]

and AB = BA. Moreover,

AB(AB)∗ =

[
A1B1(A1B1)∗ 0

0 0

]
=

[
(A1B1)∗A1B1 0

0 0

]
= (AB)∗AB.

((b)⇒ (a)) If AB = BA, Theorem 3.1 implies B2 = 0, B3 = 0, A1B1 = B1A1. Direct calculation shows that
(AB)2 = (AB)∗.

((c)⇒ (a)) If we use representations given in Theorem 3.1, then condition

AB(AB)∗ =

[
A1B1(A1B1)∗ + A1B2(A1B2)∗ 0

0 0

]

=

[
(A1B1)∗A1B1 (A1B1)∗A1B2
(A1B2)∗A1B1 (A1B2)∗A1B2

]
= (AB)∗AB

implies that (A1B2)∗A1B2 = 0, from where B2 = 0 follows. Consequently, B3 = 0 and (AB)2 = (AB)∗.

Theorem 3.3. Let A,B ∈ GP(H). Then the following conditions are equivalent:

(a) A + B ∈ GP(H)
(b) AB = BA = 0.
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Proof. ((a)⇒ (b)) If A,B have representations given in Theorem 3.1, then

A + B =

[
A1 + B1 B2

B3 B4

]

and if

(A + B)2 =

[
(A1 + B1)2 + B2B3 (A1 + B1)B2B4

B3(A1 + B1) + B4B3 B3B2 + B2
4

]

=

[
(A1 + B1)∗ B∗3

B∗2 B∗4

]
= (A + B)∗,

it is clear that (A1 + B1)2 = (A1 + B1)∗, B2 = B3 = 0, B2
4 = B∗4. Besides,

(A1 + B1)2 = A2
1 + A1B1 + B1A1 + B2

1 = A∗1 + B∗1 = (A1 + B1)∗

is true if A1B1 = B1A1 = 0, A2
1 = A∗1 and B2

1 = B∗1. In this case we obtain AB = BA = 0.
((b) ⇒ (a)) If AB = BA = 0, then A1B1 = B1A1 = 0, B2 = B3 = 0, B2

1 = B∗1, B2
4 = B∗4 and, obviously,

(A + B)2 = (A + B)∗.

Theorem 3.4. Let A,B ∈ GP(H). Then A − B ∈ GP(H) if and only if AB = BA = B∗.

Proof. If A,B have representations given in Theorem 3.1, then

A − B =

[
A1 − B1 −B2
−B3 −B4

]
.

From

(A − B)2 =

[
(A1 − B1)2 + B2B3 −(A1 − B1) + B2B4
−B3(A1 + B1) + B4B3 B3B2 + B2

4

]

=

[
(A1 − B1)∗ −B∗3
−B∗2 −B∗4

]
= (A − B)∗,

B2 = 0, B3 = 0, B2
4 = −B∗4 and

(A1 − B1)2 = A2
1 − A1B1 − B1A1 + B2

1 = A∗1 − B∗1

follows. This is true if and only if A1B1 = B1A1 = B∗1 and B4 = 0, and in that case AB = BA = B∗.

Theorem 3.5. Let A,B ∈ HGP(H). Then AB ∈ HGP(H) if and only if AB = BA.

Proof. Let H = R(A) ⊕N(A) and A,B ∈ HGP(H) have representations

A =

[
A1 0
0 0

]
, B =

[
B1 B2
B3 B4

]
.

Then

AB =

[
A1B1 A1B2

0 0

]
, (AB)2 =

[
A1B1A1B1 A1B1A1B2

0 0

]
.

It is not difficult to see that

(AB)† =

[
(A1B1)∗D−1 0
(A1B2)∗D−1 0

]
,

where D = A1B1(A1B1)∗ + A1B2(A1B2)∗ > 0 is invertible.
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If (AB)2 = (AB)†, then B2 = 0 which implies D = A1B1(A1B1)∗ is invertible and

(AB)2 =

[
(A1B1)2 0

0 0

]
=

[
(A1B1)−1 0

0 0

]
= (AB)†,

from where A1B1 = B1A1 follows.
We can rewrite B in form

B =

[
B1 0
B3 B4

]
,

while B† = B2 is

B† =

[
B2

1 0
B3B1 + B4B3 B2

4

]
.

The Moore-Penrose equation in the matrix form is

B†BB† =

[
B5

1 0
(B3B1 + B4B3)B3

1 + B2
4(B3B2

1 + B4(B3B1 + B4B3)) B5
4

]

=

[
B2

1 0
B3B1 + B4B3 B2

4

]
= B†.

Now, B5
1 = B2

1, B5
4 = B2

4 and

B3B4
1 + B4B3B3

1 + B2
4B3B2

1 + B3
4B3B1 + B4

4B3 = B3B1 + B4B3,

which is equivalent to
B4B3B3

1 + B2
4B3B2

1 + B3
4B3B1 = 0

and B3 = 0.
Finally,

B =

[
B1 0
0 B4

]
,

and AB = BA.
Conversely, assume that hypergeneralized projections A,B commute i.e. that

AB =

[
A1B1 A1B2

0 0

]
=

[
B1A1 0
B3A1 0

]
= BA.

This implies B2 = 0, B3 = 0, A1B1 = B1A1 and it is easy to see that (AB)2 = (AB)†.

4. Additional results

Remark 1. Let A be a generalized projection. Then for an arbitrary α ∈ C, αA is not necessarily a
generalized projection. Due to a condition A3 = IR(A), we have that (αA)3 = IR(A) and (αλ)3 = 1, where
λ ∈ σ(A). Thus we get α ∈ σ(A).

Remark 2. Product of orthogonal projector P and generalized inverse A in general case does not keep
any of the properties that either of these operators has. Observe the decomposition H = L ⊕ L⊥, where
L = R(P). Then

P =

[
IL 0
0 0

]
, A =

[
A1 A2
A3 A4

]
, PA =

[
A1 A2
0 0

]
.

It is not difficult to see that PA is orthogonal projection if and only if A1 = IL. Then

A =

[
IL 0
0 A4

]
.
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