On pairs of generalized and hypergeneralized projections in a Hilbert space

Sonja Radosavljevića ${ }^{\text {, }}$ Dragan S. Djordjevićb ${ }^{\text {b }}$
${ }^{a}$ University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, 18000 Niš, Serbia
${ }^{b}$ University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, 18000 Niš, Serbia

Abstract

We characterize generalized and hypergeneralized projection i.e. bounded linear operators which satisfy conditions $A^{2}=A^{*}$, or $A^{2}=A^{+}$, respectively. We establish their matrix representations and examine conditions which imply that the product, difference and sum of these operators belongs to same class of operators.

1. Introducton

Let H be a Hilbert space and let $\mathcal{L}(H)$ be a space of all bounded linear operators on H. The symbols $\mathcal{R}(A), \mathcal{N}(A), A^{*}$ and $\sigma(A)$, respectively, will denote the range, the null space, the adjoint operator, and the spectrum of $A \in \mathcal{L}(H)$. Recall that $A \in \mathcal{L}(H)$ is a projection if $A^{2}=A$, while it is an orthogonal projection if $A^{*}=A=A^{2}$. An operator A is hermitian (self adjoined) if $A=A^{*}$, normal if $A A^{*}=A^{*} A$, and unitary if $A A^{*}=A^{*} A=I$.

The Moore-Penrose inverse of $A \in \mathcal{L}(H)$, denoted by A^{\dagger}, is the unique solution to the equations

$$
A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A .
$$

Notice that A^{+}exists if and only if $\mathcal{R}(A)$ is closed. Then $A A^{+}$is the orthogonal projection onto $\mathcal{R}(A)$ parallel to $\mathcal{N}\left(A^{*}\right)$, and $A^{\dagger} A$ is orthogonal projection onto $\mathcal{R}\left(A^{*}\right)$ parallel to $\mathcal{N}(A)$. Consequently, $I-A A^{\dagger}$ is the orthogonal projection onto $\mathcal{N}\left(A^{*}\right)$, and $I-A^{\dagger} A$ is the orthogonal projection onto $\mathcal{N}(A)$.

For $A \in \mathcal{L}(H)$, an element $B \in \mathcal{L}(H)$ is the Drazin inverse of A, if the following hold:

$$
B A B=B, \quad B A=A B, \quad A^{n+1} B=A^{n}
$$

for some non-negative integer n. The smallest such n is called the Drazin index of A, denoted by $\operatorname{ind}(A)$. By A^{D} we denote Drazin inverse of A. Recall that A^{D} is unique if it exsits. Also, if A^{D} exists then 0 is not the accumulation point of $\sigma(A)$.

[^0]An operator A is invertible if and only if $\operatorname{ind}(A)=0$.
If $\operatorname{ind}(A) \leq 1$, then A is group invertible and A^{D} is the group inverse of A, usually denoted by $A^{\#}$.
An operator $A \in \mathcal{L}(H)$ is EP if $A A^{+}=A^{\dagger} A$, or equivalently, if $A^{\dagger}=A^{D}=A^{\#}$. The set of all EP operators on H will be denoted by $\mathcal{E P}(H)$. Self-adjoint and normal operators with closed range are important subset of set of all EP operators. However, converse is not true even in a finite dimensional case.

Recall that an operator $A \in \mathcal{L}(H)$ is a partial isometry, if and only if $A^{*}=A^{+}$.
In this paper we will consider pairs of generalized and hypergeneralized projections on a Hilbert space, whose concept was introduced in [7]. These operators extend the idea of orthogonal projections by removing the idempotency requirement. Namely, we have the following definition:

Definition 1.1. An operator $A \in \mathcal{L}(H)$ is
(a) a generalized projection if $A^{2}=A^{*}$,
(b) a hypergeneralized projection if $A^{2}=A^{\dagger}$.

The set of all generalized projectons on H is denoted by $\mathcal{G P}(H)$, and the set of all hypergeneralized projectons is denoted by $\mathcal{H} \mathcal{G P}(H)$.

We rely upon operator matrix representations whenever it is possible, which makes our proofs much simpler in several occasions.

2. Characterization of generalized and hypergeneralized projections

We begin this section by giving characterizations of generalized and hypergeneralized projection. The following result is in [4]. For the sake of completeness, we give a proof which is shorter than the one in [4].

Theorem 2.1. Let $A \in \mathcal{L}(H)$. Then the following conditions are equivalent:
(a) A is a generalized projection,
(b) A is a normal operator and $A^{4}=A$,
(c) A ia a partial isometry and $A^{4}=A$.

Proof. (a) \Longrightarrow (b): Since

$$
\begin{gathered}
A A^{*}=A A^{2}=A^{3}=A^{2} A=A^{*} A \\
A^{4}=\left(A^{2}\right)^{2}=\left(A^{*}\right)^{2}=\left(A^{2}\right)^{*}=\left(A^{*}\right)^{*}=A
\end{gathered}
$$

the implication is obvious.
$(\mathrm{b}) \Longrightarrow$ (a): If $A A^{*}=A^{*} A$, recall that then there exists a unique spectral measure E on the Borrel subsets of $\sigma(A)$ such that A has the following spectral representation

$$
A=\int_{\sigma(A)} \lambda d E_{\lambda} .
$$

From $A^{4}=A$ we conclude $\sigma(A) \subset\left\{0,1, e^{\frac{2 \pi i}{3}}, e^{\frac{-2 \pi i}{3}}\right\}$. Now,

$$
A=0 E(0) \oplus 1 E(1) \oplus e^{\frac{2 \pi i}{3}} E\left(e^{\frac{2 \pi i}{3}}\right) \oplus e^{\frac{-2 \pi i}{3}} E\left(e^{\frac{-2 \pi i}{3}}\right)
$$

where $E(\alpha)$ is the spectral projection of the normal operator A associated with spectral point $\alpha, E(\alpha) \neq 0$ if $\alpha \in \sigma(A), E(\alpha)=0$ if $\alpha \in\left\{0,1, e^{\frac{2 \pi i}{3}}, e^{\frac{-2 \pi i}{3}}\right\} \backslash \sigma(A)$ and $\sum_{\alpha \in \sigma(A)} \oplus E(\alpha)=I$. It is easy to see that $A^{2}=A^{*}$.
(a) \Longrightarrow (c): If $A^{*}=A^{2}$, then we know $A=A^{4}=A A^{2} A=A A^{*} A$. Multiplying from the left side (or from the right side) by A^{*}, we get $A^{*} A A^{*} A=A^{*} A$ (or $A A^{*} A A^{*}=A A^{*}$), which proves that $A^{*} A$ (or $A A^{*}$) is the orthogonal projection onto $\mathcal{R}\left(A^{*} A\right)=\mathcal{R}\left(A^{*}\right)=\mathcal{N}(A)^{\perp}\left(\right.$ or $\left.\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A)=\mathcal{N}\left(A^{*}\right)^{\perp}\right)$ i.e. $A^{*}=A^{+}$and A is a partial isometry.
(c) \Longrightarrow (a): If A is a partial isometry, we know that $A^{*}=A^{\dagger}$ and $A A^{*}$ is the orthogonal projection onto $\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A)$. Thus, $A A^{*} A=P_{\mathcal{R}(A)} A=A$. Now, $A^{4}=A A^{2} A=A$ implies $A^{2}=A^{*}$.

Now we prove a similar result for hypergeneralized projections.
Theorem 2.2. Let $A \in \mathcal{L}(H)$. Then the following conditions are equivalent:
(a) A is a hypergeneralized projecton,
(b) A^{3} is an orthogonal projection onto $\mathcal{R}(A)$,
(c) A is an EP operator and $A^{4}=A$

Proof. (a) \Longrightarrow (b): If $A^{2}=A^{\dagger}$, then from $A^{3}=A A^{\dagger}=P_{\mathcal{R}(A)}$ conclusion follows.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$: If $A^{3}=P_{\mathcal{R}(A)}$, a direct verification of the Moore-Penrose equations shows that $A^{2}=A^{\dagger}$.
(a) \Longrightarrow (c): Since

$$
A A^{+}=A A^{2}=A^{3}=A^{2} A=A^{\dagger} A
$$

we conclude that A is EP, $A^{\dagger}=A^{\#},\left(A^{\dagger}\right)^{n}=\left(A^{n}\right)^{\dagger}$ and

$$
A^{4}=\left(A^{2}\right)^{2}=\left(A^{\dagger}\right)^{2}=\left(A^{2}\right)^{\dagger}=\left(A^{\dagger}\right)^{\dagger}=A .
$$

(c \Rightarrow a) If A is an EP operator, then $A^{+}=A^{\#}$ and $\operatorname{ind}(A)=1$ or, equivalently, $A^{2} A^{+}=A$. Since $A^{4}=A^{2} A^{2}=A$, from uniqueness of A^{\dagger} follows $A^{2}=A^{\dagger}$.

We can give matrix representatons of generalized and hypergeneralized projections based upon previous characterizatons.

Theorem 2.3. Let $A \in \mathcal{L}(H)$ be a generalized projection. Then A is a closed range operator, $H=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)=$ $\mathcal{R}(A) \oplus \mathcal{N}(A)$. Restriction $A_{1}=\left.A\right|_{\mathcal{R}(A)}$ is unitary on $\mathcal{R}(A)$ and A^{3} is an orthogonal projection on $\mathcal{R}(A)$. Moreover, A has the following matrix representaton with the respect to decomposition of the space

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right]
$$

Proof. If $A^{2}=A^{*}, A$ is a partial isometry (i.e. orthogonal projection) onto $\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)=\mathcal{N}(A)^{\perp}$. Thus, $\mathcal{R}(A)$ is a closed subset in H as a range of an orthogonal projection on a Hilbert space and we have the following decomposition of the space $H=\mathcal{R}(A) \oplus \mathcal{N}(A)$.

Now, A has the following matrix representation in accordance with decomposition $H=\mathcal{R}(A) \oplus \mathcal{N}(A)$

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right],
$$

where $A_{1}^{2}=A_{1}^{*}, A_{1}^{4}=A_{1}$ and $A_{1} A_{1}^{*}=A_{1}^{*} A_{1}=A_{1}^{3}=I_{\mathcal{R}(A)}$.

Theorem 2.4. Let $A \in \mathcal{L}(H)$ be a hypergeneralized projection. Then A is a closed range operator, $H=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)=$ $\mathcal{R}(A) \oplus \mathcal{N}(A)$. Restriction $A_{1}=\left.A\right|_{\mathcal{R}(A)}$ satisfies $A_{1}^{3}=I_{\mathcal{R}(A)}, A_{1}^{2}=A_{1}^{\dagger}$ and A has the following matrix representaton with the respect to decomposition of the space

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right]
$$

Proof. If A is hypergeneralized projecton, A is EP and we have the following decomposition of the space $H=\mathcal{R}(A) \oplus \mathcal{N}(A)$ and A has the required representation.

Notice that since $\mathcal{R}(A)$ is closed for both generalized and hypergeneralized projections, these operators have the Moore-Penrose and Drazin inverses. Besides, they are EP operators, which implies that $A^{+}=A^{D}=$ $A^{\#}=A^{2}=A^{4}$. For generalized projections we can be more precise:

$$
A^{\dagger}=A^{D}=A^{\#}=A^{2}=A^{*}=A^{4} .
$$

We can also write

$$
\mathcal{G P}(H) \subseteq \mathcal{H} \mathcal{G} \mathcal{P}(H) \subseteq \mathcal{E} \mathcal{P}(H)
$$

Theorem 2.5. Let $A \in \mathcal{L}(H)$. Then the following holds:
(a) $A \in \mathcal{G P}(H)$ if and only if $A^{*} \in \mathcal{G P}(H)$;
(b) $A \in \mathcal{G P}(H)$ if and only if $A^{+} \in \mathcal{G P}(H)$;
(c) If ind $(A) \leq 1$, then $A \in \mathcal{G P}(H)$ if and only if $A^{\#} \in \mathcal{G P}(H)$.

Proof. (a) If $A \in \mathcal{G P}(H)$, then $\left(A^{*}\right)^{2}=\left(A^{2}\right)^{*}=\left(A^{*}\right)^{*}=A$ meaning that $A^{*} \in \mathcal{G P}(H)$. Conversely, if $A^{*} \in \mathcal{G P}(H)$, then $A^{2}=\left(\left(A^{*}\right)^{*}\right)^{2}=\left(\left(A^{*}\right)^{2}\right)^{*}=A *$ and $A \in \mathcal{G P}(H)$.
(b) If $A \in \mathcal{G P}(H)$, then $A^{\dagger}=A^{\#}=A^{*}=A^{2}$ and $\left(A^{\dagger}\right)^{2}=\left(A^{2}\right)^{\dagger}=\left(A^{*}\right)^{+}=\left(A^{+}\right)^{*}$ implying $A^{\dagger} \in \mathcal{G P}$.

If $A^{+} \in \mathcal{G P}(H)$, then A and A^{+}have the representation

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right], \quad A^{+}=\left[\begin{array}{cc}
A_{1}^{*} B & 0 \\
A_{2}^{*} B & 0
\end{array}\right],
$$

where $B=\left(A_{1} A_{1}^{*}+A_{2} A_{2}^{*}\right)^{-1}$. From $\left(A^{+}\right)^{2}=\left(A^{+}\right)^{*}$, we get

$$
\left[\begin{array}{cc}
A_{1}^{*} B A_{1}^{*} B & 0 \\
A_{2}^{*} B A_{1}^{*} B & 0
\end{array}\right]=\left[\begin{array}{cc}
B A_{1} & B A_{2} \\
0 & 0
\end{array}\right]
$$

which implies $A_{2}^{*}=0, B=\left(A_{1} A_{1}^{*}\right)^{-1}$ and

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right], \quad A^{+}=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & 0
\end{array}\right] .
$$

Since $\left(A_{1}^{-1}\right)^{2}=\left(A_{1}^{-1}\right)^{*}$, the same equality is also satisfied for A_{1} and $A \in \mathcal{G P}$.
(c) If $A \in \mathcal{G P}(H)$, then A is EP and " \Rightarrow " part is established in (b) of this theorem.

To prove " \Leftarrow ", assume that $H=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)$ and $\operatorname{ind}(A) \leq 1$. Then

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & 0
\end{array}\right], \quad A^{\#}=\left[\begin{array}{cc}
A_{1}^{\#} & \left(A_{1}^{\#}\right)^{2} A_{2} \\
0 & 0
\end{array}\right]
$$

Since $(A \#)^{2}=\left(A^{\#}\right)^{*}$, we get $A_{2}=0$ and $\left(A_{1}^{\#}\right)^{2}=\left(A_{1}^{\#}\right)^{*}$. Fron the fact that A_{1} is surjective on $\mathcal{R}(A)$ and $\mathcal{R}\left(A_{1}\right) \cap \mathcal{N}\left(A_{1}\right)=\{0\}$, we have $A_{1}^{\#}=A_{1}^{-1}$. Consequently, $\left(A_{1}^{-1}\right)^{2}=\left(A_{1}^{-1}\right)^{*}$ and $A_{1}^{2}=A_{1}^{*}$.

Theorem 2.6. Let $A \in \mathcal{L}(H)$. Then the following holds:
(a) $A \in \mathcal{H} \mathcal{G P}(H)$ if and only if $A^{*} \in \mathcal{H} \mathcal{G P}(H)$;
(b) $A \in \mathcal{H} \mathcal{G P}(H)$ if and only if $A^{+} \in \mathcal{H} \mathcal{G P}(H)$;
(c) If ind $(A) \leq 1$, then $A \in \mathcal{H} \mathcal{G P}(H)$ if and only if $A^{\#} \in \mathcal{H} \mathcal{G P}(H)$.

Proof. Proofs of (a) and (b) are similar to proofs of Theorem 2.5 (a) and (b).
(c) We should only prove that $A^{\#} \in \mathcal{H} \mathcal{G} \mathcal{P}(H)$ implies $A \in \mathcal{H} \mathcal{G} \mathcal{P}(H)$, since the " \Rightarrow " is analogous to the sema part of Theorem 2.5 .

Let $H=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)$ and $\operatorname{ind}(A) \leq 1$. Then

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & 0
\end{array}\right], \quad A^{\#}=\left[\begin{array}{cc}
A_{1}^{-1} & \left(A_{1}^{-1}\right)^{2} A_{2} \\
0 & 0
\end{array}\right], \quad\left(A^{\#}\right)^{+}=\left[\begin{array}{cc}
\left(A_{1}^{-1}\right)^{*} B & 0 \\
\left(A_{2}^{-1}\right)^{*} B & 0
\end{array}\right],
$$

where $B=\left(A_{1}^{-1}\left(A_{1}^{-1}\right)^{*}+A_{2}^{-1}\left(A_{2}^{-1}\right)^{*}\right)^{-1}$. From $\left(A^{\#}\right)^{\dagger}=\left(A^{\#}\right)^{2}$, we get $A_{2}=0$ and $A_{1}=A_{1}^{-2}$. Multiplying with A_{1}^{2}, the last equation becomes $A_{1}^{3}=I_{\mathcal{R}(A)}$ and $A \in \mathcal{H} \mathcal{G P}(H)$.

As we know, if A is a projection (orthogonal projection), $I-A$ is also a projection (orthogonal projection). It is of interest to examine whether generalized and hypergeneralized projections keep the same property.

Example 2.7. If $H=C^{2}$ and $A=\left[\begin{array}{cc}e^{\frac{2 \pi i}{3}} & 0 \\ 0 & 0\end{array}\right]$, then $A^{2}=A^{*}$, but $I-A=\left[\begin{array}{cc}1-e^{\frac{2 \pi i}{3}} & 0 \\ 0 & 1\end{array}\right]$ and, clearly, $I-A \neq(I-A)^{4}$ implying that $I-A$ is not a generalized projection.

Thus, we have the following theorem.
Theorem 2.8. Let $A \in \mathcal{L}(H)$ be a generalized projection. Then $I-A$ is a normal operator. Moreover, $I-A$ is a generalized projection if and only if A is an orthogonal projection.

If I - A is a generalized projection, then A is a normal operator and A is a generalized projection if and only if $I-A$ is an orthogonal projection.

Proof. Let us assume that A has representation

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right]
$$

Then

$$
I-A=\left[\begin{array}{cc}
I_{\mathcal{R}(A)}-A_{1} & 0 \\
0 & I_{\mathcal{N}(A)}
\end{array}\right]
$$

and it is obvious that normality of A implies normality of $I-A$. Also,

$$
(I-A)^{2}=\left[\begin{array}{cc}
\left(I_{\mathcal{R}(A)}-A_{1}\right)^{2} & 0 \\
0 & I_{\mathcal{N}(A)}
\end{array}\right]=\left[\begin{array}{cc}
\left(I_{\mathcal{R}(A)}-A_{1}\right)^{*} & 0 \\
0 & I_{\mathcal{N}(A)}
\end{array}\right]=(I-A)^{*}
$$

holds if and only if $\left(I_{\mathcal{R}(A)}-A_{1}\right)^{2}=\left(I_{\mathcal{R}(A)}-A_{1}\right)^{*}$. Since $A^{2}=A^{*}$, we get

$$
I_{\mathcal{R}(A)}-2 A_{1}+A_{1}^{2}=I_{\mathcal{R}(A)}-2 A_{1}+A^{*}=I_{\mathcal{R}(A)}-A_{1}^{*}
$$

which is satisfied if and only if $A_{1}=A_{1}^{*}$. Hence, $A=A^{*}=A^{2}$.
Next example shows that Theorem 2.6 does not hold for hypergeneralized projections.
Example 2.9. Let $H=C^{2}$ and $A=\left[\begin{array}{cc}1 & 1 \\ 0 & e^{\frac{2 \pi i}{3}}\end{array}\right]$. Then $A^{2}=\left[\begin{array}{cc}1 & 1+e^{\frac{2 \pi i}{3}} \\ 0 & e^{\frac{-2 i i}{3}}\end{array}\right], A^{3}=I_{\mathcal{R}(A)}, A^{4}=A$ and A is a hypergeneralizes projection. However, $I-A=\left[\begin{array}{cc}0 & -1 \\ 0 & 1-e^{\frac{2 \pi i}{3}}\end{array}\right]$ and it is not normal.

3. Properties of product, difference and sum of generalized and hypergeneralized projections

In this section we will examine under what conditions product, difference and sum of generalized (hypergeneralized) projections is a generalized (hypergeneralized) projection. Next theorem gives very useful matrix representations of generalized projections.

Theorem 3.1. Let $A, B \in \mathcal{G P}(H)$ and $H=\mathcal{R}(A) \oplus \mathcal{N}(A)$. Then B has the following representation with respect to decomposition of the space:

$$
B=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{array}\right],
$$

where

$$
\begin{aligned}
B_{1}^{*} & =B_{1}^{2}+B_{2} B_{3}, \\
B_{2}^{*} & =B_{3} B_{1}+B_{4} B_{3} \\
B_{3}^{*} & =B_{1} B_{2}+B_{2} B_{4} \\
B_{4}^{*} & =B_{3} B_{2}+B_{4}^{2} .
\end{aligned}
$$

Proof. Let B has a representation

$$
B=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]
$$

Then, if

$$
B^{2}=\left[\begin{array}{cc}
B_{1}^{2} B_{2} B_{3} & B_{1} B_{2}+B_{2} B_{4} \\
B_{3} B_{1}+B_{4} B_{3} & B_{3} B_{2}+B_{4}^{2}
\end{array}\right]=\left[\begin{array}{cc}
B_{1}^{*} & B_{3}^{*} \\
B_{2}^{*} & B_{4}^{*}
\end{array}\right]=B^{*},
$$

conclusion follows directly.
Theorem 3.2. Let $A, B \in \mathcal{G P}(H)$. Then the following conditions are equivalent:
(a) $A B \in \mathcal{G P}(H)$
(b) $A B=B A$;
(c) $A B$ is normal.

Proof. $((\mathrm{a}) \Rightarrow(\mathrm{b})$ and (c)) Assume that A, B have representations given in Theorem 3.1. Then

$$
A B=\left[\begin{array}{cc}
A_{1} B_{1} & A_{1} B_{2} \\
0 & 0
\end{array}\right], \quad B A=\left[\begin{array}{ll}
B_{1} A_{1} & B_{1} A_{2} \\
B_{3} A_{1} & B_{3} A_{2}
\end{array}\right] .
$$

It is easy to see that

$$
(A B)^{2}=\left[\begin{array}{cc}
\left(A_{1} B_{1}\right)^{2} & A_{1} B_{1} A_{1} B_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\left(A_{1} B_{1}\right)^{*} & 0 \\
\left(A_{1} B_{2}\right)^{*} & 0
\end{array}\right]=(A B)^{*}
$$

if and only if $A_{1} B_{1}=B_{1} A_{1}, A_{1} B_{1} A_{1} B_{2}=0$ and $\left(A_{1} B_{2}\right)^{*}=0$, if and only if A_{1} and B_{1} commute and $B_{2}=0$. Again form Theorem 3.1 we conclude that $B_{3}=0, B_{1}^{*}=B_{1}^{2}$ and $B_{4}^{*}=B_{4}^{2}$. Now, B has the form

$$
B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{4}
\end{array}\right]
$$

and $A B=B A$. Moreover,

$$
A B(A B)^{*}=\left[\begin{array}{cc}
A_{1} B_{1}\left(A_{1} B_{1}\right)^{*} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\left(A_{1} B_{1}\right)^{*} A_{1} B_{1} & 0 \\
0 & 0
\end{array}\right]=(A B)^{*} A B
$$

$((\mathrm{b}) \Rightarrow(\mathrm{a}))$ If $A B=B A$, Theorem 3.1 implies $B_{2}=0, B_{3}=0, A_{1} B_{1}=B_{1} A_{1}$. Direct calculation shows that $(A B)^{2}=(A B)^{*}$.
$((\mathrm{c}) \Rightarrow(\mathrm{a}))$ If we use representations given in Theorem 3.1, then condition

$$
\begin{aligned}
A B(A B)^{*} & =\left[\begin{array}{cc}
A_{1} B_{1}\left(A_{1} B_{1}\right)^{*}+A_{1} B_{2}\left(A_{1} B_{2}\right)^{*} & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left(A_{1} B_{1}\right)^{*} A_{1} B_{1} & \left(A_{1} B_{1}\right)^{*} A_{1} B_{2} \\
\left(A_{1} B_{2}\right)^{*} A_{1} B_{1} & \left(A_{1} B_{2}\right)^{*} A_{1} B_{2}
\end{array}\right]=(A B)^{*} A B
\end{aligned}
$$

implies that $\left(A_{1} B_{2}\right)^{*} A_{1} B_{2}=0$, from where $B_{2}=0$ follows. Consequently, $B_{3}=0$ and $(A B)^{2}=(A B)^{*}$.
Theorem 3.3. Let $A, B \in \mathcal{G P}(H)$. Then the following conditions are equivalent:
(a) $A+B \in \mathcal{G P}(H)$
(b) $A B=B A=0$.

Proof. ((a) \Rightarrow (b)) If A, B have representations given in Theorem 3.1, then

$$
A+B=\left[\begin{array}{cc}
A_{1}+B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right]
$$

and if

$$
\begin{aligned}
(A+B)^{2} & =\left[\begin{array}{cc}
\left(A_{1}+B_{1}\right)^{2}+B_{2} B_{3} & \left(A_{1}+B_{1}\right) B_{2} B_{4} \\
B_{3}\left(A_{1}+B_{1}\right)+B_{4} B_{3} & B_{3} B_{2}+B_{4}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(A_{1}+B_{1}\right)^{*} & B_{3}^{*} \\
B_{2}^{*} & B_{4}^{*}
\end{array}\right]=(A+B)^{*},
\end{aligned}
$$

it is clear that $\left(A_{1}+B_{1}\right)^{2}=\left(A_{1}+B_{1}\right)^{*}, B_{2}=B_{3}=0, B_{4}^{2}=B_{4}^{*}$. Besides,

$$
\left(A_{1}+B_{1}\right)^{2}=A_{1}^{2}+A_{1} B_{1}+B_{1} A_{1}+B_{1}^{2}=A_{1}^{*}+B_{1}^{*}=\left(A_{1}+B_{1}\right)^{*}
$$

is true if $A_{1} B_{1}=B_{1} A_{1}=0, A_{1}^{2}=A_{1}^{*}$ and $B_{1}^{2}=B_{1}^{*}$. In this case we obtain $A B=B A=0$.
$((\mathrm{b}) \Rightarrow(\mathrm{a}))$ If $A B=B A=0$, then $A_{1} B_{1}=B_{1} A_{1}=0, B_{2}=B_{3}=0, B_{1}^{2}=B_{1}^{*}, B_{4}^{2}=B_{4}^{*}$ and, obviously, $(A+B)^{2}=(A+B)^{*}$.

Theorem 3.4. Let $A, B \in \mathcal{G P}(H)$. Then $A-B \in \mathcal{G P}(H)$ if and only if $A B=B A=B^{*}$.
Proof. If A, B have representations given in Theorem 3.1, then

$$
A-B=\left[\begin{array}{cc}
A_{1}-B_{1} & -B_{2} \\
-B_{3} & -B_{4}
\end{array}\right]
$$

From

$$
\begin{aligned}
(A-B)^{2} & =\left[\begin{array}{cc}
\left(A_{1}-B_{1}\right)^{2}+B_{2} B_{3} & -\left(A_{1}-B_{1}\right)+B_{2} B_{4} \\
-B_{3}\left(A_{1}+B_{1}\right)+B_{4} B_{3} & B_{3} B_{2}+B_{4}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(A_{1}-B_{1}\right)^{*} & -B_{3}^{*} \\
-B_{2}^{*} & -B_{4}^{*}
\end{array}\right]=(A-B)^{*},
\end{aligned}
$$

$B_{2}=0, B_{3}=0, B_{4}^{2}=-B_{4}^{*}$ and

$$
\left(A_{1}-B_{1}\right)^{2}=A_{1}^{2}-A_{1} B_{1}-B_{1} A_{1}+B_{1}^{2}=A_{1}^{*}-B_{1}^{*}
$$

follows. This is true if and only if $A_{1} B_{1}=B_{1} A_{1}=B_{1}^{*}$ and $B_{4}=0$, and in that case $A B=B A=B^{*}$.
Theorem 3.5. Let $A, B \in \mathcal{H} \mathcal{G P}(H)$. Then $A B \in \mathcal{H} \mathcal{G P}(H)$ if and only if $A B=B A$.
Proof. Let $H=\mathcal{R}(A) \oplus \mathcal{N}(A)$ and $A, B \in \mathcal{H} \mathcal{G P}(H)$ have representations

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right] .
$$

Then

$$
A B=\left[\begin{array}{cc}
A_{1} B_{1} & A_{1} B_{2} \\
0 & 0
\end{array}\right],(A B)^{2}=\left[\begin{array}{cc}
A_{1} B_{1} A_{1} B_{1} & A_{1} B_{1} A_{1} B_{2} \\
0 & 0
\end{array}\right] .
$$

It is not difficult to see that

$$
(A B)^{+}=\left[\begin{array}{ll}
\left(A_{1} B_{1}\right)^{*} D^{-1} & 0 \\
\left(A_{1} B_{2}\right)^{*} D^{-1} & 0
\end{array}\right],
$$

where $D=A_{1} B_{1}\left(A_{1} B_{1}\right)^{*}+A_{1} B_{2}\left(A_{1} B_{2}\right)^{*}>0$ is invertible.

If $(A B)^{2}=(A B)^{\dagger}$, then $B_{2}=0$ which implies $D=A_{1} B_{1}\left(A_{1} B_{1}\right)^{*}$ is invertible and

$$
(A B)^{2}=\left[\begin{array}{cc}
\left(A_{1} B_{1}\right)^{2} & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\left(A_{1} B_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right]=(A B)^{\dagger}
$$

from where $A_{1} B_{1}=B_{1} A_{1}$ follows.
We can rewrite B in form

$$
B=\left[\begin{array}{cc}
B_{1} & 0 \\
B_{3} & B_{4}
\end{array}\right],
$$

while $B^{+}=B^{2}$ is

$$
B^{\dagger}=\left[\begin{array}{cc}
B_{1}^{2} & 0 \\
B_{3} B_{1}+B_{4} B_{3} & B_{4}^{2}
\end{array}\right] .
$$

The Moore-Penrose equation in the matrix form is

$$
\begin{aligned}
B^{\dagger} B B^{+} & =\left[\begin{array}{cc}
B_{1}^{5} & 0 \\
\left(B_{3} B_{1}+B_{4} B_{3}\right) B_{1}^{3}+B_{4}^{2}\left(B_{3} B_{1}^{2}+B_{4}\left(B_{3} B_{1}+B_{4} B_{3}\right)\right) & B_{4}^{5}
\end{array}\right] \\
& =\left[\begin{array}{cc}
B_{1}^{2} & 0 \\
B_{3} B_{1}+B_{4} B_{3} & B_{4}^{2}
\end{array}\right]=B^{+} .
\end{aligned}
$$

Now, $B_{1}^{5}=B_{1}^{2}, B_{4}^{5}=B_{4}^{2}$ and

$$
B_{3} B_{1}^{4}+B_{4} B_{3} B_{1}^{3}+B_{4}^{2} B_{3} B_{1}^{2}+B_{4}^{3} B_{3} B_{1}+B_{4}^{4} B_{3}=B_{3} B_{1}+B_{4} B_{3}
$$

which is equivalent to

$$
B_{4} B_{3} B_{1}^{3}+B_{4}^{2} B_{3} B_{1}^{2}+B_{4}^{3} B_{3} B_{1}=0
$$

and $B_{3}=0$.
Finally,

$$
B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{4}
\end{array}\right]
$$

and $A B=B A$.
Conversely, assume that hypergeneralized projections A, B commute i.e. that

$$
A B=\left[\begin{array}{cc}
A_{1} B_{1} & A_{1} B_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
B_{1} A_{1} & 0 \\
B_{3} A_{1} & 0
\end{array}\right]=B A
$$

This implies $B_{2}=0, B_{3}=0, A_{1} B_{1}=B_{1} A_{1}$ and it is easy to see that $(A B)^{2}=(A B)^{\dagger}$.

4. Additional results

Remark 1. Let A be a generalized projection. Then for an arbitrary $\alpha \in C, \alpha A$ is not necessarily a generalized projection. Due to a condition $A^{3}=I_{\mathcal{R}(A)}$, we have that $(\alpha A)^{3}=I_{\mathcal{R}(A)}$ and $(\alpha \lambda)^{3}=1$, where $\lambda \in \sigma(A)$. Thus we get $\alpha \in \sigma(A)$.

Remark 2. Product of orthogonal projector P and generalized inverse A in general case does not keep any of the properties that either of these operators has. Observe the decomposition $H=L \oplus L^{\perp}$, where $L=\mathcal{R}(P)$. Then

$$
P=\left[\begin{array}{cc}
I_{L} & 0 \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right], \quad P A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & 0
\end{array}\right]
$$

It is not difficult to see that $P A$ is orthogonal projection if and only if $A_{1}=I_{L}$. Then

$$
A=\left[\begin{array}{cc}
I_{L} & 0 \\
0 & A_{4}
\end{array}\right]
$$

References

[1] J.K. Baksalary and X. Liu, An alternative characterization of generalized projectors, Linear Algebra Appl. 388 (2004), 61-65.
[2] J. K. Baksalary, O. M. Baksalary, X. Liu and G. Trenkler, Further results on generalized and hypergeneralized projectors, Linear Algebra Appl. 429 (2008), 1038-1050.
[3] J. Benitez and N. Thome, Characterizations and linear combinations of k-generalized projectors, Linear Algebra Appl. 410 (2005), 150-159.
[4] H. Du and Y. Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005), 313-318.
[5] D. S. Djordjević and J. Koliha, Characterizing hermitian, normal and EP operators, Filomat 21:1 (2007), 39-54.
[6] D. S. Djordjević and V. Rakočević, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2008.
[7] J. Gross and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474.

[^0]: 2010 Mathematics Subject Classification. 47A05.
 Keywords. Generalized projection; hypergeneralized projection.
 Received: 11 June 2013; Accepted: 23 September 2013
 Communicated by Snežana Č. Živković Zlatanović
 The research work is supported by the Ministry of Education, Science and Technological Developement, Republic of Serbia, grant no. 174007.

 Email addresses: sonja.radosavljevic@liu.se (Sonja Radosavljević), dragan@pmf.ni.ac.rs (Dragan S. Djordjević)

