# Adjugates of commuting-block matrices 

Robin Harte ${ }^{\text {a }}$, Carlos Hernandez ${ }^{\text {b }}$, Elena de Oteyza ${ }^{\text {c }}$<br>${ }^{a}$ Trinity College, Dublin, Ireland<br>${ }^{b}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, México<br>${ }^{c}$ Faculdad de Ciencias, Universidad Nacional Autónoma de México, México


#### Abstract

For commuting-block matrices, "the determinant of the determinant is the determinant"; here we find the corresponding result for the adjugate.


0. Introduction There are four familiar ways of looking at a $4 \times 4$ matrix $T=\left(T_{i j}\right)$ with entries in the field $K$ : as an array of sixteen numbers $T_{i j} \in K$; as a single entity $T \in G=K^{4 \times 4}$; as a row of four columns; as a column of four rows. For a fifth interpretation think of
0.1

$$
T=\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right) \in A^{2 \times 2} \text { with } A=K^{2 \times 2}
$$

as a $2 \times 2$ matrix of $2 \times 2$ matrices. If we write
0.2

$$
|T| \equiv \operatorname{det}_{A}(T)=a b-m n
$$

then we might think of $|T|$ as some kind of " $A$-valued determinant" for the matrix $T$. There is of course an ambiguity about the order in which to write the constituents of the products $a b$ and $m n$ : provided however 0.3

$$
\{a, m, n, b\} \subseteq A \text { is commutative }
$$

then [4],[6] indeed $|T| \in A$ will function as a "determinant" for the invertibility of $T \in G$ :

$$
|T| \in A^{-1} \subseteq A \Longleftrightarrow T \in G^{-1} \subseteq G .
$$

The transparent way to see this is to introduce an analagous "adjugate" matrix:
0.5

$$
T^{\sim} \equiv \operatorname{adj}_{A}(T)=\left(\begin{array}{cc}
b & -m \\
-n & a
\end{array}\right) \in G=A^{2 \times 2}:
$$

[^0]given the commutivity (0.3) it is clear that
0.6
$$
T^{\sim} T=|T| I=T T^{\sim}
$$
and given commutivity of eight matrices $\left\{a, m, n, b, a^{\prime}, m^{\prime}, n^{\prime}, b^{\prime}\right\}$ the reverse product law
$$
\operatorname{adj}_{A}\left(T^{\prime} T\right)=\operatorname{adj}_{A}(T) \operatorname{adj}_{A}\left(T^{\prime}\right)
$$
will be equally clear. From classical (numerical) determinant theory, the determination (0.4) says something about two different numerical determinants:
$$
\operatorname{det}_{K} \operatorname{det}_{A}(T)=0 \Longleftrightarrow \operatorname{det}_{K}(T)=0
$$

Thus it will come as no surprise that generally, given the commutivity (0.3),

$$
\operatorname{det}_{K} \operatorname{det}_{A}(T)=\operatorname{det}_{K}(T)
$$

This is the result of Kovacs, Silver and Williams [6], established for $n \times n$ matrices of mutually commuting $m \times m$ matrices. In this note we set out to establish the corresponding result for adjugates:
0.10

$$
\operatorname{adj}_{K} \operatorname{det}_{A}(T) \operatorname{adj}_{A}(T)=\operatorname{adj}_{K}(T)=\operatorname{adj}_{A}(T) \operatorname{adj}_{K} \operatorname{det}_{A}(T)
$$

Our leverage is a surprisingly simple formula for the adjugate of a "block triangle": ‘

1. Definition Suppose $G$ is a linear algebra, with identity I and invertible group $G^{-1}$, over the ring $A$ : then an adjugate on $G$ is a partially defined mapping

## 1.1

$$
T \mapsto T^{\sim}: D \rightarrow D \subseteq G
$$

defined on a set containing the "scalars", and closed under the action of polynomials with central coefficients,

$$
1.2 \quad A \subseteq D ; p \in \operatorname{Centre}(A)[z] \Longrightarrow p(D) \subseteq D
$$

which satisfies the following three conditions: if S,T and ST are in $D$ then

$$
I^{\sim}=I \in D
$$

1.4

$$
(S T)^{\sim}=T^{\sim} S^{\sim} \in D
$$

1.5

$$
T^{\sim} T=T T^{\sim}=|T| I \in D
$$

The scalar-valued mapping $T \mapsto|T| \in A$ is the associated determinant.
For example if $A$ is commutative and $G$ is finite dimensional then there is a familiar, if a little complicated, adjugate defined on all of $G$. For semisimple complex Banach algebras we can define [1],[5] the determinant and adjugate on the coset $I+\operatorname{Socle}(G)$. On the other hand if we wish to treat $G=K^{4 \times 4}$ as an algebra over $A=K^{2 \times 2}$ then we will restrict ourselves to "internally commutative" $T \in G$, which have mutually commuting entries. For the product $S T$ of (1.2) to satisfy this condition it will be sufficient that the pair $(S, T)$ be "jointly internally commutative". We should remark [5] that the conditions of Definition 1 do not completely determine the adjugate $T^{\sim}$ : for example if we multiply $T^{\sim}$ by a power $|T|^{k}$ of the determinant the conditions (1.3)-(1.5) will continue to hold.
2. Theorem Suppose adjugate mappings
2.1

$$
a \mapsto a^{\sim}, b \mapsto b^{\sim}
$$

are defined on domains $D_{A}$ and $D_{B}$ in linear algebras $A$ and $B$ over the ring $K$ : then an adjugate mapping

$$
\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right) \mapsto\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)^{\sim}
$$

is partially defined on the block triangles $\left(\begin{array}{cc}A & M \\ O & B\end{array}\right) \cup\left(\begin{array}{cc}A & O \\ N & B\end{array}\right) \subseteq G=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$ by the formulae
2.3

$$
\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)^{\sim}=\left(\begin{array}{cc}
|b| a^{\sim} & -a^{\sim} m b^{\sim} \\
0 & |a| b^{\sim}
\end{array}\right) \text { and }\left(\begin{array}{ll}
a & 0 \\
n & b
\end{array}\right)^{\sim}=\left(\begin{array}{cc}
|b| a^{\sim} & 0 \\
-b^{\sim} n a^{\sim} & |a| b^{\sim}
\end{array}\right)
$$

so that also
2.4

$$
\left|\begin{array}{cc}
a & m \\
0 & b
\end{array}\right|=\left|\begin{array}{ll}
a & 0 \\
n & b
\end{array}\right|=|a||b|
$$

The domain of definition consists of those block triangles for which

$$
a \in D_{A} ; b \in D_{B} ;\{|a|,|b|\} \subseteq \operatorname{comm}(a, b, m, n) .
$$

Proof. We need to check conditions (1.3)-(1.5): for example

$$
\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
|b| a^{\sim} & -a^{\sim} m b^{\sim} \\
0 & |a| b^{\sim}
\end{array}\right)=\left(\begin{array}{cc}
a|b| a^{\sim} & m|a| b^{\sim}-a a^{\sim} m b^{\sim} \\
0 & b|a| b^{\sim}
\end{array}\right),=\left(\begin{array}{cc}
|a||b| & 0 \\
0 & |a||b|
\end{array}\right)
$$

provided the determinants $|a|$ and $|b|$ commute with each of $a, b$ and $m \bullet$
When in particular we think of $A=K^{k \times k}$ and $B=K^{\ell \times \ell}$ as matrices over $K$, where $K=L^{m \times m}$ is itself a matrix algebra, then the determinant and the adjugate are given by the traditional formulae: if $T=\left(T_{i j}\right) \in L^{n \times n}$ then
2.6

$$
\operatorname{det}_{L}(T)=\sum_{\pi \in \operatorname{Perm}(n)} \operatorname{sgn}(\pi) \prod_{j=1}^{n} T_{j \pi(j)}, \operatorname{adj}_{L}(T)=\left(T_{i j}^{\sim}\right)
$$

where $(-1)^{i+j} T_{i j}^{\sim}$ is the determinant of the matrix remaining when the row and column through the entry $T_{j i}$ are deleted from $T$.

The block triangle formula respects the Kovacs/Silver/Williams formula:

## 3. Theorem If there is equality

$$
\operatorname{adj}_{L} \operatorname{det}_{K}(T) \operatorname{adj}_{K}(T)=\operatorname{adj}_{L}(T)=\operatorname{adj}_{K}(T) \operatorname{adj}_{L} \operatorname{det}_{K}(T),
$$

and hence also
3.2

$$
\operatorname{det}_{L} \operatorname{det}_{K}(T)=\operatorname{det}_{L}(T),
$$

with $T=a \in A$ and with $T=b \in B$ then this also holds for internally commutative

$$
T \in\left\{\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
a & 0 \\
n & b
\end{array}\right)\right\} \subseteq\left(\begin{array}{cc}
A & M \\
N & B
\end{array}\right)
$$

Proof. Writing $(\cdot)^{\sim}=\operatorname{adj}_{K}(\cdot)$ and $|\cdot|=\operatorname{det}_{K}(\cdot)$, so that (3.1) and (3.2) take the form

$$
\operatorname{adj}_{L}|T| T^{\sim}=\operatorname{adj}_{L}(T)=T^{\sim} \operatorname{adj}_{L}|T| ; \operatorname{det}_{L}|T|=\operatorname{det}_{L} T
$$

we have

$$
\operatorname{adj}_{L}\left|\begin{array}{cc}
a & m \\
0 & b
\end{array}\right|\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)^{\sim}=\operatorname{adj}_{L}|a| \operatorname{adj}_{L}|b|\left(\begin{array}{cc}
|b| a^{\sim} & -a^{\sim} m b^{\sim} \\
0 & |a| b^{\sim}
\end{array}\right)
$$

$$
\begin{aligned}
&=\left(\begin{array}{cc}
\left(\operatorname{adj}_{L}|b|\right)|b|\left(\operatorname{adj}_{L}|a|\right) a^{\sim} & -\left(\operatorname{adj}_{L}|a|\right) a^{\sim} m\left(\operatorname{adj}_{L}|b|\right) b^{\sim} \\
0 & \left(\operatorname{adj}_{L}|a|\right)|a|\left(\operatorname{adj}_{L}|b|\right) b^{\sim}
\end{array}\right) \\
&=\left(\begin{array}{cc}
\left(\operatorname{det}_{L}|b|\right) \operatorname{adj}_{L}(a) & \operatorname{adj}_{L}(a) m \operatorname{adj}_{L}(b) \\
0 & \left(\operatorname{det}_{L}|a|\right) \operatorname{adj}_{L}(b)
\end{array}\right)=\operatorname{adj}_{L}\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right) .
\end{aligned}
$$

The argument for the lower triangle is the same •
Theorem 3 suggests an inductive proof of (3.1) for commuting block matrices. If $A=K$ then, following the argument of [6], write

$$
\left(\begin{array}{cc}
1 & 0 \\
-n & a
\end{array}\right)\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)=\left(\begin{array}{cc}
a & m \\
0 & a b-n m
\end{array}\right) ;\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)\left(\begin{array}{cc}
1 & -m \\
0 & a
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
n & a b-n m
\end{array}\right)
$$

remembering $a \in K \subseteq B$ in the bottom right hand corner. Thus we can write $S T=U$ and $T R=V$ with (3.1) holding for $S, R, U$ and $V$, so that

$$
\operatorname{adj}_{L}(T) \operatorname{adj}_{L}|S| S^{\sim}=\operatorname{adj}_{L}|U| U^{\sim}=\operatorname{adj}_{L}|T| a j_{L}|S| S^{\sim} T^{\sim}
$$

This is hovering around what we are looking for:
4. Theorem If $T=\left(T_{i j}\right)$ is a commuting block matrix over $K=L^{m \times m}$, for a commutative ring $L$, then (3.1) and (3.2) hold. Proof. The argument is by induction on $n \in \mathbf{N}$, where $T \in K^{n \times n}$. It is clear when $n=1$, and to transmit the conclusion from $n=k$ to $n=k+1$ suppose $T$ is a block triangle, with $A=K$ and $B=A^{k \times k}$. Both factorizations $S T=U$ and $T R=V$ from (3.3) are available; in the notation of Theorem 3

$$
|T||S|=|U| \text { and } \operatorname{det}_{L}(T) \operatorname{det}_{L}(S)=\operatorname{det}_{L}(U),
$$

and hence
4.2

$$
\operatorname{det}_{L}(S) \operatorname{det}_{L}(T)=\operatorname{det}_{L}(U)=\operatorname{det}_{L}|U|=\operatorname{det}_{L}(|T||S|)=\operatorname{det}_{L}|S| \operatorname{det}_{L}|T|=\operatorname{det}_{L}(S) \operatorname{det}_{L}|T| .
$$

This therefore establishes (3.2): but now

$$
T T^{\sim} \operatorname{adj}_{L}(T)=T \operatorname{adj}_{L}|T|
$$

and hence if $T=\left(T_{i j}\right)$ is not a left zero divisor in $K^{n \times n}$ the second half of (3.1) holds. Similarly if $T$ is not a right zero divisor then the factorization $T R=V$ gives the first half of (3.1). But now, again as in [6], we may replace the ring $L$ by the polynomial ring $L[t]$, and similarly $K, A$ and $B$, and repeat the whole argument with $T-t I$ in place of $T$. Since $T-t I$ is never either a left or a right zero divisor in the appropriate polynomial ring with matrix coefficients, and

$$
(T-t I)(T-t I)^{\sim} \operatorname{adj}_{L}(T-t I)=(T-t I) \operatorname{adj}_{L}|T-t I|
$$

we obtain the analogue of (3.2) with $T-t I$ in place of $T$, and can now "set $t=0$ " $\bullet$
This argument also shows that each of the formulae of Theorem 3 follows from the other. The extension to Banach algebras is straightforward.

The easiest way for $T=\left(T_{i j}\right)$ to be "commuting block" is [6] for

$$
T_{i j}=p_{i j}(S):
$$

each block $T_{i j}$ is a polynomial in a common matrix $S$. When there are four blocks of the same size then we recover the formula (0.5). When either $B=A^{k \times k}$ or $A=B^{k \times k}$ as in Theorem 3 then we are in the situation of "Cholesky's algorithm" [2],[3] which can be used to test for positivity: if $A=K^{k \times k}$ and $B=K$ is the scalars
4.6

$$
\left(\begin{array}{cc}
a & m \\
n & b
\end{array}\right)^{\sim}=\left(\begin{array}{cc}
b a^{\sim}-d & -a^{\sim} m \\
-n a^{\sim} & |a|
\end{array}\right)
$$

and
4.7

$$
\left|\begin{array}{cc}
a & m \\
n & b
\end{array}\right|=|a| b-n a^{\sim} m
$$

where the matrix $d=\Phi(m, a, n)$ is independent of $b$, linear in $m$ and in $n$, and satisfies
4.8

$$
m d=0=d n \text { and }|a| d=\left(n a^{\sim} m\right) a^{\sim}-a^{\sim} m n a^{\sim} .
$$

In the case of Cholesky's algorithm $K=\mathbf{C}, a \geq 0$ is "positive", $b$ is real and $n=m^{*}$, so that the whole matrix $T$ is hermitian.

We conclude with a count of the multiplications required to calculate each of $|T|$ and $T^{\sim}$ in each of three different ways:

|  | $(2.6)$ | $(3.2)$ | $(4.7)$ | $(2.6)$ | $(3.1)$ | $(4.6)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4 \times 4$ | 40 | 18 | 25 | 144 | 48 | 90 |
| $5 \times 5$ | 206 |  | 56 | 1000 |  | 216 |
| $6 \times 6$ | 1236 | 63 | 183 | 7380 | 180 | 410 |
| $7 \times 7$ | 8659 |  | 233 | 60564 |  | 594 |
| $8 \times 8$ | 69260 | 146 | 377 | 554176 | 432 | 852 |

The first three columns count multiplications for the determinant $|T|$, first by the traditional method, second using the Kovacs/Silver/Williams formula, assuming commuting block structure, and third by means of the inductive procedure suggested by the Cholesky algorithm. The second three columns count multiplications for the adjugate $T^{\sim}$ in the same ways.

## References

[1] B. Aupetit and H. du T. Mouton, Trace and determinant in Banach algebras, Studia Math. 121 (1996) 115-136.
[2] R. E. Curto, C. Hernández and E. de Oteyza, Contractive completions of Hankel partial contractions, J. Math. Annal. Appl. 203 (1996) 203-332.
[3] C. Davis, A device for studying Hausdorff moments, Trans. Amer. Math. Soc. 87 (1958) 144-158.
[4] R. E. Harte, A matrix joke, Irish Math. Soc. Newsletter 14 (1985) 13-16.
[5] R. E. Harte and C. Hernández, Adjugates in Banach algebras, Proc. Amer. Math. Soc. 134 (2006) 1397-1404.
[6] I. Kovacs, D. S. Silver and S. G. Williams, Determinants of commuting block matrices, Amer. Math. Monthly 106 (1999) 950-952.


[^0]:    2010 Mathematics Subject Classification. 15A15
    Keywords. Commuting-block matrices; adjugate; determinant.
    Received: 1 May 2013; Accepted: 30 August 2013
    Communicated by Dragan S. Djordjević
    Email addresses: hartere@gmail.com (Robin Harte), carlosh@servidor.unam.mx (Carlos Hernandez), eoo@hp.fciencias.unam.mx (Elena de Oteyza)

