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Abstract. For commuting-block matrices, “the determinant of the determinant is the determinant”; here
we find the corresponding result for the adjugate.

0. Introduction There are four familiar ways of looking at a 4 × 4 matrix T = (Ti j) with entries in the field
K: as an array of sixteen numbers Ti j ∈ K; as a single entity T ∈ G = K4×4; as a row of four columns; as a
column of four rows. For a fifth interpretation think of

0.1 T =

(
a m
n b

)
∈ A2×2 with A = K2×2

as a 2 × 2 matrix of 2 × 2 matrices. If we write

0.2 |T| ≡ detA(T) = ab −mn

then we might think of |T| as some kind of “A-valued determinant” for the matrix T. There is of course an
ambiguity about the order in which to write the constituents of the products ab and mn: provided however

0.3 {a,m,n, b} ⊆ A is commutative

then [4],[6] indeed |T| ∈ A will function as a “determinant” for the invertibility of T ∈ G:

0.4 |T| ∈ A−1 ⊆ A⇐⇒ T ∈ G−1 ⊆ G .

The transparent way to see this is to introduce an analagous “adjugate” matrix:

0.5 T∼ ≡ adjA(T) =

(
b −m
−n a

)
∈ G = A2×2 :
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given the commutivity (0.3) it is clear that

0.6 T∼T = |T|I = TT∼ ,

and given commutivity of eight matrices {a,m,n, b, a′,m′,n′, b′} the reverse product law

0.7 adjA(T′T) = adjA(T)adjA(T′)

will be equally clear. From classical (numerical) determinant theory, the determination (0.4) says something
about two different numerical determinants:

0.8 detKdetA(T) = 0⇐⇒ detK(T) = 0 .

Thus it will come as no surprise that generally, given the commutivity (0.3),

0.9 detKdetA(T) = detK(T) .

This is the result of Kovacs, Silver and Williams [6], established for n × n matrices of mutually commuting
m ×m matrices. In this note we set out to establish the corresponding result for adjugates:

0.10 adjKdetA(T) adjA(T) = adjK(T) = adjA(T) adjKdetA(T) .

Our leverage is a surprisingly simple formula for the adjugate of a “block triangle”: ‘
1. Definition Suppose G is a linear algebra, with identity I and invertible group G−1, over the ring A: then an

adjugate on G is a partially defined mapping

1.1 T 7→ T∼ : D→ D ⊆ G ,

defined on a set containing the “scalars”, and closed under the action of polynomials with central coefficients,

1.2 A ⊆ D ; p ∈ Centre(A)[z] =⇒ p(D) ⊆ D ,

which satisfies the following three conditions: if S,T and ST are in D then

1.3 I∼ = I ∈ D ;

1.4 (ST)∼ = T∼S∼ ∈ D;

1.5 T∼T = TT∼ = |T|I ∈ D .

The scalar-valued mapping T 7→ |T| ∈ A is the associated determinant.
For example if A is commutative and G is finite dimensional then there is a familiar, if a little complicated,

adjugate defined on all of G. For semisimple complex Banach algebras we can define [1],[5] the determinant
and adjugate on the coset I + Socle(G). On the other hand if we wish to treat G = K4×4 as an algebra
over A = K2×2 then we will restrict ourselves to “internally commutative” T ∈ G, which have mutually
commuting entries. For the product ST of (1.2) to satisfy this condition it will be sufficient that the pair
(S,T) be “jointly internally commutative”. We should remark [5] that the conditions of Definition 1 do not
completely determine the adjugate T∼: for example if we multiply T∼ by a power |T|k of the determinant
the conditions (1.3)-(1.5) will continue to hold.

2. Theorem Suppose adjugate mappings

2.1 a 7→ a∼ , b 7→ b∼



Robin Harte, Carlos Hernandez and Elena de Oteyza / FAAC 5:2 (2013), 17–21 19

are defined on domains DA and DB in linear algebras A and B over the ring K: then an adjugate mapping

2.2
(
a m
n b

)
7→

(
a m
n b

)∼

is partially defined on the block triangles
(
A M
O B

)
∪

(
A O
N B

)
⊆ G =

(
A M
N B

)
by the formulae

2.3
(
a m
0 b

)∼
=

(
|b|a∼ −a∼mb∼

0 |a|b∼
)

and
(
a 0
n b

)∼
=

(
|b|a∼ 0
−b∼na∼ |a|b∼

)
,

so that also

2.4
∣∣∣∣∣
a m
0 b

∣∣∣∣∣ =

∣∣∣∣∣
a 0
n b

∣∣∣∣∣ = |a| |b| .

The domain of definition consists of those block triangles for which

2.5 a ∈ DA ; b ∈ DB ; {|a|, |b|} ⊆ comm(a, b,m,n) .

Proof. We need to check conditions (1.3)-(1.5): for example
(
a m
0 b

) (
|b|a∼ −a∼mb∼

0 |a|b∼
)

=

(
a|b|a∼ m|a|b∼ − aa∼mb∼

0 b|a|b∼
)
, =

(
|a||b| 0

0 |a||b|
)

provided the determinants |a| and |b| commute with each of a, b and m •
When in particular we think of A = Kk×k and B = K`×` as matrices over K, where K = Lm×m is itself a matrix

algebra, then the determinant and the adjugate are given by the traditional formulae: if T = (Ti j) ∈ Ln×n

then

2.6 detL(T) =
∑

π∈Perm(n)

sgn(π)
n∏

j=1

T jπ( j) , adjL(T) = (T∼i j)

where (−1)i+ jT∼i j is the determinant of the matrix remaining when the row and column through the entry
T ji are deleted from T.

The block triangle formula respects the Kovacs/Silver/Williams formula:
3. Theorem If there is equality

3.1 adjLdetK(T) adjK(T) = adjL(T) = adjK(T) adjLdetK(T) ,

and hence also

3.2 detLdetK(T) = detL(T) ,

with T = a ∈ A and with T = b ∈ B then this also holds for internally commutative

T ∈ {
(
a m
0 b

)
,

(
a 0
n b

)
} ⊆

(
A M
N B

)
.

Proof. Writing (·)∼ = adjK(·) and | · | = detK(·), so that (3.1) and (3.2) take the form

adjL|T| T∼ = adjL(T) = T∼adjL|T| ; detL|T| = detLT ,

we have

adjL

∣∣∣∣∣
a m
0 b

∣∣∣∣∣
(
a m
0 b

)∼
= adjL|a|adjL|b|

(
|b|a∼ −a∼mb∼

0 |a|b∼
)
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=

(
(adjL|b|)|b|(adjL|a|)a∼ −(adjL|a|)a∼m(adjL|b|)b∼

0 (adjL|a|)|a|(adjL|b|)b∼
)

=

(
(detL|b|)adjL(a) adjL(a)m adjL(b)

0 (detL|a|)adjL(b)

)
= adjL

(
a m
0 b

)
.

The argument for the lower triangle is the same •
Theorem 3 suggests an inductive proof of (3.1) for commuting block matrices. If A = K then, following

the argument of [6], write

3.3
(

1 0
−n a

) (
a m
n b

)
=

(
a m
0 ab − nm

)
;
(
a m
n b

) (
1 −m
0 a

)
=

(
a 0
n ab − nm

)
,

remembering a ∈ K ⊆ B in the bottom right hand corner. Thus we can write ST = U and TR = V with (3.1)
holding for S, R, U and V, so that

3.4 adjL(T)adjL|S|S∼ = adjL|U|U∼ = adjL|T|adjL|S|S∼T∼ .

This is hovering around what we are looking for:
4. Theorem If T = (Ti j) is a commuting block matrix over K = Lm×m, for a commutative ring L, then (3.1) and
(3.2) hold. Proof. The argument is by induction on n ∈ N, where T ∈ Kn×n. It is clear when n = 1, and to
transmit the conclusion from n = k to n = k + 1 suppose T is a block triangle, with A = K and B = Ak×k. Both
factorizations ST = U and TR = V from (3.3) are available; in the notation of Theorem 3

4.1 |T||S| = |U| and detL(T)detL(S) = detL(U) ,

and hence

4.2 detL(S)detL(T) = detL(U) = detL|U| = detL(|T||S|) = detL|S|detL|T| = detL(S)detL|T| .

This therefore establishes (3.2): but now

4.3 T T∼adjL(T) = T adjL|T| ,

and hence if T = (Ti j) is not a left zero divisor in Kn×n the second half of (3.1) holds. Similarly if T is not a
right zero divisor then the factorization TR = V gives the first half of (3.1). But now, again as in [6], we may
replace the ring L by the polynomial ring L[t], and similarly K, A and B, and repeat the whole argument with
T − tI in place of T. Since T − tI is never either a left or a right zero divisor in the appropriate polynomial
ring with matrix coefficients, and

4.4 (T − tI)(T − tI)∼adjL(T − tI) = (T − tI)adjL|T − tI| ,

we obtain the analogue of (3.2) with T − tI in place of T, and can now “set t = 0” •
This argument also shows that each of the formulae of Theorem 3 follows from the other. The extension

to Banach algebras is straightforward.
The easiest way for T = (Ti j) to be “commuting block” is [6] for

4.5 Ti j = pi j(S) :

each block Ti j is a polynomial in a common matrix S. When there are four blocks of the same size then we
recover the formula (0.5). When either B = Ak×k or A = Bk×k as in Theorem 3 then we are in the situation of
“Cholesky’s algorithm” [2],[3] which can be used to test for positivity: if A = Kk×k and B = K is the scalars

4.6
(
a m
n b

)∼
=

(
ba∼ − d −a∼m
−na∼ |a|

)
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and

4.7
∣∣∣∣∣
a m
n b

∣∣∣∣∣ = |a|b − na∼m ,

where the matrix d = Φ(m, a,n) is independent of b, linear in m and in n, and satisfies

4.8 md = 0 = dn and |a|d = (na∼m)a∼ − a∼mna∼ .

In the case of Cholesky’s algorithm K = C, a ≥ 0 is “positive”, b is real and n = m∗, so that the whole matrix
T is hermitian.

We conclude with a count of the multiplications required to calculate each of |T| and T∼ in each of three
different ways:

(2.6) (3.2) (4.7) (2.6) (3.1) (4.6)
4 × 4 40 18 25 144 48 90
5 × 5 206 56 1000 216
6 × 6 1236 63 183 7380 180 410
7 × 7 8659 233 60564 594
8 × 8 69260 146 377 554176 432 852

The first three columns count multiplications for the determinant |T|, first by the traditional method, second
using the Kovacs/Silver/Williams formula, assuming commuting block structure, and third by means of the
inductive procedure suggested by the Cholesky algorithm. The second three columns count multiplications
for the adjugate T∼ in the same ways.
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