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Abstract. Let T be a bounded linear operator on a complex Hilbert space H . T is called a ∗-paranormal
operator T if ‖T∗x‖2 ≤ ‖T2x‖·‖x‖ for all x ∈ H . ”∗-paranormal” is a generalization of hyponormal (TT∗ ≤ T∗T),
and it is known that a ∗-paranormal operator has several interesting properties. In this paper, we prove
that if T is polynomially ∗-paranormal, i.e., there exists a nonconstant polynomial q(z) such that q(T) is
∗-paranormal, then T is isoloid and the spectral mapping theorem holds for the essential approximate point
spectrum of T. Also, we prove related results.

1. Introduction

An operator T on a Hilbert space H is called paranormal and ∗-paranormal if ‖Tx‖2 ≤ ‖T2x‖ · ‖x‖ and
‖T∗x‖2 ≤ ‖T2x‖·‖x‖ for all x ∈ H , respectively. There are interesting results concerning paranormal operators
([1], [2], [21]). It is well known that a paranormal operator T is normaloid, i.e., ‖T‖ = r(T) = sup{|z| : z ∈
σ(T)}, moreover T is invertible then T−1 is also paranormal. In [3] Arora and Thukral showed that a ∗-
paranormal operator is normaloid and N(T−λ) ⊂ N ((T − λ)∗) for all λ ∈ C. Recently, in [22] Uchiyama and
Tanahashi showed an example of invertible ∗-paranormal operator T such that T−1 is not normaloid, that
is, this operator T−1 is not ∗-paranormal. Definitions of paranormal and ∗-paranormal are similar but those
properties are different.

T is called polynomially ∗-paranormal if there exists a nonconstant polynomial q(z) such that q(T) is
∗-paranormal. A ∗-paranormal operator is an extension of a hyponormal operator. Several interesting
properties were proved by many authors ([3], [9], [12], [16]).

Let B(H) be the set of all bounded linear operators onH . For T ∈ B(H), R(T) and N(T) denote the range
and the null space of T, respectively. T is called left semi-Fredholm if R(T) is closed and dim N(T) < ∞ and
T is called right semi-Fredholm if R(T) is closed and dim N(T∗) = dim R(T)⊥ < ∞. T is called semi-Fredholm
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if it is either left or right semi-Fredholm and T is called Fredholm it is both left and right semi-Fredholm.
The index of a semi-Fredholm operator T is defined by

ind T = dim N(T) − dim R(T)⊥ = dim N(T) − dim N(T∗).

T is called Weyl if it is a Fredholm operator of index zero. The essential spectrum σe(T) and the Weyl
spectrum σw(T) are defined by

σe(T) = {λ ∈ C : T − λ is not Fredholm },
σw(T) = {λ ∈ C : T − λ is not Weyl }.

It is known that σe(T) and σw(T) are non-empty compact sets and σe(T) ⊂ σw(T) ⊂ σ(T) if dimH = ∞. π00(T)
denotes the set of all isolated points of σ(T) which are eigenvalues of finite multiplicity. We say that Weyl’s
theorem holds for T if

σ(T) \ σw(T) = π00(T).

T is called isoloid if every isolated point of σ(T) is an eigenvalue of T.
H. Weyl [23] studied the spectrum of all compact perturbations of self-adjoint operators and proved that

Weyl’s theorem holds for self-adjoint operators. This result has been extended to hyponormal operators by
[4], p-hyponormal operators ( (TT∗)p ≤ (T∗T)p for 0 < p ≤ 1) by [5], [8], [20], log-hyponormal operators ( T is
invertible and log(TT∗) ≤ log(T∗T)) by [6], for polynomially (algebraically) hyponormal operators by [11].

In this paper, we prove that polynomially ∗-paranormal operators are isoloid and the spectral mapping
theorem holds for the essential approximate point spectrum of T for polynomially ∗-paranormal operators.
This is a generalization of Han and Kim [12], in which they proved that if T−λ is ∗-paranormal for all λ ∈ C,
then Weyl’s theorem holds for T.

2. Results

Arora and Thukral [3] showed N(T −λ) ⊂ N ((T − λ)∗) for a ∗-paranormal operator T. In case of isolated
points, the following result holds. It is due to [22].

Lemma 2.1. Let T ∈ B(H) be ∗-paranormal. Let λ ∈ σ(T) be an isolated point and Eλ be the Riesz idempotent for λ.
Then

EλH = N(T − λ) = N ((T − λ)∗) .

In particular, Eλ is self-adjoint, i.e., it is an orthogonal projection.

An operator T ∈ B(H) is said to have finite ascent if N(Tm) = N(Tm+1) for some positive integer m, and
finite descent if R(Tn) = R(Tn+1) for some positive integer n.

Lemma 2.2. Let T ∈ B(H) be ∗-paranormal. Then

N(T − λ) = N((T − λ)2)

for λ ∈ C. Hence T − λ has finite ascent for λ ∈ C.

Proof. Let x ∈ N((T − λ)2). Since N(T − λ) ⊂ N ((T − λ)∗) for λ ∈ C by [3], we have (T − λ)x ∈ N(T − λ) ⊂
N ((T − λ)∗) . Hence

‖(T − λ)x‖2 = 〈(T − λ)∗(T − λ)x, x〉 = 0.

Hence N((T − λ)2) ⊂ N(T − λ). The converse is clear.

An operator T ∈ B(H) is said to have the single valued extension property if there exists no nonzero
analytic function f such that (T − z) f (z) ≡ 0. In this case, the local resolvent ρT(x) of x ∈ H denotes the
maximal open set on which there exists unique analytic function f (z) satisfying (T − z) f (z) ≡ x. The local
spectrum σT(x) of x ∈ H is defined by σT(x) = C \ ρT(x) and XT(F) = {x ∈ H : σT(x) ⊂ F} for a given set
F ⊂ C. Larusen [14] proved that if T−λ has finite ascent for all λ ∈ C, then T has the single valued extension
property.
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Theorem 2.3. If T ∈ B(H) is polynomially ∗-paranormal, then T − λ has finite ascent for all λ ∈ C.

Proof. Let q(T) be ∗-paranormal for some nonconstant polynomial q(z). Let

q(z) − q(λ) = a(z − λ)mΠn
j=1(z − λ j)

where a , 0, 1 ≤ m and λ j , λ. Then

q(T) − q(λ) = a(T − λ)mΠn
j=1(T − λ j).

It suffices to show that
N((T − λ)m+1) ⊂ N((T − λ)m).

Let x ∈ N((T − λ)m+1). Then

(q(T) − q(λ))x = a(T − λ)mΠn
j=1(T − λ + λ − λ j)x

= aΠn
j=1(λ − λ j)(T − λ)mx.

Hence (q(T) − q(λ))2x = a2Πn
j=1(λ − λ j)2(T − λ)2mx = 0 by assumption. Hence x ∈ N((q(T) − q(λ))2) =

N(q(T) − q(λ)) by Lemma 2. Thus

(q(T) − q(λ))x = aΠn
j=1(λ − λ j)(T − λ)mx = 0

and x ∈ N((T − λ)m).

Corollary 2.4. If an operator T ∈ B(H) is polynomially ∗- paranormal, then T has the single valued extension
property. Hence, if λ ∈ σ(T) is an isolated point of σ(T), then

HT({λ}) = {x ∈ H : ‖(T − λ)nx‖ 1
n → 0} = EλH

where Eλ denotes the Riesz idempotent for λ.

Proof. Since T has the single valued extension property by Theorem 3 and [14], the first equality follows
from [14] (Corollary 2.4) and the second equality follows from [18] (p.424).

For Theorem 6, we need a following lemma ([22] Corollary 1). In [2], Aiena and Guillen proved Theorem 6
for polynomially paranormal operators.

Lemma 2.5. Let T ∈ B(H) be ∗-paranormal. If σ(T) = {λ}, then T = λ · I.

Theorem 2.6. If T ∈ B(H) is polynomially ∗-paranormal and σ(T) = {λ}, then T − λ is nilpotent.

Proof. Let q(T) be ∗-paranormal for some non-constant polynomial q(z). Let

q(z) − q(λ) = a(z − λ)mΠn
j=1(z − λ j)

where a , 0, 1 ≤ m and λ j , λ. Then

q(T) − q(λ) = a(T − λ)mΠn
j=1(T − λ j).

Since σ(q(T)) = q(σ(T)) = {q(λ)}, q(T) = q(λ) by Lemma 5 and

0 = q(T) − q(λ) = a(T − λ)mΠn
j=1(T − λ j).

Since a , 0 and Πn
j=1(T − λ j) is invertible, this implies (T − λ)m = 0.
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For Theorems 8 and 14, we prepare the following lemma ([22] Lemma 2).

Lemma 2.7. If T is ∗-paranormal andM is an invariant subspace for T, then T|M is also ∗-paranormal.

Theorem 2.8. Weyl’s theorem holds for polynomially ∗-paranormal operators.

Proof. Let T ∈ B(H) be polynomially ∗-paranormal and λ ∈ σ(T) \ σw(T). Then T − λ is Weyl and not
invertible. If λ is an interior point of σ(T), there exists an open set G such that λ ∈ G ⊂ σ(T) \ σw(T). Hence
dim N(T − µ) > 0 for all µ ∈ G and T does not have the single valued extension property by [10] Theorem
10. This is a contradiction. Hence λ is a boundary point of σ(T), and hence an isolated point of σ(T) by [7]
Theorem XI 6.8. Thus λ ∈ π00(T).

Let λ ∈ π00(T) and Eλ be the Reisz idempotent for λ. Then 0 < dim N(T − λ) < ∞,

T = T|EλH ⊕ T|(I − Eλ)H

and
σ(T|EλH) = {λ}, σ(T|(I − Eλ)H) = σ(T) \ {λ}.

Let q(z) be a nonconstant polynomial such that q(T) is ∗-paranormal. Since q(T) = q(T)|EλH⊕q(T)|(I−Eλ)H ,
q(T)|EλH = q(T|EλH) is ∗-paranormal by Lemma 7. Hence, T|EλH is polynomially ∗-paranormal and there
exists a positive integer m such that (T|EλH − λ)m = 0 by Theorem 6. Hence

dim EλH = dim N((T|EλH − λ)m)
≤ dim N((T − λ)m)
≤ m dim N(T − λ) < ∞.

Thus Eλ is finite rank and λ ∈ σ(T) \ σw(T) by [7] Proposition XI 6.9.

The proof of next lemma is due to Y.M. Han and W. Y. Lee [11] (in the proof of Theorem 3).

Lemma 2.9. Let T ∈ B(H) and λ ∈ C. If T − λ is semi-Fredholm and it has finite ascent, then ind (T − λ) ≤ 0.

Proof. If T − λ has finite descent, then ind (T − λ) = 0 by [19] Theorem V 6.2. If T − λ does not have finite
descent, then

n · ind (T − λ) = dim N(T − λ)n − dim R((T − λ)n)⊥ → −∞.
Hence ind (T − λ) < 0.

Corollary 2.10. If T ∈ B(H) is polynomially ∗-paranormal and T − λ is semi-Fredholm for some λ ∈ C, then
ind (T − λ) ≤ 0.

The following lemma is proved by [1] Corollary 3.72.

Lemma 2.11. Let T ∈ B(H) and T − λ has finite ascent for all λ ∈ C. Then

σw( f (T)) = f (σw(T))

for all functions f (z) which are analytic on some open neighborhood G of σ(T).

Hence we have the following corollary by Theorem 3.

Corollary 2.12. Let T ∈ B(H) be polynomially ∗-paranormal. Then

σw( f (T)) = f (σw(T))

for all functions f (z) which are analytic on some open neighborhood G of σ(T).



Fatemeh Abtahi / FAAC 5:2 (2013), 11–16 15

Theorem 2.13. Let T ∈ B(H) be isoloid and satisfy Weyl’s theorem. If T − λ has finite ascent for every λ ∈ C, then
Weyl’s theorem holds for f (T), where f (z) is an analytic function on some open neighborhood of σ(T).

Proof. Since T is isoloid,
f (σ(T) \ π00(T)) = σ( f (T)) \ π00( f (T))

by [15]. Since T satisfies Weyl’s theorem, by Lemma 11 it holds

f (σ(T) \ π00(T)) = f (σw(T)) = σw( f (T)).

Thus Weyl’s theorem holds for f (T).

Theorem 2.14. Polynomially ∗-paranormal operators are isoloid.

Proof. Let T ∈ B(H) be polynomially ∗-paranormal. Let λ be an isolated point of σ(T) and Eλ be the Riesz
idempotent for λ. Then

T = T|EλH ⊕ T|(I − Eλ)H
and

σ(T|EλH) = {λ}, σ(T|(I − Eλ)H) = σ(T) \ {λ}.
Since T|EλH is polynomially ∗-paranormal by Lemma 7 and there exists a positive integer m such that
(T|EλH − λ)m = 0 by Theorem 6, hence

N((T|EλH − λ)m) = EλH .

Since, for every x ∈ EλH , x ⊕ 0 ∈ N((T − λ)m), this implies N((T − λ)m) , {0} and N(T − λ) , {0}. Thus λ is
an eigenvalue of T.

Corollary 2.15. If T ∈ B(H) is polynomially ∗-paranormal, then Weyl’s theorem holds for f (T), where f (z) is an
analytic function on some open neighborhood of σ(T).

Proof. Since T is isoloid by Theorem 14,

f (σ(T) \ π00(T)) = σ( f (T)) \ π00( f (T))

by [15]. Theorem 8 and Corollary 12 imply that

f (σ(T) \ π00(T)) = f (σw(T)) = σw( f (T)).

Thus Weyl’s theorem holds for f (T).

The essential approximate point spectrum σea(T) is defined by

σea(T) = ∩{σa(T + K) : K is a compact operator }

where σa(T) is the approximate point spectrum of T. We consider the set

Φ−+(H) = {T ∈ B(H) : T is left semi-Fredholm and ind T ≤ 0}.

V. Rakočević [17] proved that
σea(T) = {λ ∈ C : T − λ < Φ−+(H)}

and the inclusion σea( f (T)) ⊆ f (σea(T)) holds for every function f (z) which is analytic on some open
neighborhood of σ(T).

Next theorem shows that the spectral mapping theorem holds for the essential approximate point
spectrum of polynomially ∗-paranormal operators.
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Theorem 2.16. Let T ∈ B(H) be polynomially ∗-paranormal. Then

σea( f (T)) = f (σea(T))

for all functions f (z) which are analytic on some open neighborhood G of σ(T).

Proof. It suffices to show that f (σea(T)) ⊆ σea( f (T)).
We may assume that f is nonconstant. Let λ < σea( f (T)) and

f (z) − λ = 1(z)Πn
j=1(z − λ j)

where λ j ∈ G and 1(z) , 0 for all z ∈ G. Then

f (T) − λ = 1(T)Πn
j=1(T − λ j).

Since λ < σea( f (T)) and all operators on the right side of above equality commute, each (T − λ j) is left
semi-Fredholm and ind (T − λ j) ≤ 0 by Corollary 10. Thus λ j < σea(T) and λ < f (σea(T)).
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[14] K. B. L, Operators with finite ascent, Pacific J. Math., 152(1992), 323–336.
[15] W. Y. L  S. H. L, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J., 38(1996), 61–64.
[16] S. M. P, Contributions to the study of spectraloid operators, Ph. D. Thesis, Delhi University, 1974.
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