Functional Analysis, Approximation and Computation 6 (2) (2014), 61–64

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Invariant subspace problem for ExB-Operators

Muneo Chō^a

^aDepartament of Mathematics, Faculty of Science, Kanagawa University, Hiratsuka 259-1293, Japan

Abstract. In this paper, we show the following: Let *A*, *B*^{*} be ExB-operators on a complex Hilbert space \mathcal{H} . If there exists a non-zero compact operator *K* such that AK = aKB + bK ($0 \neq a, b \in \mathbb{C}$), then *A* and *B* have a non-trivial invariant subspace.

1. Introduction

In this paper we denote infinite dimensional Hilbert space and Banach space by \mathcal{H} and X, respectively. Let $B(\mathcal{H})$ and B(X) be the sets of all bounded linear operators on \mathcal{H} and X, respectively. Lauric in [3] showed the following nice result: Let A, B^* be hyponormal operators on a complex Hilbert space \mathcal{H} . If there exists a non-zero Hilbert-Schmidt operator K such that AK = aKB + bK ($0 \neq a, b \in \mathbb{C}$), then A and B have a non-trivial invariant subspace. First we show that, for hyponormal operators A, B^* , there exists a non-zero operator $K \in C_p$ for some p ($1 \leq p < \infty$) such that AK = aKB + bK ($0 \neq a, b \in \mathbb{C}$), then A and B have a non-trivial invariant subspace, where C_p is a Schatten p-class. Next we introduce ExB-operators and show that, for ExB-operators A, B^* , if there exists a non-zero compact operator K such that AK = aKB + bK ($0 \neq a, b \in \mathbb{C}$), then A and B have a non-trivial invariant subspace.

2. Hyponormal operators

In the case of Hilbert space operator $T \in B(\mathcal{H})$, T is said to be *hyponormal* if $T^*T - TT^* \ge 0$ (that is, $((T^*T - TT^*)x, x) \ge 0$ for every $x \in \mathcal{H}$), where T^* is the adjoint operator of T. The numerical range of T is denoted by W(T), i.e.,

$$W(T) = \{(Tx, x) : ||x|| = 1 \}.$$

In the case of Banach space operator $T \in B(X)$, the numerical range V(T) of T is defined by

$$V(T) = \{ f(Tx) : (x, f) \in \Pi(X) \},\$$

where $\Pi(X) = \{(x, f) \in X \times X^* : ||f|| = f(x) = ||x|| = 1\}$ and X^* is the dual space of X.

Keywords. Hilbert space; Banach space; Invariant subspace; Compact operator; Hyponormal operator.

²⁰¹⁰ Mathematics Subject Classification. 47B20, 47B47.

Received: 13 Ostober 2014; Accepted: 10 November 2014

Communicated by Dragan S. Djordjević

This research is partially supported by Grant-in-Aid Scientific Research No.24540195. Dedicated to Professor Kôtarô Tanahashi for his sixtieth birthday

Email address: chiyom01@kanagawa-u.ac.jp (Muneo Chō)

Definition 1. For an operator $T \in B(X)$, *T* is called *hermitian* if $V(T) \subset \mathbb{R}$. *T* is said to be *hyponormal* if there exist hermitian operators *H*, *K* such that T = H + iK and

$$V(TT - TT) \subset \mathbb{R}_+ = [0, \infty),$$

where $\overline{T} = H - iK$. Hence if $T \in B(\mathcal{H})$, then $\overline{T} = T^*$. See detail [1] and [2].

In the case of Banach space operator, there exist an hermitian operator *H* and an operator *T* such that H^2 is not hermitian and $T \neq A + iB$ for all hermitian operators *A*, *B*, respectively. See detail [5].

First we show the following theorem.

Theorem 1. Let $A, B^* \in B(\mathcal{H})$ be hyponormal operators. If there exists a non-zero operator $K \in C_p$ for some $p \ (1 \le p < \infty)$ such that $AK = aKB + bK \ (0 \ne a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace.

For a proof of Theorem 1, the following results are essential. Mattila proved it for strictly c-convex spaces but it holds for strictly convex spaces.

Proposition 1 (Theorem 2.4, Mattila [4]). Let a Banach space X be strictly convex and $T = H + iK \in B(X)$ be hyponormal. If Tx = 0 ($x \in X$), then Hx = Kx = 0.

Proposition 2 (Corollary 1.3, Shaw [7]). Let $A, B \in B(\mathcal{H})$ and Δ be $\Delta(T) = AT - TB$ ($T \in C_p$). Then Δ is an operator on a Banach space C_p and it holds

$$V(\Delta) \subset \overline{W(A)} - \overline{W(B)},$$

where \overline{E} is the clousure of *E*.

Proof of Theorem 1. Since $C_p \,\subset C_q$ for $1 \leq p < q < \infty$, we may assume p > 1, that is, a compact operator K belongs C_p (p > 1). Then it's known that C_p is uniformly convex and hence strictly convex (See detail [6]). First we assume that A, B^* are hyponormal operators and AK = KB. Define $\Delta(T) = AT - TB$. Let $A = A_1 + iA_2, B = B_1 + iB_2$ be the Cartesian decompositions of A, B, respectively. Let

$$\Delta_1(T) = A_1T - TB_1, \ \Delta_2(T) = A_2T - TB_2.$$

By Proposition 2, $V(\Delta_i) \subset \overline{W(A_i)} - \overline{W(B_i)}$ (i = 1, 2). Hence operators Δ_1 and Δ_2 are hermitian and $\Delta = \Delta_1 + i\Delta_2$. Since $(\overline{\Delta}\Delta - \Delta\overline{\Delta})(T) = (A^*A - AA^*)T - T(B^*B - BB^*)$, by Proposition 2 it holds

 $V(\overline{\Delta}\Delta - \Delta\overline{\Delta}) \subset \overline{W(A^*A - AA^*)} - \overline{W(B^*B - BB^*)}.$

Since A, B^* are hyponormal, the operator Δ is hyponormal on C_p . By the assumption it holds $\Delta(K) = 0$. Since C_p is strictly convex, by Proposition 1 we have

$$\Delta_1(K) = A_1K - KB_1 = 0$$
 and $\Delta_2(K) = A_2K - KB_2 = 0$.

Hence it holds $A_1K = KB_1$ and $A_2K = KB_2$ and hence $K^*A_1 = B_1K^*$ and $K^*A_2 = B_2K^*$. Therefore, $K^*A = BK^*$ and

$$KK^*A = KBK^* = AKK^*.$$

Hence, *A* commutes with non-zero compact hermitian operator KK^* . Since there exists a non-zero eigenvalue α of KK^* such that $|\alpha| = ||KK^*||$, ker $(KK^* - \alpha)$ is a non-trivial invariant subspace for *A*.

Since $K^*KB = K^*AK = BK^*K$, *B* commutes with the compact hermitian operator K^*K and similarly *B* has a non-trivial invariant subspace.

Next in the case of AK = aKB + bK, let B' = aB + bI. Put $\Delta'(T) = AT - TB'$. Since B'^* is hyponormal, Δ' is hyponormal on C_p and $\Delta'(K) = AK - KB' = 0$. Hence by the same way A and B have a non-trivial invariant subspace.

3. ExB-operators

Definition 2. Let $T \in B(X)$ have the Cartesian decomposition T = H + iK. An operator $T \in B(X)$ is said to be *ExB-operator* if there exists a positive number *M* such that

$$||e^{zT} \cdot e^{-\overline{z}T}|| \leq M$$
 for all $z \in \mathbb{C}$.

In [5] Mattila defined a *-hyponormal operator T as follows: $T \in B(X)$ is said to be *-hyponormal if

$$||e^{zT} \cdot e^{-\overline{z}T}|| \leq 1$$
 for all $z \in \mathbb{C}$.

In [5] Mattila showed that if T is *-hyponormal, then T is hyponormal. The following implications

normal \implies subnormal \implies *-hyponormal \implies hyponormal

hold. See detail [5]. If $A \in B(\mathcal{H})$, then

$$\rho^{z(aA+bI)^*} \cdot \rho^{-\overline{z}(aA+bI)} = \rho^{z\overline{b}-\overline{z}\overline{b}} \cdot \rho^{z\overline{a}A^*} \cdot \rho^{-\overline{z\overline{a}}A}$$

Since $|e^{z\overline{b}-\overline{z}\overline{b}}| = 1$, it holds that if $A \in B(\mathcal{H})$ is an ExB-operator, then so is aA + bI for every $a, b \in \mathbb{C}$ and it holds

$$||e^{zT}x|| \leq M \cdot ||e^{\overline{z}T}x||$$
 for all $z \in \mathbb{C}$ and $x \in \mathcal{H}$.

In this section we show the following theorem.

Theorem 2. Let $A, B^* \in B(\mathcal{H})$ be ExB-operators. If there exists a non-zero compact operator K such that AK = aKB + bK ($0 \neq a, b \in \mathbb{C}$), then A and B have a non-trivial invariant subspace.

Let *A*, *B* be in $B(\mathcal{H})$ and $A = A_1 + iA_2$, $B = B_1 + iB_2$ be the Cartesian decompositions. Let $\Delta(T) = AT - TB$ ($T \in B(\mathcal{H})$). Then $\Delta(T) = \Delta_1(T) + i\Delta_2(T)$ ($T \in B(\mathcal{H})$), where $\Delta_1(T) = A_1T - TB_1$ and $\Delta_2(T) = A_2T - TB_2$. By Proposition 2, operators Δ_1 and Δ_2 are hermitian on $B(\mathcal{H})$, and $\overline{\Delta} = \Delta_1 - i\Delta_2$.

For a proof we prepare lemmas.

Lemma 1. If $A, B^* \in B(\mathcal{H})$ be ExB-operators, then Δ is an ExB-operator on $B(\mathcal{H})$.

Proof. For $A, B \in B(\mathcal{H})$, define operators L_A and R_B on $B(\mathcal{H})$ by

$$L_A(T) = AT, \quad R_B(T) = TB \quad (T \in B(\mathcal{H})).$$

Then $L_A R_B = R_B L_A$, $\Delta = L_A - R_B$ and $\overline{\Delta} = L_{A^*} - R_{B^*}$. Hence $\Delta(T) = (L_A - R_B)(T)$ and $\overline{\Delta}(T) = (L_{A^*} - R_{B^*})(T)$. Since L_A commutes with R_B , it holds

(1)
$$e^{\Delta} = e^{L_A - R_B} = e^{L_A} \cdot e^{-R_B}$$
 and $e^{\overline{\Delta}} = e^{L_{A^*}} \cdot e^{-R_{B^*}}$.

Since $A, B^* \in B(\mathcal{H})$ be ExB-operators, for some constants M, N > 0 let

(2) $||e^{zA^*} \cdot e^{-\overline{z}A}|| \leq M$ and $||e^{\overline{z}B} \cdot e^{-zB^*}|| \leq N$ for all $z \in \mathbb{C}$.

Hence by (1) it holds

$$e^{z\overline{\Delta}} \cdot e^{-\overline{z}\Delta}(T) = e^{zA^*} \cdot e^{-\overline{z}A}Te^{\overline{z}B} \cdot e^{-zB^*}$$

Therefore by (2) since

$$||e^{z\overline{\Delta}} \cdot e^{-\overline{z}\Delta}(T)|| = ||e^{zA^*} \cdot e^{-\overline{z}A}Te^{\overline{z}B} \cdot e^{-zB^*}|| \le M \cdot N \cdot ||T|| \text{ for all } z \in \mathbb{C},$$

we have $\|e^{z\overline{\Delta}} \cdot e^{-\overline{z}\Delta}\| \leq M \cdot N \ (\forall z \in \mathbb{C})$ and Δ is an ExB-operator on $B(\mathcal{H})$. \Box

Lemma 2. If $T = H + iK \in B(X)$ be an ExB-operator and Tx = 0, then $\overline{T}x = Hx - iKx = 0$.

Proof. For any $f \in X^*$, let $q(z) = f(e^{zT}x)$. Since Tx = 0, it holds $x = e^{-\overline{z}T}x$. Hence

$$|g(z)| = |f(e^{zT} \cdot e^{-\overline{z}T}x)| \le M \cdot ||f|| \cdot ||x|| \quad \text{for all } z \in \mathbb{C}.$$

Hence *g* is bounded and clearly is analytic. By Liouville's Theorem we have g(z) = g(0) and $f(e^{zT}x - x) = 0$. Since *f* is arbitrary, we have $e^{zT}x = x$ and it easily follows $\overline{T}x = 0 = Hx - iKx$.

Proof of Theorem 2. Since $aB^* + bI$ is an ExB-operator, we assume AK - KB = 0. Let $\Delta(T) = AT - TB$ and $A = A_1 + iA_2, B = B_1 + iB_2$ be the Cartesian decompositions of A, B, respectively. Then by Lemma 1 the operator Δ an ExB-operator on $B(\mathcal{H})$ and satisfies $\Delta(K) = \Delta_1(K) + i\Delta_2(K) = 0$. By Lemma 2 it holds $\Delta_1(K) = 0$ and $\Delta_2(K) = 0$. Hence we have $A^*K = KB^*$ and $K^*A = BK^*$. Since it holds AK = KB and $K^*A = BK^*$, A and B have an invariant subspace by the same way of the proof of Theorem 1.

Remark. Under the assumption of Theorems 1 or 2, since ker($KK^* - \alpha$) is a finite dimensional invariant subspace of *A*, *A* has an eigen-value. Hence so is *B*.

References

- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Series, 2, 1971.
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Series, 10, 1973.
- [3] V. Lauric, A remark on λ -intertwining hyponormal operators, preprint.
- [4] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Phil. Soc. 96(1984), 483-493.
- [5] K. Mattila, A class of hyponormal operators and weak*-continuity of hermitian operators, Arkiv Mat. 25(1987), 265-274.
- [6] C.A. McCarthy, *C*_ρ, Israel J. Math. 5(1967), 249-271.
- [7] S-Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. 36(1984), 134-142.