Invariant subspace problem for ExB-Operators

Muneo Chō ${ }^{\text {a }}$
${ }^{a}$ Departament of Mathematics, Faculty of Science, Kanagawa University, Hiratsuka 259-1293, Japan

Abstract

In this paper, we show the following: Let A, B^{*} be ExB-operators on a complex Hilbert space \mathcal{H}. If there exists a non-zero compact operator K such that $A K=a K B+b K(0 \neq a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace.

1. Introduction

In this paper we denote infinite dimensional Hilbert space and Banach space by \mathcal{H} and \mathcal{X}, respectively. Let $B(\mathcal{H})$ and $B(\mathcal{X})$ be the sets of all bounded linear operators on \mathcal{H} and \mathcal{X}, respectively. Lauric in [3] showed the following nice result: Let A, B^{*} be hyponormal operators on a complex Hilbert space \mathcal{H}. If there exists a non-zero Hilbert-Schmidt operator K such that $A K=a K B+b K(0 \neq a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace. First we show that, for hyponormal operators A, B^{*}, there exists a non-zero operator $K \in C_{p}$ for some $p(1 \leq p<\infty)$ such that $A K=a K B+b K(0 \neq a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace, where C_{p} is a Schatten p-class. Next we introduce ExB-operators and show that, for ExB-operators A, B^{*}, if there exists a non-zero compact operator K such that $A K=a K B+b K(0 \neq a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace.

2. Hyponormal operators

In the case of Hilbert space operator $T \in B(\mathcal{H}), T$ is said to be hyponormal if $T^{*} T-T T^{*} \geq 0$ (that is, $\left(\left(T^{*} T-T T^{*}\right) x, x\right) \geq 0$ for every $\left.x \in \mathcal{H}\right)$, where T^{*} is the adjoint operator of T. The numerical range of T is denoted by $W(T)$, i.e.,

$$
W(T)=\{(T x, x):\|x\|=1\} .
$$

In the case of Banach space operator $T \in B(\mathcal{X})$, the numerical range $V(T)$ of T is defined by

$$
V(T)=\{f(T x):(x, f) \in \Pi(\mathcal{X})\}
$$

where $\Pi(\mathcal{X})=\left\{(x, f) \in \mathcal{X} \times \mathcal{X}^{*}:\|f\|=f(x)=\|x\|=1\right\}$ and \mathcal{X}^{*} is the dual space of \mathcal{X}.

[^0]Definition 1. For an operator $T \in B(\mathcal{X}), T$ is called hermitian if $V(T) \subset \mathbb{R}$.
T is said to be hyponormal if there exist hermitian operators H, K such that $T=H+i K$ and

$$
V(\bar{T} T-T \bar{T}) \subset \mathbb{R}_{+}=[0, \infty)
$$

where $\bar{T}=H-i K$. Hence if $T \in B(\mathcal{H})$, then $\bar{T}=T^{*}$. See detail [1] and [2].
In the case of Banach space operator, there exist an hermitian operator H and an operator T such that H^{2} is not hermitian and $T \neq A+i B$ for all hermitian operators A, B, respectively. See detail [5].

First we show the following theorem.
Theorem 1. Let $A, B^{*} \in B(\mathcal{H})$ be hyponormal operators. If there exists a non-zero operator $K \in C_{p}$ for some $p(1 \leq p<\infty)$ such that $A K=a K B+b K(0 \neq a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace.

For a proof of Theorem 1, the following results are essential. Mattila proved it for strictly c-convex spaces but it holds for strictly convex spaces.

Proposition 1 (Theorem 2.4, Mattila [4]).
Let a Banach space \mathcal{X} be strictly convex and $T=H+i K \in B(\mathcal{X})$ be hyponormal. If $T x=0(x \in \mathcal{X})$, then $H x=K x=0$.
Proposition 2 (Corollary 1.3, Shaw [7]).
Let $A, B \in B(\mathcal{H})$ and Δ be $\Delta(T)=A T-T B\left(T \in C_{p}\right)$. Then Δ is an operator on a Banach space C_{p} and it holds

$$
V(\Delta) \subset \overline{W(A)}-\overline{W(B)}
$$

where \bar{E} is the clousure of E.
Proof of Theorem 1. Since $C_{p} \subset C_{q}$ for $1 \leq p<q<\infty$, we may assume $p>1$, that is, a compact operator K belongs $C_{p}(p>1)$. Then it's known that C_{p} is uniformly convex and hence strictly convex (See detail [6]). First we assume that A, B^{*} are hyponormal operators and $A K=K B$. Define $\Delta(T)=A T-T B$. Let $A=A_{1}+i A_{2}, B=B_{1}+i B_{2}$ be the Cartesian decompositions of A, B, respectively. Let

$$
\Delta_{1}(T)=A_{1} T-T B_{1}, \quad \Delta_{2}(T)=A_{2} T-T B_{2} .
$$

By Proposition $2, V\left(\Delta_{i}\right) \subset \overline{W\left(A_{i}\right)}-\overline{W\left(B_{i}\right)}(i=1,2)$. Hence operators Δ_{1} and Δ_{2} are hermitian and $\Delta=\Delta_{1}+i \Delta_{2}$. Since $(\bar{\Delta} \Delta-\Delta \bar{\Delta})(T)=\left(A^{*} A-A A^{*}\right) T-T\left(B^{*} B-B B^{*}\right)$, by Proposition 2 it holds

$$
V(\bar{\Delta} \Delta-\Delta \bar{\Delta}) \subset \overline{W\left(A^{*} A-A A^{*}\right)}-\overline{W\left(B^{*} B-B B^{*}\right)}
$$

Since A, B^{*} are hyponormal, the operator Δ is hyponormal on C_{p}. By the assumption it holds $\Delta(K)=0$. Since C_{p} is strictly convex, by Proposition 1 we have

$$
\Delta_{1}(K)=A_{1} K-K B_{1}=0 \text { and } \Delta_{2}(K)=A_{2} K-K B_{2}=0
$$

Hence it holds $A_{1} K=K B_{1}$ and $A_{2} K=K B_{2}$ and hence $K^{*} A_{1}=B_{1} K^{*}$ and $K^{*} A_{2}=B_{2} K^{*}$. Therefore, $K^{*} A=B K^{*}$ and

$$
K K^{*} A=K B K^{*}=A K K^{*}
$$

Hence, A commutes with non-zero compact hermitian operator $K K^{*}$. Since there exists a non-zero eigenvalue α of $K K^{*}$ such that $|\alpha|=\left\|K K^{*}\right\|, \operatorname{ker}\left(K K^{*}-\alpha\right)$ is a non-trivial invariant subspace for A.

Since $K^{*} K B=K^{*} A K=B K^{*} K, B$ commutes with the compact hermitian operator $K^{*} K$ and similarly B has a non-trivial invariant subspace.

Next in the case of $A K=a K B+b K$, let $B^{\prime}=a B+b I$. Put $\Delta^{\prime}(T)=A T-T B^{\prime}$. Since $B^{\prime *}$ is hyponormal, Δ^{\prime} is hyponormal on C_{p} and $\Delta^{\prime}(K)=A K-K B^{\prime}=0$. Hence by the same way A and B have a non-trivial invariant subspace.

3. ExB-operators

Definition 2. Let $T \in B(\mathcal{X})$ have the Cartesian decomposition $T=H+i K$. An operator $T \in B(\mathcal{X})$ is said to be ExB-operator if there exists a positive number M such that

$$
\left\|e^{z \bar{T}} \cdot e^{-\bar{z} T}\right\| \leq M \text { for all } z \in \mathbb{C}
$$

In [5] Mattila defined a *-hyponormal operator T as follows: $T \in B(\mathcal{X})$ is said to be $*$-hyponormal if

$$
\left\|e^{z \bar{T}} \cdot e^{-\bar{z} T}\right\| \leq 1 \text { for all } z \in \mathbb{C}
$$

In [5] Mattila showed that if T is *-hyponormal, then T is hyponormal. The following implications

$$
\text { normal } \Longrightarrow \text { subnormal } \Longrightarrow \text { *-hyponormal } \Longrightarrow \text { hyponormal }
$$

hold. See detail [5]. If $A \in B(\mathcal{H})$, then

$$
e^{z(a A+b l)^{*}} \cdot e^{-\bar{z}(a A+b l)}=e^{z \bar{b}-\overline{\bar{b}}} \cdot e^{z \bar{a} A^{*}} \cdot e^{-\overline{\bar{z}} A}
$$

Since $\left|e^{z \bar{b}-z \overline{\bar{b}}}\right|=1$, it holds that if $A \in B(\mathcal{H})$ is an ExB-operator, then so is $a A+b I$ for every $a, b \in \mathbb{C}$ and it holds

$$
\left\|e^{z \bar{T}} x\right\| \leq M \cdot\left\|e^{\bar{z} T} x\right\| \quad \text { for all } z \in \mathbb{C} \text { and } \quad x \in \mathcal{H}
$$

In this section we show the following theorem.
Theorem 2. Let $A, B^{*} \in B(\mathcal{H})$ be ExB-operators. If there exists a non-zero compact operator K such that $A K=$ $a K B+b K \quad(0 \neq a, b \in \mathbb{C})$, then A and B have a non-trivial invariant subspace.

Let A, B be in $B(\mathcal{H})$ and $A=A_{1}+i A_{2}, B=B_{1}+i B_{2}$ be the Cartesian decompositions. Let $\Delta(T)=A T-T B(T \in$ $B(\mathcal{H}))$. Then $\Delta(T)=\Delta_{1}(T)+i \Delta_{2}(T)(T \in B(\mathcal{H}))$, where $\Delta_{1}(T)=A_{1} T-T B_{1}$ and $\Delta_{2}(T)=A_{2} T-T B_{2}$. By Proposition 2, operators Δ_{1} and Δ_{2} are hermitian on $B(\mathcal{H})$, and $\bar{\Delta}=\Delta_{1}-i \Delta_{2}$.

For a proof we prepare lemmas.
Lemma 1. If $A, B^{*} \in B(\mathcal{H})$ be ExB-operators, then Δ is an ExB-operator on $B(\mathcal{H})$.
Proof. For $A, B \in B(\mathcal{H})$, define operators L_{A} and R_{B} on $B(\mathcal{H})$ by

$$
L_{A}(T)=A T, \quad R_{B}(T)=T B \quad(T \in B(\mathcal{H})) .
$$

Then $L_{A} R_{B}=R_{B} L_{A}, \Delta=L_{A}-R_{B}$ and $\bar{\Delta}=L_{A^{*}}-R_{B^{*}}$. Hence $\Delta(T)=\left(L_{A}-R_{B}\right)(T)$ and $\bar{\Delta}(T)=\left(L_{A^{*}}-R_{B^{*}}\right)(T)$. Since L_{A} commutes with R_{B}, it holds
(1) $e^{\Delta}=e^{L_{A}-R_{B}}=e^{L_{A}} \cdot e^{-R_{B}} \quad$ and $\quad e^{\bar{\Delta}}=e^{L_{A^{*}}} \cdot e^{-R_{B^{*}}}$.

Since $A, B^{*} \in B(\mathcal{H})$ be ExB-operators, for some constants $M, N>0$ let
(2) $\left\|e^{z A^{*}} \cdot e^{-\bar{z} A}\right\| \leq M$ and $\left\|e^{\bar{z} B} \cdot e^{-z B^{*}}\right\| \leq N$ for all $z \in \mathbb{C}$.

Hence by (1) it holds

$$
e^{z \bar{\Delta}} \cdot e^{-\bar{z} \Delta}(T)=e^{z A^{*}} \cdot e^{-\bar{z} A} T e^{\bar{z} B} \cdot e^{-z B^{*}}
$$

Therefore by (2) since

$$
\left\|e^{z \bar{\Delta}} \cdot e^{-\bar{z} \Delta}(T)\right\|=\left\|e^{z A^{*}} \cdot e^{-\bar{z} A} T e^{\bar{z} B} \cdot e^{-z B^{*}}\right\| \leq M \cdot N \cdot\|T\| \text { for all } z \in \mathbb{C},
$$

we have $\left\|e^{z \bar{\Delta}} \cdot e^{-\bar{z} \Delta}\right\| \leq M \cdot N(\forall z \in \mathbb{C})$ and Δ is an ExB-operator on $B(\mathcal{H})$.
Lemma 2. If $T=H+i K \in B(\mathcal{X})$ be an ExB-operator and $T x=0$, then $\bar{T} x=H x-i K x=0$.
Proof. For any $f \in \mathcal{X}^{*}$, let $g(z)=f\left(e^{z \bar{T}} x\right)$. Since $T x=0$, it holds $x=e^{-\bar{z} T} x$. Hence

$$
|g(z)|=\left|f\left(e^{z \bar{T}} \cdot e^{-\bar{z} T} x\right)\right| \leq M \cdot\|f\| \cdot\|x\| \text { for all } z \in \mathbb{C}
$$

Hence g is bounded and clearly is analytic. By Liouville's Theorem we have $g(z)=g(0)$ and $f\left(e^{z \bar{T}} x-x\right)=0$. Since f is arbitrary, we have $e^{z \bar{T}} x=x$ and it easily follows $\bar{T} x=0=H x-i K x$.

Proof of Theorem 2. Since $a B^{*}+b I$ is an ExB-operator, we assume $A K-K B=0$. Let $\Delta(T)=A T-T B$ and $A=A_{1}+i A_{2}, B=B_{1}+i B_{2}$ be the Cartesian decompositions of A, B, respectively. Then by Lemma 1 the operator Δ an ExB-operator on $B(\mathcal{H})$ and satisfies $\Delta(K)=\Delta_{1}(K)+i \Delta_{2}(K)=0$. By Lemma 2 it holds $\Delta_{1}(K)=0$ and $\Delta_{2}(K)=0$. Hence we have $A^{*} K=K B^{*}$ and $K^{*} A=B K^{*}$. Since it holds $A K=K B$ and $K^{*} A=B K^{*}, A$ and B have an invariant subspace by the same way of the proof of Theorem 1.

Remark. Under the assumption of Theorems 1 or 2, since $\operatorname{ker}\left(K K^{*}-\alpha\right)$ is a finite dimensional invariant subspace of A, A has an eigen-value. Hence so is B.

References

[1] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Series, 2, 1971.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Series, 10, 1973.
[3] V. Lauric, A remark on λ-intertwining hyponormal operators, preprint.
[4] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Camb. Phil. Soc. 96(1984), 483-493.
[5] K. Mattila, A class of hyponormal operators and weak*-continuity of hermitian operators, Arkiv Mat. 25(1987), 265-274.
[6] C.A. McCarthy, C_{ρ}, Israel J. Math. 5(1967), 249-271.
[7] S-Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. 36(1984), 134-142.

[^0]: 2010 Mathematics Subject Classification. 47B20, 47B47.
 Keywords. Hilbert space; Banach space; Invariant subspace; Compact operator; Hyponormal operator.
 Received: 13 Ostober 2014; Accepted: 10 November 2014
 Communicated by Dragan S. Djordjević
 This research is partially supported by Grant-in-Aid Scientific Research No.24540195. Dedicated to Professor Kôtarô Tanahashi for his sixtieth birthday

 Email address: chiyom01@kanagawa-u.ac.jp (Muneo Chō)

