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Non commutative Müller regularity
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Abstract. Both the joint spectrum of Joseph Taylor and the single variable spectrum of Tosio Kato are
based on the concept of exactness, leading to the idea of Müller regularity.

Just occasionally, several variable spectral theory has something to say about spectral theory in one
variable. Specifically, the joint spectrum of Joseph L. Taylor impinges on the single variable spectrum
associated with Tosio Kato.

Whether in one or several variables, a “spectrum” is defined by a concept of invertibility, or more
general non singularity. For example the classical spectrum σA(a) ⊆ C of a linear algebra element a ∈ A
consists of the (complex) numbers λ for which the scalar perturbations a − λ are outside the invertible
group A−1 ⊆ A; if we relax membership of A−1 to include either left invertibles or right invertibles then we
reduce the spectrum to the left or the right spectrum. Seymour Goldberg tried to make a spectrum out of the
relatively regulars A∩ ⊆ A, but he found no spectral mapping theorems: there isn’t any semigroup structure
associated with the possession a = aca of a generalized inverse c ∈ A. It turns out however that a certain
strengthening of this property gives a perfectly sound spectral theory. There are two equivalent conditions:
in a Banach algebra A we can ask for holomorphic regularity in the sense that there is a holomorphic
function a∧ : U→ A, defined on an open neighbourhood U ∈ Nbd(0), for which

0.1 a − z ≡ (a − z)a∧(z)(a − z) : U→ A .

Alternatively, specializing to A = B(X) the operators on a Banach space X, combine relative regularity with
an exactness condition going back to Pierre Saphar [24]. The joint invertibility, for a tuple of linear operators,
of Joseph L. Taylor [? ], is also based on “exactness”. It is appropriate, therefore, to give a definition of
exactness:
1. Definition If A is an additive category and the ordered pair (b, a) ∈ A2 is mutually compatible, in the
sense that

1.1 ∃ ba ∈ A ,

the product ba ∈ A is defined, then we declare the pair (b, a) to be weakly exact provided there is implication,
for arbitrary (appropriately compatible) u and v in A,

1.2 bu = 0 = va =⇒ vu = 0 .
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We shall say that the pair (b, a) ∈ A2 is splitting exact if there is another pair (a′, b′) ∈ A2 for which

1.3 b′b + aa′ = 1 .

We shall also say that the pair (b, a) is regular if each term has a generalized inverse

1.4 a ∈ aAa ; b ∈ bAb .

The mutual compatibility condition (1.1) says that a : X→ Y and b : Y→ Z: the arrival object of a is the
same as the departure object of b. For example if a = 0 is zero (1.2) says that b ∈ A is a monomorphism;
if instead b = 0 then it makes a ∈ A an epimorphism. In the category of linear mappings between vector
spaces, exactness (1.2) says precisely, with a : X→ Y and b : Y→ Z, that (“linear exactness”)

1.5 b−1(0) ⊆ a(X) ⊆ Y .

To the extent that we are not requiring the opposite inclusion, which of course says (“chain condition”)

1.6 ba = 0 ,

the conditions (1.2) and (1.3) might be thought of as a sort of “non commutative exactness”.
In the category of linear mappings between vector spaces, this implication can also be reversed, by

fiddling with Hamel bases; generally however relative regularity offers a bridge between splitting and
weak exactness:
2. Theorem In an additive category A,

2.1 splitting exactness implies weak exactness

and

2.2 weak exactness and regularity together imply splitting exactness ,

while

2.3 splitting exactness and chain condition together imply regularity .

Proof. Implication (1.3)=⇒(1.2) is visible:

vu = (vb′)(bu) + (va)(a′u) .

Conversely if the pair (b, a) ∈ A2 is relatively regular in the sense (1.4), with

b = bb∧b , a = aa∧a ,

then weak exactness (1.2) gives

2.4 (1 − aa∧)(1 − b∧b) = 0 ∈ A ,

giving two candidates for the splitting material (a′, b′) ∈ A2 •
For “chains”, therefore, the three conditions (1.2), (1.3) and (1.4) are in a “love knot”. The Saphar

condition incorporates “self exactness”:
3. Definition We shall say that a ∈ A is self exact provided

3.1 (a, a) is exact ,
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n exact provided

3.2 (an, a) is exact ,

and hyper exact if it is n exact for every n ∈ N.
Note ([13] Lemma 1) that there is implication

3.3 (cb, a) exact, (c, b) exact =⇒ (c, ba) exact

and

3.4 (c, ba) exact, (b, a) exact =⇒ (cb, a) exact ;

in particular

3.5 (an, a) exact⇐⇒ (a, an) exact .

There are of course at least three versions of Definition 3, according as “exactness” means weak exactness
or splitting exactness, or the linear exactness of (1.5); the implications (3.3) and (3.4) hold both for splitting
exactness and for linear exactness, although not [8] for weak exactness. It is also necessary, for a : X→ Y to
be self exact, that it is self compatible in the sense that a2 is defined: Y = X.

Exactness imposes a certain discipline on relative regularity, and hence opens the door to the polynomial
spectral mapping theorems which eluded Goldberg:
4. Definition A non commutative regularity is H ⊆ A for which if (b, a) ∈ A2 is splitting exact there is
equivalence

4.1 ba ∈ H⇐⇒ {a, b} ⊆ H .

For a Müller regularity H ⊆ A there is for arbitrary n ∈ N equivalence

4.2 a ∈ H⇐⇒ an ∈ H ,

while the stronger condition [23]

4.3 ∃ (b′, a′) ∈ A2 : (a, b, a′, b′) ∈ A4 commutative and b′b − aa′ = 1

is required for two way implication (4.1).
Most of the familiar “invertibilities” are non commutative regularities, including “the relative regularity

A∩ of Goldberg”:
5. Theorem A∩ ⊆ A is a non commutative regularity.
Proof. This is not rocket science ([13] Theorem 3): if ba = bacba and b′b + aa′ = 1 then

5.1 (1 − aa′)a(1 − cba) = 0 = (1 − bac)b(1 − b′b) ;

conversely (1.4) and (2.4) give

5.2 baa∧b∧ba = b(aa∧ + b∧b − 1)a = ba •

Theorem 5 explains why adding Saphar hyperexactness to regularity contributes to spectral mapping
theorems.

Each of A−1, A−1
le f t and A−1

ri1ht are non-commutative regularities. For example, recall

5.3 {a, b} ⊆ A−1
le f t =⇒ ba ∈ A−1

le f t =⇒ a ∈ A−1
le f t ;
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conversely

5.4 ba ∈ A−1
le f t, a ∈ A−1

ri1ht =⇒ b ∈ A−1
le f t .

The proof that A−1
le f t is a “non commutative regularity” is just a beefed-up version of the proof of (5.4). In

the category A = BL of bounded linear operators between Banach spaces, relative regularity a ∈ aAa implies
that a : X→ Y has closed range

5.5 a(X) = cl a(X)

The “holomorphic regularity” (0.1) is equivalent [21],[13] to relative regularity together with hyperexactness.
We shall also describe holomorphic regularity as Kato invertibility. Theorem 10 of [13] says that Kato
invertibility is a Müller regularity. Slightly more generally, we shall describe a ∈ BL as Kato non singular if
is hyperexact with closed range. We claim
6. Theorem Kato non singularity is a Müller regularity, and closed range a non commutative regularity.
Proof. This is Theorem 1 of [14]: if a : X→ Y and b : Y→ Z then

6.1 b−1(0) ∩ a(X) = {0}, b−1(0) + a(X) closed =⇒ a(X) closed

and

6.2 b(Y), b−1(0) + a(X) closed =⇒ ba(X) closed =⇒ b−1(0) + a(X) closed .

Obviously there are “weak” and “splitting” versions of self and hyper exactness. In a normed linear
category there is another kind of exactness, intermediate between weak and splitting: we can ask of
(b, a) ∈ A2 that [11] there are k > 0 and h > 0 for which, for arbitrary, suitably compatible, u,v,

6.3 ∥vu∥ ≤ k∥v∥ ∥bu∥ + h∥va∥ ∥u∥ .

In the category BL of bounded operators between Banach spaces, (6.3) holds, at least for chains (1.6),
provided (1.5) is satisfied while each of a and b have closed range.

Both monomorphism and epimorphism define non commutative regularities:
7. Theorem If (b, a) is splitting exact in the sense (1.3) then

7.1 ba monomorphic =⇒ b monomorphic

and

7.2 ba epimorphic =⇒ a epimorphic .

Proof. For (7.1) argue that, analogous to (5.4),

bv = 0 =⇒ v = b′(bv) + a(a′v) ;

but now, with w = a′v,
bv = 0 =⇒ (ba)w = 0 =⇒ w = 0 =⇒ v = aw = 0 .

The argument for (7.2) is identical (“reverse products”) •
Note [8] that we cannot replace the splitting exactness (1.3) here by weak exactness (1.2). In a variant, in

a “normed linear category” A suppose that a product ba is “strongly monomorphic” in the sense that there
is k > 0 for which, for arbitrary compatible u,

7.3 ∥(ba)u∥ ≥ k∥u∥ ,



R. Harte / FAAC 6 (2) (2014), 1–7 5

so that also a is strongly monomorphic,

7.4 ∥au∥ ≥ (k/∥b∥)∥u∥ ,

then splitting exactness (1.3) says that also b satisfies (7.4):

v = b′(bv) + a(a′v) , =⇒ bv = bb′bv + ba(a′v) ,

giving ba(a′v) = (1 − bb′)bv and hence

∥v∥ ≤ (∥b′∥ + ∥a∥/k)∥k(1 + ∥b∥ ∥b′∥)∥bv∥ .

Thus “strong monomorphism” also defines a “non commutative regularity”. We have not settled whether
or not we can replace splitting exactness (1.3) by “normed linear exactness” (6.3) in either Theorem 7 or this
argument.

There is a “linear” analogue of (7.1) from Theorem 7:

7.5 b−1(0) ⊆ a(X) =⇒ b−1(0) ⊆ a (ba)−1(0) .

Taylor invertibility for n tuples a ∈ An is also defined by exactness:
8. Definition We shall say that (a, b) ∈ A2 is weakly left non singular if there is implication

8.1 bu = au = 0 =⇒ u = 0 ;

weakly right non singular if there is implication

8.2 vb = va = 0 =⇒ v = 0 ,

and weakly middle non singular if

8.3
((
−b a

)
,

(
a
b

))
is weakly exact .

Also we shall say that (a, b) is weakly Taylor non singular if the sequence

8.4
(
0,

(
−b a

)
,

(
a
b

)
, 0

)
is weakly exact, and Taylor invertible if it is splitting exact.

We refer to the sequence (8.4) as the Koszul complex of the pair (a, b). We make this definition without
assuming commutivity

8.5 ba = ab ;

of course commutivity (7.5) is necessary and sufficient for the sequence (8.4) to satisfy the chain condition
(1.6) (and hence be a “complex”). Of course “exactness” in (8.4) means the exactness of each of the obvious
three pairs.

The Müller conditions (4.3) are sufficient for Taylor invertibility, and in particular for the splitting
version of middle non singularity (8.3). For the category of bounded linear operators between Banach
spaces, middle non singularity has been characterized by Gonzalez [7]:
9. Theorem Necessary and sufficient for (a, b) to be middle non singular is that

9.1 b−1(0) ⊆ a b−1(0) ;

9.2 a−1(0) ⊆ b a−1(0) ;
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9.3 b(X) ∩ a(X) ⊆ (ba)(ab − ba)−1(0) ≡
(
(ab) ∧ (ba)

)
(X) .

If (9.1) and (9.2) both hold then also

9.4 (ba)−1(0) + (ab)−1(0) ⊆ b−1(0) + a−1(0) .

Proof. This is Theorem 4 of [13] •
Note in Theorem 9 that while a and b need not commute, they need to be both mutually compatible and

self compatible. The notation at the end of (9.3) is from [9].
S∧ T : (S− T)−1(0)→ Y is the common restriction of T : X→ Y and S : X→ Y to the subspace on which

they agree
For linear operators, “ascent one” and “descent one” define Müller regularities:

10. Theorem If (a, b) ∈ A2 is (linearly) middle non singular then

10.1 (b−1(0) ∩ b(X)) + (a−1(0) ∩ a(X)) = ((ba)−1(0) + (ab)−1(0)) ∩ (ba)(X) ∩ (ab)(X)

and

10.2 (b−1(0) + b(X)) ∩ (a−1(0) + a(X)) = ((ba)−1(0) + (ab)−1(0)) + ((ab)(X) ∩ (ba)(X)) .

Proof. Inclusion b−1(0) + a−1(0) ⊆ (ab)−1(0) + (ba)−1(0) always holds, while (9.1) and (9.3) give

b−1(0) ∩ b(X) ⊆ a(X) ∩ b(X) ⊆ (ba)(X) ∩ (ab)(X) ,

and similarly for a−1(0)∩ a(X); thus the first term on the left hand side of (10.1), and similarly the second, is
included in the right. Conversely inclusion (ba)X ⊆ b(X) and (ab)X ⊆ a(X) always hold, while (9.4) finishes
the proof of (10.1).

Towards (10.2), (9.1) and (9.2), and then (9.3), imply

(b−1(0) + b(X)) ∩ (a−1(0) + a(X)) = b(X) ∩ a(X) = (ba)(X) ∩ (ab)(X) ,

while always
b−1(0) + a−1(0) ⊆ (ab)−1(0) + (ba)−1(0) ;

the opposite inclusion is (9.4) •
If (a, b) ∈ A2 is middle non singular it follows that

10.5 b−1(0) ∩ b(X) = {0} = a−1(0) ∩ a(X)⇐⇒ ((ba)−1(0) + (ab)−1(0)) ∩ (ba)X ∩ (ab)(X) = {0}

and

10.6 ((ba)−1(0) + (ab)−1(0)) + ((ba)X ∩ (ab)X) = X⇐⇒ b−1(0) + b(X) = X = a−1(0) + a(X) .

Theorem 10 looks much simpler when ab = ba. The conditions in (10.5) and (10.6) say that the operators
a,b and hence also ab = ba are of “ascent ≤ 1”, respectively “descent ≤ 1”. Thus Theorem 10 indeed shows
that the ascent one and descent one conditions define Müller regularities. By considering powers ak and
bk it follows that the same is true for “finite ascent” and “finite descent”. To see that also “SVEP at 0” is a
Müller regularity we should [2] replace the ranges a(X). b(X) and ba(X) in Theorem 10 by “holomorphic
ranges” aω(x), bω(X) and (ba)ω(X).
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