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Spectral permanence II

Robin E. Hartea
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Abstract. ”Spectral permanence” for homomorphisms T : A → B is extended from the obvious subsemi-
groups of invertibles and semi-invertibles to more or less arbitrary HX ⊆ X, in particular when there is a
”functorial” property T(HA) ⊆ HB.

1. Invertibility

Suppose A is a semigroup (with identity), more generally [2] an abstract category: then we can identify
the invertible group

1.1 A−1 = {x ∈ A : 1 ∈ Ax ∩ xA} .

Now if T : A→ B is a (unital) homomorphism of semigroups then there is inclusion

1.2 T(A−1) ⊆ B−1 ⊆ B ;

equivalently

1.3 A−1 ⊆ T−1(B−1) ⊆ A .

If there is equality in (1.3),

1.4 T−1B−1 ⊆ A−1 ,

we shall say that the homomorphism T has the Gelfand property. In other terminology we may say that T
“is a determinant”, or alternatively “has spectral permanence”. In the inclusion (1.2) the invertible group
A−1 can be replaced by the left invertibles

1.5 A−1
le f t = {x ∈ A : 1 ∈ Ax} ,

the right invertibles

1.6 A−1
ri1ht = {x ∈ A : 1 ∈ xA} ,
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and the generalized invertibles

1.7 A∩ = {x ∈ A : x ∈ xAx} .

The analogues of equality (1.4) may be described as left, right and generalized permanence. To further
extend this idea we might replace the invertible group A−1 by some more or less arbitrary semigroup
HA ⊆ A; to be relevant we are likely to require inclusion

1.8 A−1 ⊆ HA ⊆ A .

More subtle is to see that HB ⊆ B is in some sense consistent with HA ⊆ A: we will ask that the passage from
X to HX is functorial. Specifically if T : A → B is a semigroup homomorphism there is to be an induced
homomorphism HT : HA → HB for which

1.9 (H)ST = HSHT ; HI = I .

What we require is inclusion

1.10 T(HA) ⊆ HB :

then HT = TH = T : HA → HB is the restriction. When HX = X−1 then HT is a semigroup homomorphism
between groups; when HX = X∩, not itself a semigroup, we find T(a′a) = (Ta′)(Ta) whenever {a, a′, a′a} ⊆ A∩.

2. Exactness

In fact the semigroup assumption for HA ⊆ A is unnecessarily restrictive: following Vladimir Müller
[11],[6] we shall ask that HA ⊆ A is a regularity. Here we specialize to semigroups which are rings; more
generally [1] additive categories. We shall describe the ordered pair (c, a) ∈ A2 as a chain provided

2.1 ca = 0 ∈ A ,

and as aplitting exact [3],[7],[8] (whether or not it is a chain) provided

2.2 1 ∈ Ac + aA ⊆ A .

Evidently a ring homomorphism T : A → B sends chains (c, a) ∈ A2 to chains (Tc,Ta) ∈ B2, and splitting
exact (c, a) to splitting exact (Tc,Ta). Notice that (c, 0) is splitting exact iff c ∈ A−1

le f t is left invertible; dually

(0, a) is splitting exact iff a ∈ A−1
ri1ht is right invertible. Evidently there is now another kind of permanence in

view: we shall say that T : A→ B is exactly permanent if there is implication

2.3 1 ∈ B(Tc) + (Ta)B ⊆ B =⇒ 1 ∈ Ac + aA ⊆ A .

Now we shall describe HA ⊆ A as [6],[7],[8] a non commutative regularity if, whenever (c, a) ∈ A2 is splitting
exact, there is implication

2.4 ca ∈ HA ⇐⇒ {a, c} ⊆ HA .

The implication (2.4) holds for each of the H of (1.1), (1.5), (1.6) and (1.7).
Alternatively we can consider the condition that

2.5 HA ·com HA ⊆ HA ,

where we write

2.6 K ∗com L = {k ∗ j : jk = kj} ;
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when A is a ring we can do this separately for addition ∗ = + and for multiplication ∗ = ·.

3. Weak exactness.

We shall describe [3],[7],[8] the ordered pair (c, a) ∈ A2 as weakly exact if there is implication, for arbitrary
(u, v) ∈ A2,

3.1 cu = 0 = va =⇒ vu = 0 .

For example (c, 0) is weakly exact iff c ∈ A is a monomorphism in the sense

3.2 cu = 0 =⇒ u = 0 ;

when (3.2) holds we write

3.3 c ∈ Ao
le f t .

Dually (0, a) is weakly exact iff a ∈ A is an epimorphism in the sense

3.4 va = 0 =⇒ v = 0 ;

when (3.4) holds we write

3.5 a ∈ Ao
ri1ht .

Evidently splitting exactness implies weak exactness; conversely weak exactness together with regularity
implies splitting exactness; here “regularity” for (c, a) ∈ A2 means

3.6 {a, c} ⊆ A∩ .

In particular

3.7 Ao
le f t ∩ A∩ = A−1

le f t ; Ao
ri1ht ∩ A∩ = A−1

ri1ht .

With either HX = Xo
le f t or HX = Xo

ri1ht we do not in general get the functorial inclusion (1.10); however if the
homomorphism T : A→ B is one one we get in both cases the reverse, permanence, inclusion

3.8 T−1HB ⊆ HA .

More generally (3.8) says that HX is in a sense a “contravariant” functor: when T : A→ B is one-one there
is HT : HB → HA, where

3.9 a ∈ HA =⇒ HT(Ta) = a .

4. Skew exactness

We call the pair (c, a) ∈ A2 left skew exact if [4],[7] there is inclusion

4.1 a ∈ Aca ;

Evidently exactness and (left) skew exactness implies (left) invertibility:

4.2 (1 ∈ Ac + aA & a ∈ Aca) =⇒ 1 ∈ Aa ;

conversely left invertibility (1.5) for a ∈ A implies the left hand side of (4.2) for c = 1 ∈ A. If T : A→ B then
(4.1) implies left skew exactness for (Tc,Ta) ∈ B2, and we shall describe T : A → B as left skew permanent
if there is implication

4.3 Ta ∈ BTcTa =⇒ a ∈ Aca .



Robin Harte / FAAC 7 (3) (2015), 1–7 4

Dually we say that (c, a) ∈ A2 is right skew exact if

4.4 a ∈ caA .

For “linear categories” A there is linear exactness defined for (c, a) ∈ A2, where a : X→ Y and c : Y→ Z, by
the inclusion

4.5 c−1(0) ⊆ a(X) ;

now linear left skew exactness says

4.6 c−1(0) ∩ a(X) = {0} ,

and linear right skew exactness

4.7 c−1(0) + a(X) = Y .

Normed linear exactness for (c, a) ∈ A2 says there are k > 0 and h > 0 for which

4.8 ∥vu∥ ≤ k∥v∥ ∥cu∥ + h∥va∥ ∥u∥ ;

for the induced “strong monomorphisms” c ∈ A•le f t and “strong epimorphisms” a ∈ A•ri1ht there are k > 0
and h > 0 for which

4.9 ∥u∥ ≤ k∥cu∥ ; ∥v∥ ≤ h∥va∥ .

Skew exactness is here given by

4.10 ∥a∥ ≤ k∥ca∥ ; ∥c∥ ≤ h∥ca∥ .

When T : A→ B is bounded below then (3.8) and (3.9) hold with HX = X•le f t and with HX = X•ri1ht .

5. Composite permanence

If T : A→ B and S : B→ D with

5.1 T(HA) ⊆ HB , S(HB) ⊆ HD ,

so that also
ST(HA) ⊆ HD ,

then if

5.2 T−1HB ⊆ HA & S−1HD ⊆ HB ,

it also follows

5.3 (ST)−1HD ⊆ HA ;

in turn (5.3) implies the first half of (5.2). In words “H permanence” for each of S and T implies “H
permanence” for ST, which in turn implies “H permanence” for T . It is a nice problem to decide whether
splitting exactness of the pair (S,T) of homomorphisms is enough, together with H permanence for ST, to
ensure H permanence for S. The fact that permanence properties of a product ST are transmitted to the
factor T guarantees that left invertible homomorphisms have all the permanence properties we can think
of.

These conditions are valid for

5.4 HX ∈ {X−1,X−1
le f t,X

−1
ri1ht,X

∩} .
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When the homomorphisms are one one we can add

5.5 HX ∈ {Xo
le f t,X

o
ri1ht} ;

When the homomorphisms are bounded below we can also add

5.6 HX ∈ {X•le f t,X
•
ri1ht} .

6. Spectral permanence

When the ring A is a (complex) linear algebra then we have the concept of spectrum:

6.1 σ(a) ≡ σA(a) = {λ ∈ C : a − λ < A−1} ;

more generally HA gives rise to

6.2 ω = ϖH : a 7→ ϖH(a) = {λ ∈ C : a − λ < HA} .

Conversely a “spectrum” ω on A gives rise to a regularity

6.3 H = Rω = {a ∈ A : 0 < ω(a)} .

Now if T : A→ B is a linear algebra homomorphism then the fundamental inclusion (1.10) takes the form

6.4 ANDa∈A : ϖB(Ta) ⊆ ϖA(a) ;

the spectral permanence condition (3.8) is the opposite inclusion

6.5 ANDa∈A : ϖA(a) ⊆ ϖB(Ta) ;

Thus in particular, when HX = X−1 so that ϖH = σ then “spectral permanence” is what it says on the tin:

σB(Ta) = σA(a) .

When the linear algebra homomorphism T : A→ B is one one then (3.8) holds:

6.6 πle f t
A (a) ⊆ πle f t

B (Ta) ; πri1ht
A (a) ⊆ πri1ht

B (Ta) .

Here

6.7 HA = Ao
le f t =⇒ ϖH = π

le f t ; HA = Ao
ri1ht =⇒ ϖH = π

ri1ht .

Specializing further to Banach algebras, if T : A→ B is bounded below then

6.8 τle f t
A (a) ⊆ τle f t

B (Ta) ⊆ σle f t
B (Ta) ⊆ σle f t

A (a)

and

6.9 τ
ri1ht
A (a) ⊆ τri1ht

B (Ta) ⊆ σri1ht
B (Ta) ⊆ σri1ht

A (a) .

Here

6.10 HA = A•le f t =⇒ ϖH = τ
le f t ; HA = A•ri1ht =⇒ ϖH = τ

ri1ht .

Since also in Banach algebras

6.11 ∂σle f t(a) ⊆ τri1ht(a) ; ∂σri1ht(a) ⊆ τle f t(a) ,
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it follows that if T : A→ B is bounded below then

6.12 ∂σA(a) ⊆ σB(Ta) ⊆ σA(a) .

If we only assume that T : A→ B is one one then we still get

6.13 iso σA(a) ⊆ σB(Ta) ⊆ σA(a) .

7. Invariant subspaces

Suppose Y ⊆ X is a linear subspace, alternarively a closed linear subspace of a Banach space, with
quotient Z = X/Y, and then write

7.1 B = L(X) , D = L(Y) , E = L(Z) ≡ L(X/Y) ,

(alternatively B(X), B(Y), B(Z)) and finally

7.2 A = BY ≡ {a ∈ B : a(Y) ⊆ Y} :

then there are homomorphisms

7.3 J : A→ B , L : A→ D , K : A→ E .

The natural embedding J : a 7→ a is one-one; L : a 7→ aY is the restriction, and then the quotient K : a 7→ a/Y
is onto. If a ∈ A there is [1] implication

7.4
(
L(a) one one & K(a) one one

)
=⇒ J(a) one one =⇒ L(a) one one ;

7.5
(
L(a) onto & K(a) onto

)
=⇒ J(a) onto =⇒ K(a) onto ;

7.6
(
J(a) one one & L(a) onto

)
=⇒ K(a) one one ;

7.7
(
J(a) onto & K(a) one one

)
=⇒ L(a) onto .

It follows that [7] the conditions

7.8 J(a) ∈ B−1 ; L(a) ∈ D−1 ; K(a) ∈ E−1

“form a democracy”.

8. Hyperinvariant subspaces

With

8.1 A′ = {a ∈ B : comm(a)(Y) ⊆ Y} = {a ∈ B : comm(a) ⊆ A} ,

8.2 A′′ = {a ∈ B : comm2(a) ⊆ A} ,

8.3 A′′′ = {a ∈ B : a − λ ∈ B−1 =⇒ (a − λ)−1 ∈ A} ,
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there is [1] inclusion

8.4 A′ ⊆ A′′ ⊆ A′′′ ⊆ A ;

each of these three inclusions is liable to be proper. Since

8.5 comm2(a) = comm2(a−1) ,

the inclusion A′ ⊆ B has spectral permanence:

8.6 A′ ∩ B−1 ⊆ (A′)−1 .

Of course the subset A′ ⊆ A ⊆ B is not in general a subring: indeed, since B ∈ {L(X),B(X)} is irreducible
there is implication

8.7 1 ∈ A′ =⇒ B ⊆ A =⇒ Y ∈ {O.X} .

There is by definition spectral permanence for the inclusion A′′′ ⊆ B:

8.8 A′′′ ∩ B−1 ⊆ (A′′′)−1 .

It is plausible that A′′ ⊆ B satisfy the commuting product condition (2.5), at least if there is inclusion

8.9 A′′′ ⊆ A′′ .

Jerry Koliha has noticed [10] that (8.9) holds for finite dimensional X.
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