Spectral permanence II

Robin E. Harte ${ }^{\text {a }}$
${ }^{a}$ Trinity College, Dublin, Ireland

Abstract

Spectral permanence" for homomorphisms $T: A \rightarrow B$ is extended from the obvious subsemigroups of invertibles and semi-invertibles to more or less arbitrary $H_{X} \subseteq X$, in particular when there is a "functorial" property $T\left(H_{A}\right) \subseteq H_{B}$.

1. Invertibility

Suppose A is a semigroup (with identity), more generally [2] an abstract category: then we can identify the invertible group
1.1

$$
A^{-1}=\{x \in A: 1 \in A x \cap x A\} .
$$

Now if $T: A \rightarrow B$ is a (unital) homomorphism of semigroups then there is inclusion

$$
T\left(A^{-1}\right) \subseteq B^{-1} \subseteq B ;
$$

equivalently
1.3

$$
A^{-1} \subseteq T^{-1}\left(B^{-1}\right) \subseteq A
$$

If there is equality in (1.3),
1.4

$$
T^{-1} B^{-1} \subseteq A^{-1},
$$

we shall say that the homomorphism T has the Gelfand property. In other terminology we may say that T "is a determinant", or alternatively "has spectral permanence". In the inclusion (1.2) the invertible group A^{-1} can be replaced by the left invertibles

$$
A_{l e f t}^{-1}=\{x \in A: 1 \in A x\},
$$

the right invertibles
1.6

$$
A_{\text {right }}^{-1}=\{x \in A: 1 \in x A\},
$$

[^0]and the generalized invertibles
$$
A^{\cap}=\{x \in A: x \in x A x\}
$$

The analogues of equality (1.4) may be described as left, right and generalized permanence. To further extend this idea we might replace the invertible group A^{-1} by some more or less arbitrary semigroup $H_{A} \subseteq A$; to be relevant we are likely to require inclusion

1.8

$$
A^{-1} \subseteq H_{A} \subseteq A
$$

More subtle is to see that $H_{B} \subseteq B$ is in some sense consistent with $H_{A} \subseteq A$: we will ask that the passage from X to H_{X} is functorial. Specifically if $T: A \rightarrow B$ is a semigroup homomorphism there is to be an induced homomorphism $H_{T}: H_{A} \rightarrow H_{B}$ for which

$$
(H)_{S T}=H_{S} H_{T} ; H_{I}=I
$$

What we require is inclusion
1.10

$$
T\left(H_{A}\right) \subseteq H_{B}:
$$

then $H_{T}=T_{H}=T: H_{A} \rightarrow H_{B}$ is the restriction. When $H_{X}=X^{-1}$ then H_{T} is a semigroup homomorphism between groups; when $H_{X}=X^{\cap}$, not itself a semigroup, we find $T\left(a^{\prime} a\right)=\left(T a^{\prime}\right)(T a)$ whenever $\left\{a, a^{\prime}, a^{\prime} a\right\} \subseteq A^{\cap}$.

2. Exactness

In fact the semigroup assumption for $H_{A} \subseteq A$ is unnecessarily restrictive: following Vladimir Müller [11],[6] we shall ask that $H_{A} \subseteq A$ is a regularity. Here we specialize to semigroups which are rings; more generally [1] additive categories. We shall describe the ordered pair $(c, a) \in A^{2}$ as a chain provided

$$
c a=0 \in A
$$

and as aplitting exact [3],[7],[8] (whether or not it is a chain) provided

$$
1 \in A c+a A \subseteq A
$$

Evidently a ring homomorphism $T: A \rightarrow B$ sends chains $(c, a) \in A^{2}$ to chains $(T c, T a) \in B^{2}$, and splitting exact (c, a) to splitting exact $(T c, T a)$. Notice that $(c, 0)$ is splitting exact iff $c \in A_{\text {left }}^{-1}$ is left invertible; dually $(0, a)$ is splitting exact iff $a \in A_{\text {right }}^{-1}$ is right invertible. Evidently there is now another kind of permanence in view: we shall say that $T: A \rightarrow B$ is exactly permanent if there is implication

$$
1 \in B(T c)+(T a) B \subseteq B \Longrightarrow 1 \in A c+a A \subseteq A
$$

Now we shall describe $H_{A} \subseteq A$ as [6],[7],[8] a non commutative regularity if, whenever $(c, a) \in A^{2}$ is splitting exact, there is implication

$$
c a \in H_{A} \Longleftrightarrow\{a, c\} \subseteq H_{A} .
$$

The implication (2.4) holds for each of the H of (1.1), (1.5), (1.6) and (1.7).
Alternatively we can consider the condition that

$$
H_{A} \cdot \operatorname{com} H_{A} \subseteq H_{A}
$$

where we write

$$
K * \text { com } L=\{k * j: j k=k j\} ;
$$

when A is a ring we can do this separately for addition $*=+$ and for multiplication $*=\cdot$.

3. Weak exactness.

We shall describe [3],[7],[8] the ordered pair $(c, a) \in A^{2}$ as weakly exact if there is implication, for arbitrary $(u, v) \in A^{2}$,
3.1

$$
c u=0=v a \Longrightarrow v u=0
$$

For example $(c, 0)$ is weakly exact iff $c \in A$ is a monomorphism in the sense

3.2

$$
c u=0 \Longrightarrow u=0 ;
$$

when (3.2) holds we write
3.3

$$
c \in A_{l e f t}^{o} .
$$

Dually $(0, a)$ is weakly exact iff $a \in A$ is an epimorphism in the sense

$$
v a=0 \Longrightarrow v=0 ;
$$

when (3.4) holds we write
3.5

$$
a \in A_{\text {right }}^{o}
$$

Evidently splitting exactness implies weak exactness; conversely weak exactness together with regularity implies splitting exactness; here "regularity" for $(c, a) \in A^{2}$ means
3.6

$$
\{a, c\} \subseteq A^{\cap} .
$$

In particular
3.7

$$
A_{\text {left }}^{o} \cap A^{\cap}=A_{\text {left }}^{-1} ; A_{\text {right }}^{o} \cap A^{\cap}=A_{\text {right }}^{-1} .
$$

With either $H_{X}=X_{\text {left }}^{o}$ or $H_{X}=X_{\text {right }}^{o}$ we do not in general get the functorial inclusion (1.10); however if the homomorphism $T: A \rightarrow B$ is one one we get in both cases the reverse, permanence, inclusion

$$
T^{-1} H_{B} \subseteq H_{A}
$$

More generally (3.8) says that H_{X} is in a sense a "contravariant" functor: when $T: A \rightarrow B$ is one-one there is $H^{T}: H_{B} \rightarrow H_{A}$, where
3.9

$$
a \in H_{A} \Longrightarrow H^{T}(T a)=a
$$

4. Skew exactness

We call the pair $(c, a) \in A^{2}$ left skew exact if [4],[7] there is inclusion
4.1

$$
a \in A c a ;
$$

Evidently exactness and (left) skew exactness implies (left) invertibility:

$$
(1 \in A c+a A \& a \in A c a) \Longrightarrow 1 \in A a
$$

conversely left invertibility (1.5) for $a \in A$ implies the left hand side of (4.2) for $c=1 \in A$. If $T: A \rightarrow B$ then (4.1) implies left skew exactness for $(T c, T a) \in B^{2}$, and we shall describe $T: A \rightarrow B$ as left skew permanent if there is implication
4.3

$$
T a \in B T c T a \Longrightarrow a \in A c a
$$

Dually we say that $(c, a) \in A^{2}$ is right skew exact if
4.4

$$
a \in c a A
$$

For "linear categories" A there is linear exactness defined for $(c, a) \in A^{2}$, where $a: X \rightarrow Y$ and $c: Y \rightarrow Z$, by the inclusion
4.5

$$
c^{-1}(0) \subseteq a(X) ;
$$

now linear left skew exactness says
4.6

$$
c^{-1}(0) \cap a(X)=\{0\}
$$

and linear right skew exactness

4.7

$$
c^{-1}(0)+a(X)=Y
$$

Normed linear exactness for $(c, a) \in A^{2}$ says there are $k>0$ and $h>0$ for which
4.8

$$
\|v u\| \leq k\|v\|\|c u\|+h\|v a\|\|u\| ;
$$

for the induced "strong monomorphisms" $c \in A_{\text {left }}^{\bullet}$ and "strong epimorphisms" $a \in A_{\text {right }}^{\bullet}$ there are $k>0$ and $h>0$ for which
4.9

$$
\|u\| \leq k\|c u\| ;\|v\| \leq h\|v a\|
$$

Skew exactness is here given by

$$
\|a\| \leq k\|c a\| ;\|c\| \leq h\|c a\|
$$

When $T: A \rightarrow B$ is bounded below then (3.8) and (3.9) hold with $H_{X}=X_{l e f t}^{\bullet}$ and with $H_{X}=X_{\text {right }}^{\bullet}$.

5. Composite permanence

If $T: A \rightarrow B$ and $S: B \rightarrow D$ with

$$
T\left(H_{A}\right) \subseteq H_{B}, S\left(H_{B}\right) \subseteq H_{D}
$$

so that also

$$
S T\left(H_{A}\right) \subseteq H_{D}
$$

then if
5.2

$$
T^{-1} H_{B} \subseteq H_{A} \& S^{-1} H_{D} \subseteq H_{B}
$$

it also follows

$$
(S T)^{-1} H_{D} \subseteq H_{A} ;
$$

in turn (5.3) implies the first half of (5.2). In words "H permanence" for each of S and T implies " H permanence" for $S T$, which in turn implies "H permanence" for T. It is a nice problem to decide whether splitting exactness of the pair (S, T) of homomorphisms is enough, together with H permanence for $S T$, to ensure H permanence for S. The fact that permanence properties of a product $S T$ are transmitted to the factor T guarantees that left invertible homomorphisms have all the permanence properties we can think of.

These conditions are valid for

$$
5.4
$$

$$
H_{X} \in\left\{X^{-1}, X_{\text {left }}^{-1}, X_{\text {right }}^{-1} X^{\cap}\right\}
$$

When the homomorphisms are one one we can add

$$
H_{X} \in\left\{X_{l e f t}^{o}, X_{r i g h t}^{o}\right\}
$$

When the homomorphisms are bounded below we can also add
5.6

$$
H_{X} \in\left\{X_{l e f t}^{\bullet}, X_{r i g h t}^{\bullet}\right\}
$$

6. Spectral permanence

When the ring A is a (complex) linear algebra then we have the concept of spectrum: 6.1

$$
\sigma(a) \equiv \sigma_{A}(a)=\left\{\lambda \in \mathbf{C}: a-\lambda \notin A^{-1}\right\}
$$

more generally H_{A} gives rise to

$$
\omega=\omega_{H}: a \mapsto \omega_{H}(a)=\left\{\lambda \in \mathbf{C}: a-\lambda \notin H_{A}\right\}
$$

Conversely a "spectrum" ω on A gives rise to a regularity
6.3

$$
H=R^{\omega}=\{a \in A: 0 \notin \omega(a)\}
$$

Now if $T: A \rightarrow B$ is a linear algebra homomorphism then the fundamental inclusion (1.10) takes the form

$$
\mathrm{AND}_{a \in A}: \omega_{B}(T a) \subseteq \omega_{A}(a) ;
$$

the spectral permanence condition (3.8) is the opposite inclusion

$$
\mathrm{AND}_{a \in A}: \omega_{A}(a) \subseteq \omega_{B}(T a) ;
$$

Thus in particular, when $H_{X}=X^{-1}$ so that $\omega_{H}=\sigma$ then "spectral permanence" is what it says on the tin:

$$
\sigma_{B}(T a)=\sigma_{A}(a)
$$

When the linear algebra homomorphism $T: A \rightarrow B$ is one one then (3.8) holds:
6.6

$$
\pi_{A}^{\text {left }}(a) \subseteq \pi_{B}^{\text {left }}(T a) ; \pi_{A}^{\text {right }}(a) \subseteq \pi_{B}^{\text {right }}(T a)
$$

Here
6.7

$$
H_{A}=A_{l e f t}^{o} \Longrightarrow \omega_{H}=\pi^{\text {left }} ; H_{A}=A_{\text {right }}^{o} \Longrightarrow \omega_{H}=\pi^{\text {right }}
$$

Specializing further to Banach algebras, if $T: A \rightarrow B$ is bounded below then
6.8

$$
\tau_{A}^{\text {left }}(a) \subseteq \tau_{B}^{\text {left }}(T a) \subseteq \sigma_{B}^{\text {left }}(T a) \subseteq \sigma_{A}^{\text {left }}(a)
$$

and
6.9

$$
\tau_{A}^{\text {right }}(a) \subseteq \tau_{B}^{\text {right }}(T a) \subseteq \sigma_{B}^{\text {right }}(T a) \subseteq \sigma_{A}^{\text {right }}(a)
$$

Here
6.10

$$
H_{A}=A_{l e f t}^{\bullet} \Longrightarrow \omega_{H}=\tau^{l e f t} ; H_{A}=A_{r i g h t}^{\bullet} \Longrightarrow \omega_{H}=\tau^{r i g h t}
$$

Since also in Banach algebras

$$
\partial \sigma^{\text {left }}(a) \subseteq \tau^{r i g h t}(a) ; \partial \sigma^{r i g h t}(a) \subseteq \tau^{\text {left }}(a)
$$

it follows that if $T: A \rightarrow B$ is bounded below then

$$
\partial \sigma_{A}(a) \subseteq \sigma_{B}(T a) \subseteq \sigma_{A}(a)
$$

If we only assume that $T: A \rightarrow B$ is one one then we still get
6.13

$$
\text { iso } \sigma_{A}(a) \subseteq \sigma_{B}(T a) \subseteq \sigma_{A}(a) .
$$

7. Invariant subspaces

Suppose $Y \subseteq X$ is a linear subspace, alternarively a closed linear subspace of a Banach space, with quotient $Z=X / Y$, and then write

$$
B=L(X), D=L(Y), E=L(Z) \equiv L(X / Y)
$$

(alternatively $B(X), B(Y), B(Z)$) and finally

$$
A=B_{Y} \equiv\{a \in B: a(Y) \subseteq Y\}:
$$

then there are homomorphisms

7.3

$$
J: A \rightarrow B, L: A \rightarrow D, K: A \rightarrow E .
$$

The natural embedding J:a $\mapsto a$ is one-one; $L: a \mapsto a_{Y}$ is the restriction, and then the quotient $K: a \mapsto a_{/ Y}$ is onto. If $a \in A$ there is [1] implication
7.4 $(L(a)$ one one $\& K(a)$ one one $) \Longrightarrow J(a)$ one one $\Longrightarrow L(a)$ one one ;

$$
(L(a) \text { onto } \& K(a) \text { onto }) \Longrightarrow J(a) \text { onto } \Longrightarrow K(a) \text { onto } ;
$$

7.6

$$
(J(a) \text { one one \& } L(a) \text { onto }) \Longrightarrow K(a) \text { one one }
$$

7.7

$$
(J(a) \text { onto \& } K(a) \text { one one }) \Longrightarrow L(a) \text { onto . }
$$

It follows that [7] the conditions
7.8

$$
J(a) \in B^{-1} ; L(a) \in D^{-1} ; K(a) \in E^{-1}
$$

"form a democracy".

8. Hyperinvariant subspaces

With
8.1

$$
A^{\prime}=\{a \in B: \operatorname{comm}(a)(Y) \subseteq Y\}=\{a \in B: \operatorname{comm}(a) \subseteq A\}
$$

8.2

$$
A^{\prime \prime}=\left\{a \in B: \operatorname{comm}^{2}(a) \subseteq A\right\},
$$

8.3

$$
A^{\prime \prime \prime}=\left\{a \in B: a-\lambda \in B^{-1} \Longrightarrow(a-\lambda)^{-1} \in A\right\}
$$

there is [1] inclusion

$$
A^{\prime} \subseteq A^{\prime \prime} \subseteq A^{\prime \prime \prime} \subseteq A ;
$$

each of these three inclusions is liable to be proper. Since

8.5

$$
\operatorname{comm}^{2}(a)=\operatorname{comm}^{2}\left(a^{-1}\right)
$$

the inclusion $A^{\prime} \subseteq B$ has spectral permanence:
8.6

$$
A^{\prime} \cap B^{-1} \subseteq\left(A^{\prime}\right)^{-1}
$$

Of course the subset $A^{\prime} \subseteq A \subseteq B$ is not in general a subring: indeed, since $B \in\{L(X), B(X)\}$ is irreducible there is implication

$$
1 \in A^{\prime} \Longrightarrow B \subseteq A \Longrightarrow Y \in\{O \cdot X\}
$$

There is by definition spectral permanence for the inclusion $A^{\prime \prime \prime} \subseteq B$:
8.8

$$
A^{\prime \prime \prime} \cap B^{-1} \subseteq\left(A^{\prime \prime \prime}\right)^{-1}
$$

It is plausible that $A^{\prime \prime} \subseteq B$ satisfy the commuting product condition (2.5), at least if there is inclusion

$$
A^{\prime \prime \prime} \subseteq A^{\prime \prime}
$$

Jerry Koliha has noticed [10] that (8.9) holds for finite dimensional X.

References

[1] S.V. Djordjevic, R.E. Harte and D.R. Larson, Partially hyperinvariant subspaces, Operators and matrices 6 (2012) 97-106.
[2] P. Freyd,Abelian categories, Harper and Row 1964.
[3] R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85A (1985) 151-176.
[4] R. E. Harte, Exactness plus skew exactness equals invertibility, Proc. Royal Irish Acad. 97A (1997) 15-18.
[5] R. E. Harte, S. Zivković-Zlatanović and D. S. Djordjević, On simple permanence, Quaestiones Mathematicae (to appear).
[6] R. E. Harte, Non-commutative Müller regularity, Funct. Anal. Approx. Comp. 6 (2014) 1-7.
[7] R. E. Harte, Exactness, invertibility and the love knot, Filomat (to appear).
[8] R. E. Harte, Spectral mapping theorems: a bluffer's guide, Springer Briefs 2014.
[9] D. Kitson and R. E. Harte, On Browder tuples, Acta Sci Math. (Szeged) 75 (2009) 665-677.
[10] J. Koliha, Block diagonalization, Mathematica Bohemica 126 (1) (2001), 237-246.
[11] V. Müller, Spectral theory of bounded operators, Birkhauser Boston 2007.

[^0]: 2010 Mathematics Subject Classification. 47A53, 15A09.
 Keywords. Spectral permanence; invertibility; exactness; skew exactness.
 Received: 25 September 2015; Accepted: 30 January 2015
 Communicated by Dragan S. Djordjević
 Email address: rharte@maths.tcd.ie (Robin E. Harte)

