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Abstract. Some properties of topological direct sum of subspaces of a normed space X are discussed.
Using the connection between this sum and the decomposition of the identity operator, we consider the
appropriate matrix form of a bounded linear operator.

1. Introduction and preliminaries

The aim of this note is to present some (mainly known, but somehow less used) facts about the notion of
a topological direct sum of linear subspaces. The case of Banach spaces, as the most important, is specially
discussed. Also, for a given bounded linear operator, we consider its matrix form.

If X and Y are normed spaces then B(X,Y) denotes the set of all bounded linear operators from X to Y.
We write B(X) instead of B(X,X). For A ∈ B(X,Y), the image space and the null space of A are denoted by
Im A and Ker A, respectively. Suppose that X and Y are Banach spaces such that

X = X1 ⊕ X2 ⊕ X3 and Y = Y1 ⊕ Y2 ⊕ Y3, (1)

where Xi are closed subspaces of X, and Yi are closed subspaces of Y, i = 1, 2, 3. Let A ∈ B(X,Y) and let

A =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 :

X1
X2
X3

→
Y1
Y2
Y3

 , (2)

be the matrix form of A with respect to direct sums (1). Namely, for x = x1 + x2 + x3 ∈ X, x j ∈ X j, let
Ax j = y1 j + y2 j + y3 j, where yi j ∈ Yi. The operator Ai j : X j → Yi is defined by Ai jx j = yi j.

It is widely used the fact that A ∈ B(X,Y) if and only if Ai j ∈ B(X j,Yi), for all i, j = 1, 2, 3.
We want to point to the following questions:

1. What actually means the direct sum X = X1 ⊕ X2 ⊕ X3, when X is Banach space? Is it sufficient to
require the unique representation of x ∈ X in the form x = x1 + x2 + x3 where xi ∈ Xi? Do we have to
suppose that Xi are closed subspaces of X? Perhaps we need that sums X1 ⊕ X2, X1 ⊕ X3, X2 ⊕ X3 (or
only one of them) must be closed?
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2. If A ∈ B(X,Y) why is then Ai j ∈ B(X j,Yi)? What about the operator

B =
[
A11 A12
A21 A22

]
:
[
X1
X2

]
→
[
Y1
Y2

]
,

which is obtained from representation (2)? Is it bounded? But before that, is the subspace X1 ⊕ X2
closed, i.e. is the operator B defined on a Banach space?

3. Does the condition Ai j ∈ B(X j,Yi), for all i, j = 1, 2, 3 imply A ∈ B(X,Y)?

4. Which conditions we have to require when X and Y are not Banach spaces? When we deal with
Hilbert spaces and orthogonal sums, do we have to suppose that Xi and Yi are closed?

5. Which conditions we have to require when X is the sum of n subspaces, X = X1 ⊕ + · · · + ⊕Xn? Do we
have to suppose that the sum of any k, 1 ≤ k ≤ n, of these n subspaces is closed? Perhaps from the
closeness of Xi, the closeness of the sum of any k subspaces follows.

6. How to define the direct sum X1 ⊕ · · · ⊕ Xn in the case when X1 + · · · + Xn , X?

In what follows, we will consider these questions. We will explain a close connection between the direct
sum of subspaces and two-sided Peirce decomposition of the identity of the ring. Thus we will establish a
connection between analytic-topologic and algebraic notions.

2. Direct sum of linear subspaces

The notion of a direct product of finite number of linear spaces (sometimes called exterior direct sum)
and the notion of a direct sum of finite number of subspaces are closely related, but still different. In the
most general case, the direct product of “structures” (groups, rings, vector spaces etc.) S1, . . . , Sn is the
Cartesian product ∏

= S1 × · · · × Sn

together with appropriate operations which are defined coordinately. The direct product
∏
= S1 × · · · × Sn

of normed spaces is defined as a direct product of linear spaces. The norm on
∏

can be defined in many
different ways. Recall the following well-known theorem.

Theorem 2.1. Let (X1, ∥ · ∥1), . . . , (Xn, ∥ · ∥n) be normed spaces,
∏
= X1 × · · · × Xn and let

∥(x1, . . . , xn)∥p = (∥x1∥p1 + · · · + ∥xn∥pn)
1
p , where p ≥ 1 is a real number,

∥(x1, . . . , xn)∥∞ = max{∥x1∥1, . . . , ∥xn∥n}.

Then each of the functions ∥ · ∥p, 1 ≤ p ≤ ∞, defines a norm on
∏

and all of them are mutually equivalent, i.e. they
define the same topology on

∏
. The linear space

∏
together with one of the above defined norms, is a Banach space if

and only if Xi is a Banach space for all i = 1, 2, . . . ,n.

Proof. See, for example, Problem 3.9 (pg. 168.), Problem 3.33 (pg. 178.) and Example 4. E (pg. 208.) in
[5].

Definition 2.2. Let X1, . . . ,Xn be linear subspaces of a linear space X. The sum S = X1 + · · · + Xn is an algebraic
(inner) direct sum (ADS for short) if the map

φ :
∏
→ S, φ(x1, x2, . . . , xn) = x1 + x2 + · · · + xn (3)

is the isomorphism of linear spaces.
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Recall that the sum S = X1 + · · · +Xn is the ADS if and only if the condition x1 + · · · + xn = 0, xi ∈ Xi, i =
1, . . . , n implies xi = 0, i = 1, . . . ,n. Another well-known characterizations of ADS can be found in [4].

If we have the norm on a linear space X, then it defines a topology on X.

Definition 2.3. Let (X1, ∥ · ∥1) and (X2, ∥ · ∥2) be normed spaces. The map φ : X1 → X2 is a topological isomorphism
(or homeomorphism) if φ is the isomorphism of linear spaces and both φ and φ−1 are continuous.

It follows that a topological isomorphism φ maps open sets to open sets and closed sets to closed sets.
Note that in general φ does not preserve the norm in the sense that

∥φ(x)∥2 = ∥x∥1, ∀x ∈ S1. (4)

A linear map that satisfies the condition (4), i.e. the map that “preserves” distances, is called an
isometry. An isomorphism which is an isometry is called isometric isomorphism. Of course, if φ is an
isometric isomorphism then ∥φ∥ = 1 and ∥φ−1∥ = 1, so φ is a topological isomorphism. In general case the
converse is not true.

Definition 2.4. Let X1, . . . ,Xn be linear subspaces of a normed space (X, ∥ · ∥). Let the product
∏
= X1 × · · · × Xn

be equipped with one of the norms ∥ · ∥p, 1 ≤ p ≤ ∞.
The sum S = X1 + · · ·+Xn is a topological direct sum (TDS for short) of subspaces if the map φ :

∏→ S defined
by (3) is a topological isomorphism of normed spaces.

From Theorem 2.1 it follows that it does not matter which one of norms ∥ · ∥p, 1 ≤ p ≤ ∞ we choose, and it justifies
the present formulation of this definition.

We can use idempotent operators to characterize TDS.

Theorem 2.5. Let X1, . . . , Xn be linear subspaces of a normed space X, such that the sum S = X1 +X2 + · · ·+Xn is
ADS. The following statements are equivalent:

(i) S is TDS.

(ii) The map Ei : S→ S defined by

Ei(x1 + x2 + · · · + xn) = xi, x j ∈ X j, j = 1, 2, . . . , n

is continuous for every i = 1, 2, . . . , n.

Proof. First, note that Ei is a linear idempotent with Im Ei = Xi, i = 1, . . . ,n. Let
∏
= X1 × · · · × Xn. By

Theorem 2.1 we know that (
∏
, ∥ · ∥1) is a normed space. Define

φ :
∏
→ S, φ(x1, . . . , xn) = x1 + · · · + xn.

Thus, φ(x1, . . . , xn) = E1x+ · · ·+ Enx, x = x1 + · · ·+ xn. Since S is ADS it follows that φ is linear and bijective.
Moreover,

φ−1(x1 + · · · + xn) = (E1(x1 + · · · + xn), . . . ,En(x1 + · · · + xn)).

Also,
∥φ(x1, . . . , xn)∥ = ∥x1 + · · · + xn∥ ≤ ∥x1∥ + · · · + ∥xn∥ = ∥(x1, . . . , xn)∥1.

It follows that φ is bounded, i.e. continuous. From this fact, by Definition 2.4 we conclude that S is TDS if
and only if φ−1 is continuous.

(i) =⇒ (ii): Suppose that S is TDS, that is, suppose that φ−1 is bounded. We have

∥Ei(x1 + · · · + xn)∥ ≤ ∥E1(x1 + · · · + xn)∥ + · · · + ∥En(x1 + · · · + xn)∥
= ∥(E1(x1 + · · · + xn), . . . ,En(x1 + · · · + xn))∥1
= ∥φ−1(x1 + · · · + xn)∥1 ≤ ∥φ−1∥ · ∥x1 + · · · + xn∥.
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We conclude that Ei is continuous for every i = 1, 2, . . . ,n.
(ii) =⇒ (i): Suppose now that Ei is continuous for every i = 1, 2, . . . , n. We have

∥φ−1(x1 + · · · + xn)∥1 = ∥(E1(x1 + · · · + xn), . . . ,En(x1 + · · · + xn))∥1
= ∥E1(x1 + · · · + xn)∥ + · · · + ∥En(x1 + · · · + xn)∥
≤ ∥E1∥ · ∥x1 + · · · + xn∥ + · · · + ∥En∥ · ∥x1 + · · · + xn∥
= (∥E1∥ + · · · + ∥En∥)∥x1 + · · · + xn∥,

so we conclude that φ−1 is bounded.

Corollary 2.6. Let X1, . . . ,Xn be subspaces of a normed space X. If S = X1 + · · · + Xn is TDS and S is closed in X,
then every Xi is closed in X.

Proof. Using notations from previous theorem, we know that Xi = Im (Ei) = Ker (I − Ei) is closed in S, since
Ei is a continuous projection from S onto Xi. By the assumption of this theorem, S is closed in X, we get
that Xi is closed in X.

If we have n unitary spaces (H1, ⟨·, ·⟩1), . . . , (Hn, ⟨·, ·⟩n) then the scalar product on
∏
= H1 × · · · × Hn is

defined by

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = ⟨x1, y1⟩1 + · · · + ⟨xn, yn⟩n.

Note that in the case of unitary spaces, the norm on
∏

is actually ∥·∥2 norm. The product
∏

is a Hilbert space
if and only if Hi is a Hilbert space for all i = 1, 2, . . . ,n (Theorem 2.1). For the isomorphism of unitary spaces
we may require that it preserves the scalar product. It turns out that it is sufficient that the isomorphism
preserves the norm induced by scalar product.

Lemma 2.7. Let (H1, ⟨·, ·⟩1) and (H2, ⟨·, ·⟩2) be unitary spaces and letφ : H1 → H2 be an isomorphism between linear
spaces H1 and H2. The following statements are equivalent:

(i) ∥φ(x)∥2 = ∥x∥1, for every x ∈ H1;

(ii) ⟨φ(x), φ(y)⟩2 = ⟨x, y⟩1, for every x, y ∈ H1.

Proof. It is clear that (ii) implies (i). Using the well-known polarization identity

⟨x, y⟩ = 1
4

(
∥x + y∥2 − ∥x − y∥2 + i∥x + iy∥2 − i∥x − iy∥2

)
we conclude that (i) implies (ii).

Definition 2.8. Let H1, . . . ,Hn be subspaces of a unitary space (H, ⟨·, ·⟩). Suppose that on the linear space
∏
=

H1 × · · · ×Hn the scalar product is defined by

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ = ⟨x1, y1⟩ + · · · + ⟨xn, yn⟩.

The sum S = H1 + · · · +Hn is the orthogonal direct sum (ODS) if the map φ :
∏→ S defined by (3) is an isometric

isomorphism. ODS is denoted by

H1
⊥
⊕ · · ·

⊥
⊕Hn, i.e.

⊥⊕n

i=1
Hi.

It is clear that every ODS is TDS.

Theorem 2.9. Let H1, . . . , Hn be subspaces of a unitary space H and let

S = H1 + · · · +Hn.

The following statements are equivalent:
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(i) S is ODS.

(ii) Hi⊥H j for all i, j ∈ {1, . . . , n}, i , j.

Proof. (i) ⇒ (ii): Suppose that S is ODS. By Definition 2.8, the map φ : (x1, . . . , xn) → x1 + · · · + xn is an
isometric isomorphism from

∏
= H1 × · · · ×Hn onto S. By Lemma 2.7 we have that

⟨φ(x), φ(y)⟩H = ⟨x, y⟩∏,
for all x, y ∈∏. Let x1 ∈ H1 and x2 ∈ H2. If we put x = (x1, 0, . . . , 0), y = (0, x2, 0, . . . , 0) then we easily obtain
that

⟨x1, x2⟩H = ⟨φ(x), φ(y)⟩H = ⟨x, y⟩∏ = 0.

Therefore, H1⊥H2. Similarly, Hi⊥H j for all i, j ∈ {1, . . . ,n}, i , j.
(ii)⇒ (i): Suppose that Hi⊥H j for i , j, and let us first prove that S is ADS. Let x1 + · · · + xn = 0, xi ∈ Hi.

We have

∥x1∥2 = ⟨x1, x1⟩H = ⟨x1, x1⟩H + ⟨x1, x2⟩H + · · · + ⟨x1, xn⟩H
= ⟨x1, x1 + x2 + · · · + xn⟩H = ⟨x1, 0⟩H = 0.

Hence, xi = 0 for all i = 1, 2, . . . ,n. To prove that S is ODS, it remains to prove that ∥φ(x)∥ = ∥x∥, for all
x ∈∏. By the orthogonality, we have

∥φ(x1, . . . , xn)∥2 = ∥x1 + · · · + xn∥2 = ∥x1∥2 + · · · + ∥xn∥2 = ∥(x1, . . . , xn)∥22.

Remark 2.10. Let H1 and H2 be closed subspaces of a unitary space H such that H1⊥H2. Then the sum H1
⊥
⊕ H2

need not be closed in H.
However, if H is Hilbert space then this sum is closed in H. For example, take x ∈ cl(H1

⊥
⊕ H2). Then there is a

sequence zn = xn + yn ∈ H1
⊥
⊕H2, with xn ∈ H1, yn ∈ H2 and lim

n→∞
zn = z. By the Pythagorean Theorem, we conclude

that (xn)n is a Cauchy sequence in H1, and (yn)n is a Cauchy sequence in H2. Since H1 and H2 are closed, we get

lim
n→∞

xn = x ∈ H1 and lim
n→∞

yn = y ∈ H2. Consequently, z = x + y ∈ H1
⊥
⊕H2, so H1

⊥
⊕H2 is closed.

Inductivey, if Hi, i = 1, 2, . . . , n are mutually orthogonal subspaces of a Hilbert space H then, by induction on n,

we can easily show that the sum H1
⊥
⊕ · · ·

⊥
⊕Hn is closed in H.

If H is a Hilbert space then an operator A ∈ B(H) is self-adjoint if A = A∗.

Definition 2.11. Let H be a unitary space. A bounded idempotent P : H→ H is orthogonal if H = Im P
⊥
⊕ Ker P.

Remark 2.12. Let P ∈ B(H), P , 0, be a bounded idempotent on a unitary space H. The following characterizations
are well-known:

P is orthogonal ⇔ Im P⊥Ker P ⇔ ∥P∥ = 1. (5)

If H is a Hilbert space then an idempotent P ∈ B(H) is orthogonal if and only if P is self-adjoint.

Theorem 2.13. Let H1, . . . ,Hn be subspaces of a unitary space H such that the sum S = H1 + · · · +Hn is ADS. The
following statements are equivalent:

(i) S is ODS.

(ii) The map Ei : S→ S defined by

Ei(x1 + x2 + · · · + xn) = xi, x j ∈ H j, j = 1, 2, . . . , n

is an orthogonal bounded idempotent for every i = 1, 2, . . . ,n.

Proof. The proof follows by Theorem 2.5, its proof, Theorem 2.9 and property (5).
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3. Decomposition of the identity

Let R be a ring with identity 1.

Definition 3.1. For idempotents e, f ∈ R we say that they are mutually orthogonal if e f = f e = 0. Idempotents
e1, e2, . . . , en ∈ R are mutually orthogonal if they are mutually orthogonal in pairs. The equality (in the case when it
holds)

1 = e1 + e2 + · · · + en,

where e1, e2, . . . , en ∈ R are mutually orthogonal idempotents, is called the decomposition of the identity in the ring R.

It should be distinguished the notion of mutually orthogonal idempotents e and f given by Definition
3.1 and the notion of orthogonal idempotent e in a ring with involution R (this is an element which satisfies
e = e2 = e∗ and we will call such element as self-adjoint idempotent rather then orthogonal idempotent).
Because of the above reason some authors say that mutually orthogonal idempotents e1, . . . , en are pairwise
disjoint.

Let 1 = e1 + · · ·+ em and 1 = f1 + · · ·+ fn be two decompositions of the identity in the ring R. An arbitrary
element x ∈ R can be written in the form

x = 1 · x · 1 = (e1 + · · · + em) · x · ( f1 + · · · + fn) =
m∑

i=1

n∑
j=1

eix f j =

m∑
i=1

n∑
j=1

xi j, (6)

where xi j = eix f j ∈ eiR f j. Note that for all i = 1, 2, . . . ,m and j = 1, 2, . . . ,n the sets eiRei i f jR f j are rings,
and the set eiR f j is at the same time left eiRei-module and right f jR f j-module. Moreover, for all r ∈ eiRei,
s ∈ f jR f j and x ∈ eiR f j, we have (rx)s = r(xs). Therefore, eiR f j is eiRei- f jR f j-bimodule. It is not difficult to
check that the sum (6) defines decomposition of the ring R in the direct sum of these bimodules:

R =
m⊕

i=1

n⊕
j=1

eiR f j. (7)

It is suitable to write x in the matrix form

x =


x11 · · · x1n
...
. . .

...
xm1 · · · xmn


e× f

. (8)

It is important to emphasize that every element x ∈ R has the unique matrix representation with respect to
decompositions 1 = e1 + · · · + em and 1 = f1 + · · · + fn.
If y = [yi j]e× f then it is clear that x + y = [xi j + yi j]e× f . Let 1 = 11 + · · · + 1k be another decomposition of the
identity in the ring R. As above,

R =
n⊕

j=1

k⊕
l=1

f jR1l,

and for every z ∈ R there is the unique matrix representation

z = [z jl] f×1,

where z jl = f jz1l ∈ f jR1l, j = 1, . . . , n, l = 1, . . . , k. By the mutual orthogonality of involved idempotents, it
is easy to show that for the multiplication of elements x and z we can use the ordinary matrix rule:

xz = [wil]e×1, where wil =

n∑
j=1

xi jz jl.
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When m = n and ei = fi, i = 1, 2, . . . , n, the decomposition (7) is known as the two-sided Peirce
decomposition of the ring R, [3].

Suppose now that the ring R possesses an involution ∗. From (6) we have

x∗ =
m∑

i=1

n∑
j=1

x∗i j =

n∑
j=1

m∑
i=1

f ∗j x∗e∗i ,

i.e.

x∗ =


x∗11 · · · x∗m1
...
. . .

...
x∗1n · · · x∗mn


f ∗×e∗

, (9)

where the representation of x∗ is with respect to decompositions 1 = f ∗1 + · · · + f ∗n and 1 = e∗1 + · · · + e∗m.
The decomposition of the identity 1 = e1 + · · · + en is orthogonal if ei (i = 1, 2, . . . ,n) are self-adjoint

idempotents.
If X is a normed space, then the set B(X) can be considered as the ring with identity I = IX ∈ B(X).

Because of that, the notion of the decomposition of the identity I in the ring B(X) makes sense.

Remark 3.2. When e ∈ R is an idempotent, then it is clear that e + (1 − e) = 1 is a decomposition of the identity in
the ring R.

Suppose now that we have three idempotents e1, e2 and e3, such that e1 + e2 + e3 = 1. By squaring the equality
e1 + e2 = 1 − e3 we obtain e1 + e2 + e1e2 + e2e1 = 1 − e3, that is e1e2 = −e2e1. Pre-multiplying this equation by e1 we
obtain e1e2 = −e1e2e1. Post-multiplying e1e2 = −e2e1 by e1 we obtain e1e2e1 = −e2e1. It follows that e1e2 = e2e1, so
e1e2 = −e1e2. Now, it is easy to see that (e1e2)2 = e1e2. Thus, we have idempotent p = e1e2 such that p + p = 0. If we
suppose that R = B(X) then it is clear that p = 0.

Now we can obtain the result of Stampfli [7]. If E1,E2,E3 are idempotents from B(X) such that E1 + E2 + E3 = I
then EiE j = 0 for i , j. But, Stampfli showed that there exists a Hilbert space H and idempotents E1, . . . ,E4 ∈ B(H)
such that E1 + · · · + E4 = I and E1E2 , 0. In the same paper it is proved that if H is Hilbert space and if E1, . . . ,En
are self-adjoint idempotents from B(H) with E1 + · · · + En = I then EiE j = 0 for i , j.

Suppose now that H is a finite dimensional space, and let E1, . . . , En be idempotents from B(H) (that is Ei are
idempotent complex matrices of the same order) with E1 + · · · + En = I. It is well-known that then EiE j = 0 for i , j
(for the proof see, for example, Theorem 2.49 in [1]). For the sake of completeness we give the proof. Recall that the
rank of an idempotent matrix is equal to its trace. Hence

n = trace(I) = trace(E1) + · · · + trace(En) = rank (E1) + · · · + rank (En).

It follows that H = Im E1 ⊕ · · · ⊕ Im En. Using E1 + · · · + En = I we obtain n∑
i=1

Ei

E jx = E jx

for all x ∈ H and j = 1, . . . ,n. Since EiE jx ∈ Im Ei, E jx ∈ Im E j and the sum of Im Ei’s is direct, we must have
EiE jx = 0, i , j. Hence, EiE j = 0 for i , j.

The following Theorem 3.4 connects the notion of decomposition of the identity in the ring B(X) with
the notion of topological direct sum.

Lemma 3.3. If X is a normed space, and if E1,E2 ∈ B(X) are two idempotents such that E1E2 = E2E1 = 0. Then
E1 + E2 is an idempotent and

Im (E1 + E2) = Im E1 ⊕ Im E2,

where the above sum is TDS.



D. S. Rakić, D. S. Djordjević / FAAC 10 (1) (2018), 9–20 16

Proof. It is evident that E1 + E2 is an idempotent and Im (E1 + E2) ⊆ Im E1 + Im E2. If x ∈ Im E1 then
0 = E2E1x = E2x, so x = (E1 + E2)x ∈ Im (E1 + E2). Similarly, Im E2 ⊆ Im (E1 + E2). If x ∈ Im E1 ∩ Im E2 then
x = E1x = E2x, so x = E2

1x = E1E2x = 0. By Theorem 2.5, it is easy to prove that sum is TDS.

Theorem 3.4. (See also [2].)

(i) Let X1, . . . , Xn be subspaces of a normed space X, and let

X = X1 ⊕ X2 ⊕ · · · ⊕ Xn,

where the sum is TDS. Then there exist idempotents Ei ∈ B(X), i = 1, 2, . . . , n, such that

I = E1 + E2 + · · · + En

is a decomposition of the identity I in the ring B(X) and Im Ei = Xi for all i = 1, 2, . . . ,n.

(ii) Let
I = E1 + E2 + · · · + En

be a decomposition of the identity in the ring B(X). Then

X = Im E1 ⊕ Im E2 ⊕ · · · ⊕ Im En, (10)

where the above sum is TDS. Moreover, if J ⊆ {1, 2, . . . , n} then
∑
i∈J

Ei ∈ B(X) is an idempotent and

Im

∑
i∈J

Ei

 =⊕
i∈J

Im Ei, (11)

where the above sum is TDS.

Proof. (i): For i = 1, 2, . . . , n define the map Ei : X→ X with

Ei(x1 + · · · + xn) = xi, x j ∈ X j, j = 1, 2, . . . ,n.

Since X = X1 ⊕X2 ⊕ · · · ⊕Xn is TDS, by Theorem 2.5 and its proof it follows that Ei is a bounded idempotent
and Im Ei = Xi for all i = 1, 2, . . . ,n. It is evident that

(E1 + · · · + En)(x1 + · · · + xn) = x1 + · · · + xn,

so E1 + · · · + En = I. Also, for i , j we have

Ei(E j(x1 + · · · + xn)) = Ei(x j) = 0,

so EiE j = 0. Therefore, I = E1 + E2 + · · · + En is a decomposition of the identity in the ring B(X).
(ii): Suppose that I = E1 + E2 + · · · + En is a decomposition of the identity in B(X). Without any loss of

generality, suppose that J = {1, 2, . . . , k}, 1 ≤ k ≤ n. Using Lemma 3.3, by induction on k one can prove that

the sum
k∑

i=1
Ei is a bounded idempotent,

Im

 k∑
i=1

Ei

 = k∑
i=1

Im Ei,

and the sum SJ =
k∑

i=1
Im Ei is ADS. To prove that the sum SJ is TDS, by Theorem 2.5, it is sufficient to

prove that the map Pi : SJ → SJ, i = 1, 2, . . . , k, defined by Pi(x1 + · · · + xk) = xi, x j ∈ Im E j, j = 1, 2, . . . , k, is
continuous for all i = 1, 2, . . . , k. Since x j ∈ Im E j and EiE j = 0 for i , j, we have that x j = E jx j and

Ei(x1 + · · · + xk) = xi = Pi(x1 + · · · + xk).
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Therefore, for x = x1 + · · · + xk, we have ∥Pix∥ = ∥Eix∥ ≤ ∥Ei∥∥x∥, so Pi is bounded. The equality (10) is
obtained in the special case when J = {1, 2, . . . ,n}. This completes the proof. Note that

Ker E j =

n⊕
i=1,i, j

Im Ei. (12)

Corollary 3.5. Let X1, X2 . . . , Xn be subspaces of a normed space X, and let

S = X1 ⊕ X2 ⊕ · · · ⊕ Xn,

be TDS. Let J ⊆ {1, 2, . . . ,n}. Then the sum
SJ =

⊕
i∈J

Xi

is TDS and SJ is a closed subspace in S. Thus, if S is closed in X then SJ is closed in X.

Proof. Since S = X1 ⊕ · · · ⊕Xn is TDS, by Theorem 3.4 (i) it follows that there exists the decomposition of the
identity in the ringB(S), IS = E1 + · · ·+En where Im Ei = Xi. Now, by part (ii) of Theorem 3.4 we obtain that

SJ =
⊕

i∈J

Xi =
⊕

i∈J

Im Ei = Im

∑
i∈J

Ei


is TDS. Since

∑
i∈J

Ei is a bounded idempotent on S, it follows that SJ is closed subspace in S.

When X is a Banach space, we can characterize the TDS of subspaces in a much easier way than in the
case when X is a general normed space.

As a corollary of the Bounded inverse theorem, we obtain the following result.

Theorem 3.6. Let X be a Banach space, and let X1, X2, . . . , Xn be subspaces of X such that the sum S =
X1 +X2 + · · · +Xn is ADS. If the subspaces X1, X2, . . . , Xn and S are closed in X, then S is TDS and the set

∑
i∈J

Xi is

closed subspace in X for all J ⊆ {1, 2, . . . , n}.
Proof. Let

∏
= X1 × X2 × · · · × Xn and consider the norm ∥ · ∥1 on

∏
. Let φ :

∏ → S be the map defined
by φ(x1, . . . , xn) = x1 + · · · + xn. In the proof of Theorem 2.5 we proved that φ is bounded bijective linear
operator. Subspaces Xi, i = 1, 2, . . . ,n and S are closed in X so they are Banach spaces. By Theorem 2.1, the
space

∏
is Banach. From the Bounded inverse theorem, it follows that φ−1 : S→∏ is a bounded operator.

Thus, φ is a topological isomorphism, so, by Definition 2.4, S is TDS. By Corollary 3.5 it follows that the set∑
i∈J Xi is a closed subspace of X.

In the proof of Theorem 3.6, we also could use the following argument to prove that the space
∑

i∈J Xi is
closed in X. Namely, it is easy to show that the set

Sk = X1 × · · · × Xk × {0} × · · · × {0}

is closed in
∏

. Since φ−1 is continuous, we have that the set (φ−1)−1(Sk) = φ(Sk) = X1 + · · · + Xk is closed
subspace in S. Therefore, it is closed in X, since S is closed in X.

Corollary 3.7. Let H1,. . . , Hn be subspaces (not necessarily closed) of a unitary space H such that Xi⊥X j for i , j,
i, j = 1, 2, . . . , n. Let J ⊆ {1, . . . ,n}. If the sum (which is orthogonal by Theorem 2.9) S = X1 + · · ·+Xn is closed in X
then the sum

SJ =
∑
i∈J

Xi

is closed subspace in X.
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Proof. The proof follows by Theorem 2.9 and Corollary 3.5.

Let H be a unitary space. Decomposition of the identity in the ring B(H), I = E1 + · · · + En is orthogonal
if Ei, i = 1, . . . ,n are orthogonal idempotents. When H is a Hilbert space then this definition agrees with
previously introduced definition of orthogonal decomposition of the identity in the ring R.

Theorem 3.8. (i) Let X1,X2, . . . ,Xn be subspaces of a unitary space H and let

X = X1
⊥
⊕ X2

⊥
⊕ · · ·

⊥
⊕ Xn.

Then there exist orthogonal idempotents Ei ∈ B(X), i = 1, 2, . . . , n, such that

I = E1 + E2 + · · · + En

is an orthogonal decomposition of the identity in the ring B(H) and Im Ei = Xi for all i = 1, 2, . . . ,n.

(ii) Let
I = E1 + E2 + · · · + En

be an orthogonal decomposition of the identity in the ring B(H). Then

X = Im E1
⊥
⊕ Im E2

⊥
⊕ · · ·

⊥
⊕ Im En. (13)

Moreover, if J ⊆ {1, 2, . . . ,n} then
∑

i∈J Ei ∈ B(X) is orthogonal idempotent and

Im

∑
i∈J

Ei

 = ⊥⊕
i∈J

Im (Ei). (14)

Proof. The proof follows from Theorem 3.4, its proof, the identity (12), Theorem 2.9 and property (5).

Remark 3.9. Let X be a normed space and let X1 and X2 be closed subspaces such that X = X1+X2 and X1∩X2 = {0},
i.e. X = X1 ⊕X2 is ADS. Then the map P : X→ X defined by P(x1 + x2) = x1, x1 ∈ X1, x2 ∈ X2 is linear and P2 = P.
But, P is not necessarily a bounded operator. If X is Banach space then P is bounded, which can be proved using the
Closed graph theorem. Thus, if X is only normed space, then the closeness of subspaces X1 and X2 is not sufficient
condition for the ADS X1 ⊕ X2 to be TDS.

It should be noted that TDS is defined by some authors as an ADS X = X1 ⊕ X2 for which X1 and X2 are closed
subspaces in X. Because of that, we give the following definition.

Definition 3.10. A subspace Z of a normed space X is topologically complemented (complemented for short) in X if
there exists a subspace Z1 ⊆ X such that X = Z ⊕ Z1 where the sum is TDS.

Lemma 3.11. Let Z be a subspace of a normed space X.

(i) Z is complemented in X if and only if there exists an idempotent P ∈ B(X) such that Z = Im P.

(ii) If X is a Banach space, then Z is complemented in X if and only if Z is closed in X and there exists a closed
subspace Z1 ⊆ X such that X = Z + Z1 and Z ∩ Z1 = {0}.

(iii) If X is a Hilbert space then Z is complemented in X if and only if Z is closed in X.

Proof. The statemet (i) follows by Theorem 2.5. The statement (ii) follows by Theorem 3.6. The statement
(iii) follows by the well-known property that for every closed subspace Z of a Hilbert space X holds

X = Z
⊥
⊕ Z⊥.
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4. Operator matrix induced by a direct sum

Let X and Y be normed spaces. In previous section we proved that if we have two decompositions of
the identity in the ring R then any element x ∈ R can be represented in an appropriate matrix form (8). In
this section we will consider the case when R = B(X). Moreover, it turns out that the analogy holds even
on the set B(X,Y), which is not a ring.

Let IX = F1 + · · · + Fn and IY = E1 + · · · + Em be decompositions of the identities in rings B(X) and B(Y),
respectively. Suppose that A ∈ B(X,Y). Then

A = IY · A · IX = (E1 + · · · + Em)A(F1 + · · · + Fn) =
m∑

i=1

n∑
j=1

EiAF j, (15)

and thus, for x = x1 + · · · + xn ∈ Im F1 ⊕ · · · ⊕ Im Fn = X, we have

Ax =
m∑

i=1

n∑
j=1

Ai jx j, (16)

where the operator Ai j : Im F j → Im Ei is defined by Ai jx j := EiAF jx j = EiAF jx. Therefore, ∥Ai jx j∥ ≤
∥EiAF j∥∥x j∥, so Ai j ∈ B(Im F j, Im Ei).

Suppose now that Ai j ∈ B(Im F j, Im Ei) and let the operator A : X→ Y be defined by (16). It follows that

∥Ax∥ ≤ mM(∥x1∥ + · · · + ∥xn∥) = mM(∥F1x∥ + · · · + ∥Fnx∥)
≤ mM(∥F1∥ + · · · + ∥Fn∥)∥x∥,

where M = max
{
∥Ai j∥ : i = 1, 2, . . . ,m, j = 1, 2, . . . ,n

}
. Thus, A ∈ B(X,Y). Therefore, A ∈ B(X,Y) if and only

if Ai j ∈ B(Im F j, Im Ei). In that case, the equation (16), i.e. (15) can be written in the following matrix form

A =


A11 . . . A1n
...

. . .
...

Am1 . . . Amn

 :


Im F1
...

Im Fn

→


Im E1
...

Im Em

 ,
which is analogous with representation (8) for elements x ∈ R.

Similarly to the case of a ring, the addition and the multiplication of operators written in matrix forms
are performed using the known matrix rules. More precisely, if the operator B ∈ B(X,Y) has the matrix
form [Bi j]m×n with respect to decompositions IX = F1 + · · · + Fn and IY = E1 + · · · + Em then the matrix form
of A + B is [Ai j + Bi j]m×n. Further, let IZ = G1 + · · · + Gk be the decomposition of the identity of B(Z), where
Z is another normed space. Let [C jl]n×k be the matrix form of an operator C ∈ B(Z,X). Then the operator
AC ∈ B(Z,Y) has the matrix form [Dil]m×k, where Dil =

∑n
j=1 Ai jC jl. The proof of these properties are easy.

The case when X and Y are complete vector spaces are the most interesting. Because of this, in the
following theorem, we will summarize the previous considerations in the case of Banach spaces.

Theorem 4.1. Let X1, . . . ,Xn be closed subspaces of Banach space X, and let Y1, . . . ,Ym be closed subspaces of Banach
space Y. Let

X = X1 ⊕ · · · ⊕ Xn and Y = Y1 ⊕ · · · ⊕ Ym,

where the above sums are ADS. Then these sums are TDS and they induce the decomposition of the identity in the
ring B(X)

IX = F1 + · · · + Fn,

where Im F j = X j, j = 1, 2, . . . ,n and the decomposition of the identity in the ring B(Y),

IY = E1 + · · · + Em,
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where Im Ei = Yi, i = 1, 2, . . . ,m. Moreover, for J ⊆ {1, 2, . . . ,n} and I ⊆ {1, 2, . . . ,m}, the sums⊕
j∈J

X j and
⊕

i∈I

Yi

are closed subspaces in X and Y respectively. Furthermore, let A : X → Y be a liner operator. Then A can be
represented in the following matrix form

A =


A11 . . . A1n
...

. . .
...

Am1 . . . Amn

 :


X1
...

Xn

→


Y1
...

Ym

 , (17)

where Ai j : X j → Yi is linear operators defined by Ai jx j = EiAF jx j. If A is bounded then the operators Ai j are bounded.
Conversely, let Ai j : X j → Yi be linear operators and let the operator A : X→ Y be defined by Ax =

∑m
i=1
∑n

j=1 Ai jx j,
where x = x1 + · · · + xn, x j ∈ X j. If the operators Ai j are bounded then the operator A is bounded. In this case, every
submatrix of the matrix (17) defines appropriate bounded operator.

Suppose now that X and Y are Hilbert spaces. For A ∈ B(X,Y) we can consider its Hilbert adjoint
operator A∗ ∈ B(Y,X). Let

X = X1
⊥
⊕ · · ·

⊥
⊕ Xn and Y = Y1

⊥
⊕ · · ·

⊥
⊕ Ym.

Then the appropriate decompositions of the identity in the rings B(X) and B(Y) are orthogonal. Using the
representation (9), we can easily obtain that A∗ has the following matrix form:

A∗ =


A∗11 . . . A∗m1
...

. . .
...

A∗1n . . . A∗mn

 :


Y1
...

Ym

→


X1
...

Xn

 .
Of course, the above representation is not valid in the case when observed sums are not orthogonal.
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