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Perturbed Browder, Weyl theorems and their variations: An addendum
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Abstract. We generalize some results of Zariouh [13] on properties (ZΠa ) and (ZEa ) from the direct sum
A ⊕ B (of Banach space operators A,B) to upper triangular matrix operators with main diagonal {A,B} and
answer two questions from [13], one of them affirmatively and the other in the negative.

1.. Introduction

Let B(X) (resp., B(H)) denote the algebra of operators, equivalently bounded linear transformations, on
a complex infinite dimensional Banach space X (resp., Hilbert space H) into itself. An operator T ∈ B(X)
satisfies Browder’s theorem if σ(T) ∩ Φw(T) = Π0(T) (resp., Weyl’s theorem if σ(T) ∩ Φw(T) = E0(T)), where
σ(T),Φw(T),Π0(T) and E0(T) denote respectively the spectrum, the complement of the Weyl spectrum σw(T)
of T in the complex plane C, the set of finite rank poles (of the resolvent) of T and the set of isolated points
iso(T) of T which are finite multiplicity eigenvalues of T. Browder and Weyl theorems, and their variations,
have drawn the attention of a large number of authors in the recent past, and there is a large body of
information available on these topics in extant literature (see [1, 5–7, 12, 13] for further references). Let
Πa(T) and Ea(T) denote respectively the set of left poles and the set of isolated points of the approximate
point spectrum σa(T) which are eigenvalues of T. Amongst the many variations on Browder, Weyl theorems
to have been introduced in the very recent past are the properties (ZΠa ) and (ZEa ), where T ∈ B(X) satisfies
property (ZΠa ), T ∈ (ZΠa ), if σ(T) ∩ Φw(T) = Πa(T) and T ∈ B(X) satisfies property (ZEa ), T ∈ (ZEa ), if
σ(T) ∩ Φw(T) = Ea(T). Let σp(T), ρa(T) and ΦBw(T) denote, respectively, the point spectrum of T, the
complement of σa(T) in C and the complement of the B-Weyl spectrum σBw(T) of T in C. In studying direct
sums of operators satisfying properties (ZΠa ) and (ZEa ), Zariouh [13] proves that if A,B ∈ B(X) are such that:
(i) A,B ∈ (ZΠa ) andρa(A)∩Πa(B) = ρa(B)∩Πa(A) = ∅, then A⊕B ∈ (ZΠa ) if and only ifσw(A⊕B) = σw(A)∪σw(B);
(ii) A,B ∈ (ZEa ) and σp(A) = σp(B), then A⊕ B ∈ (ZEa ) if and only if σw(A⊕ B) = σw(A)∪ σw(B). (Our notation
differs slightly from that of Zariouh: We write (ZΠa ) instead of (ZΠa ) and (ZEa ) instead of (ZEa ).) Zariouh
also raises the question of whether (a) σw(A⊕B) = σw(A)∪σw(B) implies σBwA⊕B) = σBwA)∪σBw(B), and (b)
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σw(A ⊕ B) = σw(A) ∪ σw(B) implies A ⊕ B satisfies Browder’s theorem. In this short addendum to our study
of Browder, Weyl theorems and their variations, we generalize the results of Zariouh to upper triangular
operator matrices, give an answer to [13, Question (1), Page 6] in the affirmative and give an example to
show that [13, Question (2), Page 6] has a negative answer.

2.. Notation and terminology

Almost all our terminology in the following is standard, and explained in [7] (see also [1, 9, 10]). In
addition to the notation already introduced, we shall use the following further notation. Given a subset S of
C, we shall write SC for the complement of S in C, iso(S) for the isolated points of S and ρ(A) for the resolvent
of the operator A ∈ B(X). The operator A ∈ B(X) is: upper semi–Fredholm at λ ∈ C, λ ∈ Φ+(A)), if (A−λI)(X) is
closed and the deficiency index α(A−λI) = dim(A−λI)−1(0) < ∞; lower semi–Fredholm at λ ∈ C, λ ∈ Φ−(A) , if
β(A−λI) = dim(X/(A−λI)(X)) < ∞; A−λI is semi–Fredholm, A−λI ∈ Φ±(X), if A−λI is either upper or lower
semi–Fredholm, and A is Fredholm at λ ∈ C, λ ∈ Φ(A) , if A − λI is both upper and lower semi–Fredholm.
The index of a semi–Fredholm operator A ∈ B(X) is the integer ind(A) = α(A) − β(A). Corresponding to
these classes of one sided Fredholm operators, we have the following spectra: The upper semi Fredholm
spectrum σu f (A) = {λ ∈ σ(A) : λ < Φ+(A)}, the lower semi Fredholm spectrum σl f (A) = {λ ∈ σ(A) : λ < Φ−(A)}
and the Fredholm spectrum σe(A) = σu f (A) ∪ σl f (A) = {λ ∈ σ(A) : λ < Φ(A)}. A ∈ B(X) is upper Weyl (resp.,
lower Weyl, (simply) Weyl) at λ, λ ∈ Φ−+(A) (resp., λ ∈ Φ+−(A), λ ∈ Φw(A)), if it is upper semi Fredholm
with ind(A − λI) ≤ 0 (resp., lower semi Fredholm with ind(A − λI) ≥ 0, Fredholm with ind(A − λI) = 0).
The upper Weyl spectrum, the lower Weyl spectrum and the Weyl spectrum of A are respectively the sets
σaw(A) = {λ ∈ σa(A) : λ < Φ+(A) or ind(A−λI) � 0} = {λ ∈ σa(A) : λ < Φ−+(A)}, σsw(A) = {λ ∈ σs(A) : λ < Φ−(A)
or ind(A − λI) � 0} = {λ ∈ σs(A) : λ < Φ+−(A)} and σw(A) = σaw(A) ∪ σsw(A). (Here σs(A) is the surjectivity
spectrum of A.)

A generalization of Fredholm and Weyl spectrum is obtained as follows. An operator A ∈ B(X) is semi
B-Fredholm if there exists an integer n ≥ 1 such that An(X) is closed and the induced operator A[n] = A|An(X),
A[0] = A, is semi Fredholm (in the usual sense). It is seen that if A[n] ∈ Φ±(X) for an integer n ≥ 1, then
A[m] ∈ Φ±(X) for all integers m ≥ n, and one may unambiguously define the index of A by ind(A) = α(A)−β(A)
(= ind(A[n])) (see any of [2–4, 6, 7, 12, 13] for further information). Upper semi B-Fredholm, lower semi
B-Fredholm and B-Fredholm spectra of A are then the sets
σuB f (A) = {λ ∈ σ(A) : A − λ is not upper semi B-Fredholm},
σlB f (A) = {λ ∈ σ(A) : A − λ is not lower semi B-Fredholm}, and
σB f (A) = σuB f (A) ∪ σlB f (A).

Letting
ΦBw(A) = {λ ∈ σ(A) : λ < σB f (A) and ind(A − λ) = 0},
ΦuBw(A) = {λ ∈ σa(A) : λ < σuB f (A) and ind(A − λ) ≤ 0},
ΦlBw(A) = {λ ∈ σs(A) : λ < σlB f (A) and ind(A − λ) ≥ 0}

denote, respectively, the the B-Weyl, the upper B-Weyl and the lower B-Weyl points of A, we define the B-Weyl,
the upper B-Weyl and the lower B-Weyl spectrum of A, respectively, by
σBw(A) = {λ ∈ σ(A) : λ < ΦBw(A)},
σuBw(A) = {λ ∈ σa(A) : λ < ΦuBw(A)},
σlBw(A) = {λ ∈ σs(A) : λ < ΦlBw(A)}.

Clearly, σBw(A) = σuBw(A) ∪ σlBw(A) and σlBw(A) = σuBw(A∗).

3.. Results

Given operators A,B and C in B(X), define the direct sum operator S, and the upper triangular operator
T, ∈ B(X ⊕X) by

S = A ⊕ B and T =
(

A C
0 B

)
.
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Then
σx(S) = σx(A) ∪ σx(B), σx = σ or σa,

but a similar spectral equality fails for the operator T. Neither of the operators S and T satisfies a spectral
equality of type σx(Z) = σx(A)∪σx(B), Z = S or T, for σx = σw or σaw. However, if either σw(T) = σw(A)∪σw(B)
or σaw(T) = σaw(A) ∪ σaw(B), then σ(T) = σ(A) ∪ σ(B) [5, Theorem 2.3]. The following proposition says that
one may replace σw and σaw by σBw and σuBw, respectively.

Proposition 3.1. If σx(T) = σx(A) ∪ σx(B), where σx = σBw or σuBw, then σ(T) = σ(A) ∪ σ(B).

Proof. We start by considering the case σx = σuBw. Let λ < σ(T). Then λ ∈ Φ−+(A) ∩ Φ+−(B), A − λI is
injective and B − λI is surjective. Since λ < σ(T) ensures λ < σuBw(T), λ ∈ ΦuBw ∩ ΦuBw(B). Consequently,
λ ∈ Φ+−(B) ∩ ΦuBw(B). But then λ ∈ Φw(B) and ind(B − λI) = 0. Already we have β(B − λI) = 0; hence
α(B − λI) = β(B − λI) = 0 and B − λI is invertible. This, in view of the fact that already T − λI is invertible,
implies A−λI is also invertible. Hence σ(T) ⊇ σ(A)∪σ(B). Since σ(T) ⊆ σ(A)∪σ(B) always, σ(T) = σ(A)∪σ(B).

A bit more is true in the case in which σBw(T) = σBw(A) ∪ σBw(B). We prove in this case that σw(T) =
σw(A)∪σw(B) (and the proof then follows from [5, Theorem 2.3]). Let λ < σw(T). Then λ ∈ Φw(T) ⊆ ΦBw(T) =
ΦBw(A)∩ΦBw(B). Since λ < σw(T) implies α(A− λ) < ∞, λ ∈ ΦBw(A) implies λ ∈ Φw(A); hence, since already
λ ∈ Φw(T), λ ∈ Φw(B). Conclusion: λ ∈ Φw(A) ∩ Φw(B) for all λ ∈ Φw(T), hence Φw(T) ⊆ Φw(A) ∩ Φw(B).
Trivially, consider the operator

T − λI =
(

I 0
0 B − λI

) (
I C
0 I

) (
A − λI 0

0 I

)
,

Φw(A) ∩Φw(B) ⊆ Φw(T). Hence Φw(A) ∩Φw(B) = Φw(T), equivalently, σw(T) = σw(A) ∪ σw(B).

The reverse implication σw(T) = σw(A) ∪ σw(B) implies σBw(T) = σBw(A) ∪ σBw(B) holds under additional
hypotheses. For an operator E ∈ B(X), let Φi

Bw(E) = isoσw(E) ∩ΦBw(E).

Proposition 3.2. If σw(T) = σw(A) ∪ σw(B), then a sufficient condition for σBw(T) = σBw(A) ∪ σBw(B) is that
σBw(T) ⊆ σBw(A) ∪ σBw(B) and {σBw(A) ∪ σBw(B)} ∩Φi

Bw(T) = ∅. .

Proof. Recall from [7], Pages 41–42, that

σw(E) = σBw(E) ∪Φi
Bw(E), σBw(E) ∩Φi

Bw(E) = ∅, Φi
Bw(E) = isoσw(E) ∩ΦBw(E)

for every E ∈ B(X). Hence, given σw(T) = σw(A) ∪ σw(B),

σBw(T) ∪Φi
Bw(T) = {σBw(A) ∪Φi

Bw(A)} ∪ {σBw(B) ∪Φi
Bw(B)}

= {σBw(A) ∪ σBw(B)} ∪ {Φi
Bw(A) ∪Φi

Bw(B)}.
This , since σBw(T) ∩Φi

Bw(T) = ∅ and

{σBw(A) ∪ σBw(B)} ∩Φi
Bw(T) = ∅ =⇒ {σBw(A) ∪ σBw(B)} ⊆ Φi

Bw(T)C,

implies

σBw(T) = {(σBw(A) ∪ σBw(B)) ∩Φi
Bw(T)C} ∪ {(Φi

Bw(A) ∪Φi
Bw(B)) ∩Φi

Bw(T)C}
⊇ (σBw(A) ∪ σBw(B)) ∩Φi

Bw(T)C

= σBw(A) ∪ σBw(B).

Already, by hypothesis, σBw(T) ⊆ σBw(A) ∪ σBw(B); hence σBw(T) = σBw(A) ∪ σBw(B).

Proposition 3.2 answers Problem 1, Page 6 of [13] in the affirmative.

Theorem 3.3. σw(S) = σw(A) ∪ σw(B) implies σBw(S) = σBw(A) ∪ σBw(B).
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Proof. We start by proving σBw(S) ⊆ σBw(A) ∪ σBw(B): this does not require the hypothesis σw(S) = σw(A) ∪
σw(B). Define the operators V,W ∈ B(X ⊕ X) by V = A ⊕ I and W = I ⊕ B. Then S = VW, where V
and W commute. If we now assume that A,B are B-Fredholm operators, then V and W, hence also S [4],
are B-Fredholm operators. Furthermore, [2, Theorem 1.1], ind(S) = ind(V) + ind(W) = ind(A) + ind(B).
Consequently, if A and B are B-Weyl operators, then S is a B-Weyl operator satisfying ΦBw(A) ∩ ΦBw(B) ⊆
ΦBw(S). Equivalently, σBw(S) ⊆ σBw(A) ∪ σBw(B). To complete the proof we have now to prove that
{σBw(A)∪σBw(B)}∩Φi

Bw(S) = ∅. For this we start by observing that isoσw(S) = {isoσw(A)∩Φw(B)}∪{isoσw(A)∩
isoσw(B)}∪{Φw(A)∩ isoσw(B)}. Recall, [3], that the operator S = VW, operators V,W as above, is B-Fredholm
if and only if V,W (hence also, A,B) are B-Fredholm (and then ind(S) = ind(V)+ ind(W) = ind(A)+ ind(B)).
Thus, if a λ ∈ Φi

Bw(S) satisfies the hypothesis λ ∈ isoσw(A) ∩ ΦBw(B) or λ ∈ ΦBw(A) ∩ isoσw(B), then
λ ∈ ΦBw(A)∩ΦBw(B), i.e., λ < σBw(A)∪σBw(B). This leaves us with the case λ ∈ isoσw(A)∩ isoσw(B) such that
λ ∈ ΦBw(T). (Then both A − λI and B − λI are B-Fredholm and there exists a neighbourhood of λ such that
ind(A−µI) = ind(B−µI) = 0 in the deleted neighbourhood.) There exists an ϵ > 0 and an ϵ–neighbourhood
of λ such that A − λI − µI is Fredholm, with ind(A − λI − µI) = ind(A − λI), for all 0 < |µ| < ϵ [8]. Hence
A − zI is Fredholm with ind(A − zI) = ind(A − λI) = 0 for every z such that 0 < |z − λ| < ϵ. Since a similar
argument works for B, we conclude that λ ∈ ΦBw(A) ∩ ΦBw(B). This implies λ < σBw(A) ∪ σBw(B) for every
λ ∈ Φi

Bw(T).

A result similar to that of Proposition 3.2 holds for operators T such that σuBw(T) ⊆ σuBw(A)∪σuBw(B). Given
E ∈ B(X), let Φi

uBw(E) = isoσaw(E) ∩ΦuBw(E).

Proposition 3.4. If σuBw(T) ⊆ σuBw(A)∪ σuBw(B) and (σuBw(A)∪ σuBw(B))∩Φi
uBw(T) = ∅, then σaw(T) = σaw(A)∪

σaw(B) implies σuBw(T) = σuBw(A) ∪ σuBw(B).

Proof. The proof being similar to that of Proposition 3.2, we shall be brief. Recall from [7] that

σaw(E) = σuBw(E) ∪Φi
uBw(E), σuBw(E) ∩Φi

uBw(E) = ∅

for every E ∈ B(X). If σaw(T) = σaw(A) ∪ σaw(B), then

σuBw(T) = {(σuBw(A) ∪ σuBw(B)) ∪ (Φi
uBw(A) ∪Φi

uBw(B))} ∩Φi
uBw(T)C

= {(σuBw(A) ∪ σuBw(B)) ∩Φi
uBw(T)C} ∪ {(Φi

uBw(A) ∪Φi
uBw(B)) ∩Φi

uBw(T)C}
⊇ (σuBw(A) ∪ σuBw(B)) ∩Φi

uBw(T)C

= σuBw(A) ∪ σuBw(B).

The proof now follows from the hypothesis σuBw(T) ⊆ σuBw(A) ∪ σuBw(B).

Following (almost verbatim, having made sure to replace “B-Fredholm" by “semi B-Fredholm") the
argument of the proof of [2, Theorem 1.1], it is seen that S is upper semi B-Fredholm if and only if (V
and W, hence) A and B are upper semi B-Fredholm, and then ind(S) = ind(V) + ind(W) = ind(A) + ind(B).
This, if A and B are upper semi B-Weyl, implies S is upper semi B-Weyl, i.e., ΦuBw(A) ∩ ΦuBw(B) ⊆ ΦuBw(S).
Equivalently, σuBw(S) ⊆ σuBw(A) ∪ σuBw(B). The following theorem is an analogue of Theorem 3.3 for upper
semi B-Weyl spectrum.

Theorem 3.5. σaw(S) = σaw(A) ∪ σaw(B) implies σuBw(S) = σuBw(A) ∪ σuBw(B).

Proof. We have already seen thatσuBw(S) ⊆ σuBw(A)∪σuBw(B). For the reverse inclusion, we start by observing
that

isoσaw(S) = {isoσaw(A) ∩Φaw(B)} ∪ {isoσaw(A) ∩ isoσaw(B)} ∪ {Φaw(A) ∩ isoσaw(B)}.
Here, argue as in the proof of Theorem 3.3, to conclude

λ ∈ {isoσaw(A) ∩Φaw(B)} ∪ {Φaw(A) ∩ isoσaw(B)} =⇒ λ ∈ ΦuBw(A) ∩ΦuBw(B).

This leaves us the case λ ∈ isoσaw(A) ∩ isoσaw(B) such that λ ∈ ΦuBw(T). Then both A − λI and B − λI are
upper semi B-Fredholm and there exists a neighbourhood of λ such that ind(A − µI), ind(B − µI) ≤ 0 in
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the deleted neighbourhood. There exists an ϵ > 0 and an ϵ–neighbourhood of λ such that A − λI − µI is
upper semi Fredholm, with ind(A − λI − µI) = ind(A − λI), for all 0 < |µ| < ϵ [3]. Hence A − zI is upper
semi Fredholm with ind(A− zI) = ind(A− λI) ≤ 0 for every z such that |z− λ| < ϵ. Since a similar argument
works for B, we conclude that λ ∈ ΦuBw(A) ∩ΦuBw(B).

Remark 3.6. The following argument shows thatσuBw(S) = σuBw(A)∪σuBw(B) impliesσaw(S) = σaw(A)∪σaw(B).
Consider a λ < σaw(S). Then λ ∈ Φaw(S) ⊆ ΦuBw(S) = ΦuBw(A) ∩ ΦuBw(B). Since λ < σaw(S) implies α(A − λI)
and α(B− λI) are finite, λ ∈ ΦuBw(A)∩ΦuBw(B) implies λ ∈ Φ−+(A)∩Φ−+(B), equivalently, λ < σaw(A)∪ σaw(B).
Thus σaw(A) ∪ σaw(B) ⊆ σaw(S). Since the reverse inclusion is always true, we have equality. (A similar
argument proves that σlBw(S) = σlBw(A) ∪ σlBw(B) implies σsw(S) = σsw(A) ∪ σsw(B).) A natural question here
is: Does σuBw(T) = σuBw(A) ∪ σuBw(B) imply σaw(T) = σaw(A) ∪ σaw(B)?

We consider next operators T satisfying T ∈ (ZΠa ) and T ∈ (ZEa ). It is clear that if T ∈ (ZΠa ), then
Πa(T) = Π(T) = Π0(T) = Πa

0(T) and if T ∈ (ZEa ), then Ea(T) = E(T) = E0(T) = Ea
0(T). Let asc(T − λI) and

dsc(T − λI) denote, respectively the ascent and the descent of T at λ. Then, see [11, Exercise 7, P. 293],

asc(A − λI) ≤ asc(T − λI) ≤ asc(A − λI) + asc(B − λI) and
dsc(B − λI) ≤ dsc(T − λI) ≤ dsc(A − λI) + dsc(B − λI)

for all complex λ. Assume that the operators A,B ∈ (ZΠa ); then Πa(A) = Π0(A) and Πa(B) = Π0(B). Assume
now that T ∈ (ZΠa ), and consider a λ ∈ Πa(T) = Π0(T). Since λ ∈ Φ(T) implies λ ∈ Φ+(A) ∩ Φ−(B) and
λ ∈ Πa(T) implies asc(A − λI) < ∞, λ ∈ Πa(A) = Π0(A). In particular, λ ∈ Φ(A), and this (since already
λ ∈ Φ(T)) implies (λ ∈ Φ(B), and hence since dsc(B − λI) < ∞) λ ∈ Π0(B) = Πa(B). Since λ ∈ Πa(A) ∩Πa(B)
trivially implies λ ∈ Πa(T), we have:

If A,B ∈ (ZΠa ), then T ∈ (ZΠa ) implies Πa(T) = Πa(A) ∩Πa(B).

Given operators A,B ∈ (ZΠa ) such that Πa(A) ∩ ρ(B) = ∅ = Πa(B) ∩ ρ(A), the following theorem gives a
sufficient, and an almost necessary, condition for T ∈ (ZΠa ).

Theorem 3.7. Let the operators A,B ∈ (ZΠa ) be such that Πa(A) ∩ ρ(B) = ∅ = Πa(B) ∩ ρ(A).
(i) If σw(T) = σw(A) ∪ σw(B), then σ(T) ∩Φw(T) = Πa(A) ∩Πa(B).
(ii) If σ(T) = σ(A) ∪ σ(B) and T ∈ (ZΠa ), then σw(T) = σw(A) ∪ σw(B).

Proof. The hypothesis A,B ∈ (ZΠa ) implies

Φw(A) = ρ(A) ∪Πa(A) and Φw(B) = ρ(B) ∪Πa(B),

where Πa(A) = Π0(A) and Πa(B) = Π0(B).

(i) Recall from Proposition 3.1 that the hypothesis σw(T) = σw(A) ∪ σw(B) implies σ(T) = σ(A) ∪ σ(B), and
hence

σ(T) ∩Φw(T) = {σ(A) ∪ σ(B)} ∩ {Φw(A) ∩Φw(B)}
= {Φw(A) ∩Φw(B) ∩ σ(A)} ∪ {Φw(A) ∩Φw(B) ∩ σ(B)}
= {Πa(A) ∩Φw(B)} ∪ {Πa(B) ∩Φw(A)}
= {(Πa(A) ∩Φw(B)) ∪Πa(B)} ∩ {(Πa(A) ∩Φw(B)) ∪Φw(A)}
= (I) ∩ (II) (say).

Recalling Πa(A) ∩ ρ(B) = ∅ = Πa(B) ∩ ρ(A), we simplify to obtain:

(I) = {Πa(A) ∩ (Πa(B) ∪ ρ(B))} ∪Πa(B)
= {(Πa(A) ∩Πa(B)) ∪ (Πa(A) ∩ ρ(B))} ∪Πa(B)
= (Πa)(A) ∩Πa(B))) ∪Πa(B) = Πa(B),
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(II) = {Πa(A) ∩ (Πa(B) ∪ ρ(B))} ∪Φw(A)
= {(Πa(A) ∩Πa(B)) ∪ (Πa(A) ∩ ρ(B))} ∪Φw(A)
= (Πa(A) ∩Πa(B)) ∪Φw(A),

and

(I) ∩ (II) = {(Πa(A) ∩Πa(B)) ∩Πa(B)} ∪ {Φw(A) ∩Πa(B)}
= (Πa(A) ∩Πa(B)) ∪ {(Πa(A) ∪ ρ(A)) ∩Πa(B)}
= (Πa(A) ∩Πa(B)) ∪ {(Πa(A) ∩Πa(B)) ∪ (ρ(A) ∩Πa(B))}
= Πa(A) ∩Πa(B).

(ii) If T ∈ (ZΠa ), then (as seen above) Πa(T) = Πa(A) ∩Πa(B). Working backwards with the argument of the
proof of (i) above, it is seen that if A,B,T ∈ (ZΠa ) and σ(T) = σ(A) ∪ σ(B), then

σ(T) ∩Φw(T) = Πa(T) = Πa(A) ∩Πa(B) = σ(T) ∩ {Φw(A) ∩Φw(B)}.

Observe that σ(T) = σ(A) ∪ σ(B) implies ρ(T) ⊆ Φw(A) ∩Φw(B). Hence. since

ρ(T) ∪ {σ(T) ∩Φw(T)} = C ∩ {ρ(T) ∪Φw(T)} = C ∩Φw(T) = Φw(T)

and

ρ(T) ∪ {σ(T) ∩ (Φw(A) ∩Φw(B))} = C ∩ {ρ(T) ∪ (Φw(A) ∩Φw(B))}
= Φw(A) ∩Φw(B) ⊆ Φw(T),

we have
Φw(T) = Φw(A) ∩Φw(B), equivalently, σw(T) = σw(A) ∪ σw(B).

This completes the proof.

Theorem 3.7 subsumes [13, Theorem 2.6]. Recall that ρa(R) denotes the complement of σa(R) in C.

Corollary 3.8. If A,B ∈ (ZΠa ) and ρa(A) ∩ Πa(B) = ρa(B) ∩ Πa(A) = ∅, then S ∈ (ZΠa ) if and only if σw(S) =
σw(A) ∪ σw(B).

Proof. The proof follows from Theorem 3.7 since the hypotheses imply σ(S) = σ(A) ∪ σ(B), ρ(A) ∩Πa(B) ⊆
ρa(A) ∩Πa(B) = ∅, ρ(B) ∩Πa(A) ⊆ ρa(B) ∩Πa(A) = ∅ and Πa(A) ∩Πa(B) ⊆ Πa(S) ⊆ (ρ(A) ∩Πa(B)) ∪ (Πa(A) ∩
Πa(B)) ∪ (ρ(B) ∩Πa(A)) = Πa(A) ∩Πa(B).

Theorem 3.7 has a property (ZEa ) analogue.

Theorem 3.9. If A,B ∈ (ZEa ) are such that ρ(A) ∩ Ea(B) = ρ(B) ∩ Ea(A) = ∅, and:
(i) if σw(T) = σw(A) ∪ σw(B), then σ(T) ∩Φw(T) = Ea(A) ∩ Ea(B);
(ii) if σ(T) = σ(A) ∪ σ(B) and T ∈ (ZEa ), then σw(T) = σw(A) ∪ σw(B).

Proof. The proof follows from Theorem 3.7 since the hypothesis A,B ∈ (ZEa ) implies Ea(A) = Πa(A) and
Ea(B) = Πa(B).

Evidently, if σp(A) = σp(B), then ρ(A) ∩ Ea(B) = ρ(B) ∩ Ea(A) = ∅ and Theorem 3.9 holds with the
hypothesis ρ(A) ∩ Ea(B) = ρ(B) ∩ Ea(A) = ∅ replaced by the hypothesis σp(A) = σp(B). In particular:

Corollary 3.10. [13, Theorem2.10] If A,B ∈ (ZEa ) are such that σp(A) = σp(B), then S ∈ (ZEa ) if and only if
σw(S) = σw(A) ∪ σw(B).

We conclude with a couple of remarks, the first giving an example showing that the answer to Problem
2, [13, Page 6] is in the negative and the second announcing an erratum to [6].
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Remark 3.11. (i) Let D denote the closure and ∂D the boundary of the open unit disc D in C. Let
A = U ⊕ U∗ ∈ B(H ⊕ H) and B = Q ∈ B(H), where U denotes the forward unilateral shift and Q is a
quasinilpotent operator. Then σw(S) = σw(A) ∪ σw(B) = ∂D ∪ {0}, σ(S) = D and Πa(S) = Π0(S) = ∅. Since
σ(S) ∩ σw(S) = D \ {0} , Π0(S), S does not satisfy Browder’s theorem.
(ii) The first author regrets that the statement on Page 20, Lines 17- to 15- (starting with “For operators
A ∈ B(X) such that σ(A) = σw(A) ...") of [6] is false, as can be seen from a consideration of the operators

A =
(

U 1 −UU∗

0 U∗

)
and K =

(
0 −1 +UU∗

0 0

)
. Here, as in the above, U ∈ B(H) is the forward unilateral

shift, and the operator K is compact. (The author’s have since “binned" reference 22 of [6].)
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