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Abstract. The presence, or the lack of, SVEP on the holes of the Weyl (resp., a-Weyl) spectrum of a
Banach space operator characterizes Browder and generalized Browder (resp., a-Browder and generalized
a-Browder) theorems for the operator. The isolated points of the Weyl spectrum (resp., the a-Weyl
spectrum, the B-Weyl spectrum and the upper B-Weyl spectrum) play a similar role in determining
Weyl’s (resp., a-Weyl’s, generalized Weyl’s and generalized a-Weyl’s) theorem for the operator. This paper
establishes the role played by the isolated points of these Weyl spectra in establishing equivalences between
Browder, Weyl type theorems, their (recently considered) avatars and perturbations by commuting Riesz
operators.

1. Introduction

Let B(X) (rvesp., B(H)) denote the algebra of operators, equivalently bounded linear transformations,
on a complex infinite dimensional Banach space X (resp., Hilbert space H) into itself. Given A € B(X), let
0(A), 04(A), 0 (A), 0aw(A) and o, (A) denote, respectively, the spectrum, the approximate point spectrum,
the Weyl spectrum, the approximate Weyl (equivalently, a-Weyl) and approximate Browder (equivalently,
a-Browder) spectrum of A; let IIo(A), II§(A), Eyo(A) and E§(A) denote, respectively, the set of finite rank
poles (of the resolvent) of A, the set of finite rank left poles of A, the set of finite multiplicity eigenvalues
which are isolated points of o(A) and the set of finite multiplicity eigenvalues which are isolated points of
0a(A). Recall, [1], that A € B(X) satisfies Browder’s theorem (a-Browder’s theorem) , A € (Bt) (resp.,
A€ (a—Bt)),if 0(A)\ow(A) =TI(A) (resp., if 04(A)\oaw(A) =TI (A)), and A satisfies Weyl’s theorem (a-
Weyl’s theorem), A € (Wt) (resp.,A € (a—Wt)), if 6(A)\ ow(A) = Eo(A) (resp., 04(A) \ 0aw(A) = E§(A)).
Browder and Weyl theorems have been considered in the recent past by a number of authors and there
exists in the current literature a large body of information on Browder and Weyl thoerems, their generalized
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extensions and their variations (see [1-4, 7-12, 14-17, 19-21, 31-33] for further references). It is well known
that A € (Bt) if and only if A has SVEP, the single-valued extension property, on the complement o, (A)¢ of
ow(A) (in C), A € (a — Bt) if and only if A has SVEP on the complement o4, (A)¢ of 04.,(A), A € (Wt) if
and only if A € (Bt) and Eg(A) =1Ip(A) and A € (a —Wt) if and only if A € (a — Bt) and E§(A) = II5(A)
[17].

If we let 77/S denote the union of the holes (i.e., of the bounded components of the complement S¢ of
S in C [24]), then a characterization of operators satisfying (Bt) or (¢Bt) (resp., (a — Bt) or (a — gBt)) is
obtained as the set of A € B(X) which have SVEP on 70, (4) (resp., which have SVEP on 7'0,4,(A4)) [18,
Theorem 4.1 and Lemma 4.5]. Similarly, a characterization of operators satisfying (Wt) (resp., (gWt)) is
obtained as the set of operators A € B(X) such that A € (Bt) and Ey(A) Nisooy(A) = 0 (resp., A € (Bt)
and F(A) Nisoopy(A) = 0), and a characterization of operators satisfying (a — Wt) (resp., (a — gWt)) is
obtained as the set of operators A € B(X) such that A € (a — Bt) and E§(A) Nisoo.w(A) = 0 (resp.,
A € (a — Bt) and E*(A) Nisooypw(A) = 0). (Here opw(A) and oypw(A) denote, respectively, the B—
Weyl and upper B-Weyl spectrum of A.) Isolated points isooy (A), isoo,y(A) ete. play a crucial role also
in defining relationships between different variations of Weyl type theorems and their perturbations by
commuting Riesz operators. Thus, if we let A € (b) = {A € B(X) : 0,(A) Nisoo.w(A) = IIH(A)} [5], A €
(w) ={A € B(X) : 0,(A) NiSooaw(A) = Eg(A)} [2], A € (gb) = {A € B(X) : 0,(A) Nisooupw(A) = II(A)}
[11] and A € (gw) = {4 € B(X) : 0,(A) Nisooypw(A) = E(A)} [13], then A € (w) <= A € (b) if and only if
Eo(A) Nisooay (A) = 0 [18, Theorem 5.1] and A € (gw) < A € (gb) if and only if E(A) Nisooypw(A) =0
[18, Corollary 5.2]. Again, if R € B(X) is a Riesz operator which commutes with A, then A € (w) implies
A+ R € (w) if and only if Ey(A + R) Nis00.y(A) = ) and A* has SVEP on isoo,(A + R) N 04, (A)C [18,
Theorem 6.1].

This paper, which continues the work started in [18], further explores the important role played by
the isolated points of various Weyl spectra in determining equivalences between Browder, Weyl theorems,
their variants and their perturbations by commuting Riesz operators. Using at times what are essentially
algebraic arguments, we prove, amongst other results, that if A € B(X), then:

{Ae (Wt) = A€ (gWt)} — E(A) Nisoopw(A) = 0;

(

(gWt) <= A € (a — gWt)} <= E*(A) Nisoopy(A) = 0;
{Ae(a—Wt)<= A€ (a— th)} — E“(A) Nisooupw(A) = 0;

(

(

(

gw) <= A€ (a— gWt)} < E*(A) Nisoopy(A) =0, and
w) < A € (gw)} < E(A) Nisooupw(A) = 0.
Again, if R is a Riesz operator in B(X) which commutes with A, isoo,(A) = isoc,(A + R), and ®¢ (A)
denotes the set {\ : A € 800,y (A) N oypw (A)C}, then:
{o(A) Now(A) =E§(A)} <= {0(A+ R)Now(A+ R)° = E§(A+ R)}
if and only if E§(A + R) Nisooay(A) = 0;
{o(A)Nopu(A)° = E*(A)} <= {0(A+ R)Nopu(A+ R)° = E“(A+ R)}
if and only if E*(A+ R)N®%% (A) = 0);
if isooaw(A) =0, then {Eq(A) =1I3(A)} <= {E¢(A+R) =1I3(A+R)};
if @ (A) =0, then {E(A)=1I"(A)} <= {E(A+R)=11"(A+ R)};
if iS00,y (A) =0, then {E§(A)=1II(A)} < {Ej(A+R) =1IH(A+R)} and
if B2 (A)=0, then {E*(A) =1I(A)} <= {E"(A+ R) =1I(A+ R)}.
The results of the paper, alongwith proving a large number of new results, subsume a substantial number

of extant results. The plan of the paper is as follows. We introduce additional notation and terminology in
Section 2, Section 3 consists of some complementary results, Sections 4, 5, 6 and 7 deal with equivalences for
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Browder, Weyl type theorems and their variants, and Section 8 considers the preservation of these properties
under perturbation by commuting Riesz operators.

2. Notation and terminology

In addition to the notation and terminology already introduced, we shall use the following further notation
and terminology. The boundary of a subset S of the set C of complex numbers will be denoted by 95 and
we shall write S¢ for the complement of S in C. We denote the open unit disc by D and its closure by D.
An operator A € B(X) has SVEP, the single-valued extension property, at a point Ay € C if for every open
disc D), centered at Ag the only analytic function f : D), — X satisfying (A — A) f(A) = 0 is the function
f =0. (Here, and in the sequel, we have shortened A — Al to A — \.) Every A € B(X) has SVEP at points
in the resolvent p(A) = C\ o(A) and the boundary do(A) of the spectrum o(A). We say that T has SVEP if
it has SVEP at every A € C. The ascent of A, asc(A) (resp. descent of A, dsc(A)), is the least non-negative
integer n such that A="(0) = A=("*+1(0) (resp., A"(X) = A"T1(X)): If no such integer exists, then asc(A)
(resp. dsc(A))= oo. It is well known that asc(A) < oo implies A has SVEP at 0, dsc(A4) < oo implies A* (=
the dual operator) has SVEP at 0, finite ascent and descent for an operator implies their equality, and that
a point A € o(A) is a pole (of the resolvent) of A if and only if asc(A — A) = dsc(4 — \) < oo [1, 23, 25].

A € B(X) is: upper semi-Fredholm at A € C, A € @, 5(A) (or, A— X € DL(X)), if (A — N)(X) is closed
and the deficiency index a(A — \) = dim(A — X\)~(0) < oo; lower semi~Fredholm at A € C, X\ € ®;4(A) (or,
A-XAe @ (X)) ,if B(A—-)N) =dim(X/(A - N)(X)) < 00; A— X is semi-Fredholm, A — X € &, (X&), if
A — X is either upper or lower semi-Fredholm, and A is Fredholm at A € C, A € ®(A) or A — X € (X)),
if A — X is both upper and lower semi—Fredholm. The index of a semi-Fredholm operator is the integer
ind(A) = a(A)—pB(A). Corresponding to these classes of one sided Fredholm operators, we have the following
spectra: The upper semi Fredholm spectrum o,5(A) = {\ € 0(A) : A=\ ¢ &, (X)}, the lower semi Fredholm
spectrum o1p(A) = {X € 0(A) : A— X ¢ &_(X)} and the Fredholm spectrum o.(A) = our(A) U orr(A).
A € B(X) is upper Weyl (resp., lower Weyl, (simply) Weyl) at 0 if it is upper semi Fredholm with ind(A) < 0
(resp., lower semi Fredholm with ind(A) > 0, Fredholm with ind(A) = 0). The upper (or, approximate) Weyl
spectrum, the lower (or, surjectivity) Weyl spectrum and the Weyl spectrum of A are respectively the sets
Caw(A) ={A €0,(A): A ¢ P (A) orind(A—A) £ 0}, 05w(A) ={A € 0s(A): N ¢ D_(A) orind(A—N\) 2 0}
and o, (A) = 0aw(A)Uos,(A). It is well known, [1, Theorems 3.16, 3.17], that a semi- Fredholm operator A
(resp., its conjugate operator A*) has SVEP at a point A if and only if asc(A—A) < oo (resp., dsc(A—A) < 00)
; furthermore, if A — X is Weyl (resp., upper Weyl), i.e. if A € ®(A4) and ind(4A — X\) = 0 (resp., A € &, (A)
and ind(A — A) < 0), then A has SVEP at A implies A € isoo(A) with asc(A — \) = dsc(A — ) < oo (resp.,
A € i800,(A) with asc(A — ) < 00). If we let 04p(A) = {X € 04(A4) : A ¢ D1 (A) or asc(A — ) £ oo} and
osp(A) = {N € 05(A) : A ¢ P_(A) or des(A — \) £ oo} denote, respectively, the upper (or approzimate)
and the lower (or surjectivity) Browder spectrum of A, then og,(A) = 0ap(A*) and op(A) = 04p(A) Uosp(A)
is the Browder spectrum of A. ( For further information on Fredholm theory, SVEP, and isolated points etc,
see [1, 23-25, 30].)

A generalization of Fredholm and Weyl spectrum is obtained as follows. An operator A € B(X) is
semi B-Fredholm if there exists an integer n > 1 such that A™(X) is closed and the induced operator
Ay = Alan(xy, Ajo) = A, is semi Fredholm (in the usual sense). It is seen that if Ap,) € ®L(X) for an
integer n > 1, then Ay, € ®4(X) for all integers m > n, and one may unambiguously define the index
of A by ind(A4) = a(A) — B(A) (= ind(Ap,)) [10]. Upper semi B-Fredholm, lower semi B-Fredholm and
B-Fredholm spectra of A are then the sets

ouBf(A) ={A € 0(A): A— X is not upper semi B-Fredholm},
of(A) ={A € o(4): A— X is not lower semi B-Fredholm}, and
oBe(A) = oups(A) Uoips(A).
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Letting

opw(A) ={A € c(A): A€ op.(A) or ind(A— ) # 0},
aBw(A) ={A € 04(A) : X € oups(A) or ind(A— ) £ 0},
0sBw(A) ={A € 05(A) : A € oypf(A) or ind(A — ) # 0},
opp(A) ={A€d(A): A€ ope(A) or asc(A—\) # dsc(A— AN},
aBb(A) = {X € 04(A4) : A € oupf(A) or asc(A— ) =o0}, and
osBb(A) ={A € 0,(A): A€ opr(A) or dsc(A—\) =o0}
denote, respectively, the the B-Weyl, the upper B-Weyl, the lower B-Weyl, the B-Browder, the upper B-

Browder and the lower B-Browder spectrum of A, we have opy,(A) = 04pw(A4) U ospw(A), opr(4) =
oapb(A) Uospp(A), 0apw(A) = 0spw(A*) and o4pp(A) = o5pp(A7).

3. Some complementary results.

The following implications are well known [8, Theorems 2.1 and 2.2]:
ow(A) = o0p(A) <= opw(A4) = opp(A) < 0(A) \ opw(A) = TI(A) <= A has SVEP at points in
o(A)\ opw(A), and
aw(A) = 0ap(A) <= 04Bw(A) = 0uBp(A) < 04(A) \ 0uBw(A) = 11%(A) < A has SVEP at points
in 0,(A) \ 0aBw(A).
Evidently, 044, (A) C 0y (A) and 0454 (A) C 0pw(A); hence
OaBw(A) = 0app(A) <= 04w(A) = 0up(A) = 04 (A) = 0p(A) <= 0w (A) = opp(A)
(where the one way implications are strict). Following current terminology [1, 8, 10, 16], we say that an
operator A € B(X) satisfies
Browder’s theorem , A € (Bt), if 0,,(A) = 03(A), equivalently o(A) N 0y, (A)¢ = (A);
generalized Browder’s theorem, A € (¢Bt), if 0pw(A) = opp(A), equivalently o(A) N UBU,(A)C TI(A);
a-Browder’s theorem, A € (a — Bt), if 044,(A) = 04,(A4), equivalently o,(A) N 04, (A)¢ =TI (A);
)N

generalized a-Browder’s theorem, or A € (a — gBt), if 0,pw(A) = 0aps(A), equivalently o, (A
e (A).

qu( ) -

Let E(A) = {\ €isoo(A) : 0 < a(A — A} and E%(A) = {\ €is00,(A) : 0 < a(A — \)}. We say that the
operator A € B(X) satisfies:
Weyl’s theorem , A € (Wt), if 0(A) N o, (A)¢ = Ey(A);
generalized Weyl’s theorem, A € (gWt), if 0(A) Nopw(A)° = E(A);
a-Weyl’s theorem, A € (a — Wt), if 0,(A) N 0aw(A)C = ES(A);
generalized a-Weyl’s theorem, A € (a — gWt), if 0,(A) Noupw(4) = E*(A).

The following implications
(a — gWt) = (gWt) = (Wt), (a— gWt) = (a — Wt) = (W)

hold, but the reverse implications are in general false [1, 10, 15-17]. It is evident that (Wt) = (Bt),
(a = Wt) = (a — Bt), (gWt) = (¢Bt) and (a — gWt) = (a — gBt). Also, since II§(A) C E¥(A)
and IT*(A) C E*(A), where IT* = II or II* and correspondingly E* = E or E*, a necessary and sufficient
condition for an A € (Bt) to satisfy A € (W) is that Eg(A) C IIy(A) (resp., A € (gBt) to satisfy A € (gWt)
is that E(A) C II(A), A € (a — Bt) to satisfy A € (a — Wt) is that E§(A) CII§(A) and A € (a — gBt) to
satisfy A € a — (gWt) is that E*(A) CI1%(A)). Since

E§(A) = {E§(A) N 0aw(A)} U{EF(A) Noau(A)}
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and since E(A) N 04 (A)¢ C TIE(A), a sufficient condition for FZ(A) C II2(A) is
E§(A) N ogw(A) = E§(A) Nisooqy(A) = 0.

Similarly, a sufficient condition for Fy(A) C II(A) is Ey(A) Nisoo, (A) = 0. These conditions are necessary
too [18, Theorem 4.8].

A € B(X) is polaroid if A € isoo(A) implies asc(A — A\) = dsc(A — A) (i.e., if the isolated points of the
spectrum of A are poles of the resolvent of A), A is finitely polaroid if points A € isoo(A) are finite rank
poles of the resolvent of A, A is left polaroid if A € isoo,(A) implies asc(A — \) = d < oo for some integer
d >0 and (A — \)4t1(X) is closed (i.e., if the isolated points of the approximate point spectrum of A are
left poles of the resolvent of A), A is finitely left polaroid if points A € isoo,(A) are finite rank left poles of
A, and A is a-polaroid if points \ € isoo,(A) are poles of A . Given A € B(X), it is clear that a-polaroid
operators are polaroid; furthermore

o(A) C T(4) € I(4), To(A) C TI(A) C II°(4),

where the reverse inclusions generally fail (see [1, 23, 25, 307 ]). A € B(X) is isoloid (finitely isoloid)
if points A € isoo(A) are eigenvalues (resp., finite multiplicity eigenevalues) of A; A is a-isoloid (finitely
a-isoloid) if points \ € isoo,(A) are eigenvalues (resp., finite multiplicity eigenvalues) of A. It is clear that
A is polaroid implies A is isoloid and A is left polaroid implies A is a-isoloid (where the reverse implications
are, in general, false). Recall from [6] that perturbation by commuting Riesz operators preserves SVEP at
points. The left polaroid and polaroid properties do not survive perturbation by commuting Riesz operators:
The 0 operator is polaroid but its perturbation A = 0 + R by the non-nilpotent quasinilpotent operator

R(x1,w2,23,...) = (%, %, ...) is neither left polaroid nor polaroid. However:

Proposition 3.1. If a Riesz operator R € B(X) is such that [A, R] = 0 and isoo,(A + R) = isoo,(A) for
an operator A € B(X), then II§(A+ R) =1I3(A) and IIj(A+ R) =1Iy(A).

Proof. We have:
M¢(A+R) = {Ac€isooa(A+R):\€Eoaw(A+ R)}
= {A\€is00,(A): N € Taw(A)°} =T12(A)
and
IH(A+R) = {ANcisoo(A+R):\€o,(A+ R}
= {N€isoo,(A+ R): A€ 0au(A+ R)C,(A+ R)" has SVEP at A}
= {\€is00,(A): N\ € 0aw(A)F, A* has SVEP at A}
(ANea(A): X € gy, (A)F} =TIH(A).
This completes the proof. [

Proposition 3.1 is an improved version of [18, Proposition 3.1].

The hypothesis A is finitely left polaroid (resp., finitely polaroid) implies isoo,(A)Nisooaw (A) = 0 (resp.,
isoo(A)Nisooy (A) = ()); hence, if A is finitely left polaroid (resp., finitely polaroid), then IT¢(A)\TI4(A + R)
is contained in the resolvent p,(A + R) (resp., IIo(A) \ IIo(A + R) is contained in the resolvent p(A + R))
of A+ R (for every Riesz operator R commuting with A). A sufficient condition for A and A+ R, R a
Riesz operator commuting with A, to be finitely left polaroid (resp., finitely polaroid) is that iS00 .y (A) = 0
(resp., isooy (A) = (). Indeed a stronger result is possible in the case in which isoo, (A) = 0.

Since A € 04(A) \ oupw(A) if and only if A € 044(A) and A — X is upper semi B-Fredhom with
ind(A — A\) <0, there exists an € > 0 such that A — p is upper semi-Fredholm of ind(A — p) < 0 for all
0 < |u—A < €[22], ie., t € 0au(A)C for all 0 < | — A| < e. If we now let @5 (A) = {\ € 15004y (A) : A ¢
ouw(A)}, then 0,4, \ oupw(A) = @5 (A), equivalently

uBw

O'a,w(A) = Uqu(A) U oy (A)

uBw
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(Berkani and Zariouh, [13], have observed that 04, (A) \ 0upw(A) C iS00 (A), equivalently o4, (A4) C
OuBw(A) U iS00,y (A). We note here that the inclusion may be proper, as follows from a consideration of
the operator 0 @ R of the example above.) A similar argument proves that

0w(A) = opu(A) U PR, (A),
where @52 (A) = {\ € isoow(A) : A & opw(A)}.

Proposition 3.2. If A R € B(X), where R is Riesz, [A,R] = 0 and isoo,(A) = isoo,(A + R), then a
necessary and sufficient condition for II1*(A+ R) = 11*(A), and a sufficient condition for II{(A+ R) = II(A),
is that ®5¢, (A) = @, (A + R).

uBw uwBw

Proof. Sufficiency. If &% (A) = @, (A + R), then
H(A) = {A€isooa(A): A€ Pypw(A)}
= {A€is00a(A): X € 0ay (A UDSES (A), A has SVEP at A}
= {A\€is00,(A): X € 0an (A +R)CUDSS (A), A has SVEP at A}
(
(

uBw

= {A€is0oa(A+R): A€ oa(A+R)IEUDSS (A+R),A+R has SVEP at A}
= {\€isooa(A+R):\Eousw(A+R)} CII*(A +R),
and (arguing similarly)
M(A+R) = {A€isoc,(A+R): X € Pypw(A+R)}
= (A€ 0u(A): X € 0aw(A)C UDSYS (A), A has SVEP at A}
= {\€isoo,(A): X € Bypy(A)} CTI*(A).
Thus the condition is sufficient for II*(A + R) = II1*(A). The proof of the sufficiency for II(A + R) = II(A)
follows from the following argument:
II(A) {\ €isoo(A) : ) € opy(A)C}
{N€isoo(A) : XA € Dypw(A),A and A* have SVEP at A}
{\ €500, (A) : X € 0w (A)C UDSS (A),A and A* have SVEP at A}
{A€is00(A+R): X € oaw(A+R)CUPSS (A+R),A+R and (A +R)*
have SVEP at A}
= {A€isoc(A+R): A€ Pypw(A+R),A+R and (A+R)" have SVEP at A}

{A €is0o0a(A+R): X € Ppy(A+R)} CII(A+R);

i

arguing similarly, II(A + R) C TI(A) (and the proof of the sufficiency is complete).
Necessity. Given isoo,(A + R) = isoo,(A), since I[1*(A) = 11*(A + R) if and only if

{A: A€ Pyupw(A)\ Pupw(A+ R),A (hence also A+ R) has SVEP at A} =0,

we must have

0 = {0aw(A)°UOE, (A} N {oww(A+R)NOSL, (A + R)}
= {0aw(A)° U, (A)} N {0 (4) N D5, (A + R)}
= {®53u(A) Noww(A)} NFR, (A+ R)C}

ohw(A)\ 55, (A + R),

fe., %9 (A)=dBe (A+R). O

uBw uwBw

Recall from [18, Proposition 3.3] that the polaroid and the left polaroid properties for an operator
A € B(X) survive perturbation by commuting finite rank perturbations F' € B(X) such that isoc,(A+F) =
isoo,(A). The following proposition says a bit more.
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Proposition 3.3. Let A, F € B(X), where [A,F| = 0. If F™ is finite rank for some integer n > 0 and
is004(A) = iso0,(A+ F), then I*(A 4+ F) =T1*(A) (resp., H(A+ F) =T1I(A)).

Proof. Recall from [9] that the semi B-Fredholm spectrum of an operator is stable under finite rank pertur-
bations. Since 0,(A) = 0,(A + R) and

ANeI*(A+ F) <= X €is004(A+ F)Noupw(A+ F)°
<= A€isoo,(A+ F)Noype(A+ )Y <= )\e isoo,(A) N UuBE(A)C
= A €is00,(A) Noupw(A)C < ) € 11%a),

(A + F) =II*(A). Since isooq(A) = isoo, (A + F') implies 0(A + F) = o(A), a similar argument proves
A+ F)=1I(4). O

The proposition implies in particular that if N € B(X) is a nilpotent operator which commutes with A €
B(X), then II*(A+ N) =I1*(A) and II(A+ N) = II(A). We observe here that the Proposition 3.3 does not
extend to commuting quasinilpotents [13].

4. Variations on Browder’s Theorem: Equivalences

The a-Browder and a-Weyl theorems are obtained from (their classical counterparts) Browder and Weyl
theorems o(A)No, (A)€ = TIp(A) and o(A)Noy, (A)C = Eg(A) by replacing o(A) by 04(A), 04 (A) by 0aw(A),
ITo(A) by II3(A) and Eo(A) by E§(A); similarly, the generalized versions of the Browder and Weyl theorems
(resp., the a-generalized versions of the Browder and Weyl theorems) are obtained upon replacing o,,(A),
ITH(A) and Ey(A) by opw(A), II(A) and E(A) (resp., 04w (A), HE(A) and E§(A) by oupw(4), II1*(A) and
E%(A)). A number of further variations, obtained by making other suitably meaningful choices, have been
considered in the recent past (see [2, 3, 5, 7, 11, 12, 14, 29] for a flavour of the type of variations considered).
Prominent amongst the variations to Browder type theorems that have attracted some attention are the
properties (b), (ab), (gb) and (gab). We say that an operator A € B(X) satisfies property:

(b) if 0,(A) N 0aw(A)C =TI(A), equivalently A € (a — Bt),Ig(A) = (A);
(gb) if 0,(A) N oapw(A)¢ =TI(A), equivalently A € (a — gBt),T1%(A) = II(A);
(ab) if 0(A) N0y, (A)C =TI2(A), equivalently A € (Bt),Io(A) = IIZ(A);

(gad) if 0(A) N oy (A =T11%(A), equivalently A € (gBt),11(A) = I1%(A).

It is clear from the definitions above that

(90) = (b) = (ab), (gb) = (gab) = (ab)
{(0) = (gb)} <= {II5(A) = To(A)},{(ab) => (gab)} <= {I1(A) = TI(A)}.
The operator A =U @0 € B(H © H), where U is the forward unilateral shift, satisfies A € (ab) A (b) and

A ¢ (gab) V (gb) (for the reason that o(A) = 0,(A) = D, 0,(A) = 04w (A) = 0D U {0}, x(A) = IZ(A) =
() = TI(A) and T1%(A) = {0}). Observe that A* does not have SVEP on 04, (A)¢ N0, (A4) = {0}.

For an operator A € B(X), let Tl (A) (resp., 1% (A)) denote the set oo (A) = II(A) \ IIg(A) of infinite
rank poles (resp., the set II¢ (A) = II*(A)\IIZ(A) of infinite rank left poles) of A; let Ex(A) (resp., E% (A))
denote the set Ex(A) = ( )\ Eo(4) f infinite multiplicity eigenvalues of A which are isolated points of
o(A) (resp., denote the set ES (A) = E®(A) \ E§(A) of infinite multiplicity eigenvalues of A which are
isolated points of 04(A)).

Proposition 4.1. Given an operator A € B(X),
(i) {A € (b) <= A€ (ab)} vV {A € (gb) <= A € (gab)} < {A has SVEP on 0,,(A)° No,(A)}.

Furthermore,
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(1)) A € (ab) = A € (gab) if and only if 1% (A) Nopw(A) = 0, and A € (b)) = (gb) if and only if
1% (A) Noypw(A4) = 0.

Proof. (i). The proof for both the implications being similar, we prove
{A € (gab) <= A € (gb)} <= {A has SVEP on 04,(A)° Noy(A)}.

As remarked upon above (gb) = (gab) (no additional hypotheses required); to complete the proof, we
prove
{A € (gab) = A € (gb)} «= {A has SVEP on 0,,(A)° No,(A)}.

Since A € (gab) implies A € (¢gBt), hence A € (Bt), and since A € (Bt) if and only if A has SVEP on
0w(A)¢, A has SVEP on 0,4, (A)° if and only if A has SVEP on

Oaw(A)6\ 00w (A = 4w (A Ny (A).
Noticing that already II*(A) = II(A) (given A € (gab)), the proof follows since A € (a — Bt) (hence
A € (a— gBt)) if and only if A has SVEP on 04, (A)°.
(ii). We argue:
A€ (ab) <= A€ (Bt),IIj(A) =1I(A) <= A € (¢9Bt),IIH(A) =II5(A)
= A€ (¢Bt),II(A) =1I*(A4)
if and only if
HO(A)\TI(A) = {I1(4) N o(4)°} U {TI%(A) N ()} = T(A) N o, (A)
= {I5(A) Nopw(A)} UL (A) Nopw(A)}
= ¢ (A)Nopyw(A) (since II(A) Nopy(A) CIIG(A) Noy,(A) = 0)
0
and
Ae (b)) <= A€ (a—Bt),lIj(A) =1Ij(A) <= A ca— (¢Bt),y(A) =TI (A)
= A€ (a—gBt),II(A) =1I*(A)
if and only if
11%(A) \ TI(4)

{TI%(A) No(A)°Y U {I*(A) Nopw(A)} (since A € (a— gBt) = A € (¢Bt))
= T%(A) N 0w (A) = {TI(A) N opu(A)} U LTI (4) Aoy (4)}

= I (A)Nopw(A) (since IIF(A) Nopy(A) CIH(A) Nopw(A) =0)

- 0.

This completes the proof. [

It is immediate from Proposition 4.1 that a sufficient condition for {A € (ab) = A € (b)} V{4 €
(gab) = A € (gb)} is that isoo,(A) Now(A) = 0, and a sufficient condition for A € (ab) = A € (gab)
(resp., A € (b)) = (gb)) is that II*(A) Nopw(A) =0 ( resp., I1*(4) N oupw(A) = 0).

Commuting Riesz perturbations preserve Browder’s theorems (all four varieties) [18] and the Browder and
Weyl spectra (both the regular and the approximate regular varieties) [20, 28]. Thus, if A,R € B(X),
where R is a Riesz operator such that [A, R] = 0, then A € (b) (resp., A € (ab)) implies A+ R € (a — Bt)
(resp., A+ R € (Bt)). Let A € (b), and let A € TI(A + R) = isoo(A + R) N 0aw(A + R)C. Then either
A€ ogw(A) or A ¢ 04w(A). (Here we may assume that A € o(A); for if A is not in o(A), then A* has
SVEP at A implies (A+ R)* has SVEP at A which in turn implies, precisely the implication we are after, i.e.
A€ TG(A+R).) If A € 04u(A), then X € 04, (A + R) implies A ¢ 0,,(A + R)C, which is a contradiction.
Hence \ € 04, (A)€. Since A+ R has SVEP at ) implies A has SVEP at A\, A € [I3(A) = [y(A). Hence A*,
so also (A+ R)*, has SVEP at A. Conclusion: II¢(A+ R) C IIp(A+ R). The reverse inclusion being obvious,
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IMg(A+ R)=1)(A+ R), and A+ R € (b). A similar argument proves that A € (ab) implies A + R € (ab).
Thus:

Proposition 4.2. Given A, R € B(X), where R is a Riesz operator such that [A,R] = 0, A € (b) <
A+ Re (b) and A € (ab) <= A+ R € (ab).

The argument above does not extend to operators satisfying properties (gb) and (gab), as the following
example shows.

Example 4.3. Let A=U®I € B’ ®(*)and R=0® F € B({?> ® (?), where U is the forward unilateral
shift and F' is the finite rank operator F'(x1,x2, 3, ) = (=%,0,0,---). Then

0(A) = 0 (A) = 01(A) = D, 00(A) = Gaw(A) = Tupw(A) = ID, TI(A) = TI*(A) =
and A€ (gb),0(A+ R) =D, 0u(A+ R) = 0D U {%},aw(A +R) = opu(A+ R) =D,

Gun(A+ R) = 0upu(A + R) = 0D, TI(A + R) = 0,T0(A + R) = {3}, A + R € (9B1)
and A+ R ¢ (gb).

Observe that isoo,(A) =0, 0,(A + R) has an isolated point, and 1I4(A + R) # IIy(A + R).

Consider A € (gb). Then A € (a — gBt) and II°(A) = II(A). If R € B(X) is a Riesz operator
which commutes with A, then A+ R € (a — gBt) and (A + R)* has SVEP on II*(A4). Assume now that
iS00, (A) = is00,(A + R) and @5y (A) = &% (A + R). Then, see Proposition 3.2, 11¢(A4) = I1*(A + R),

uBw uBw

and hence (A + R)* has SVEP on I1*(A 4+ R). Thus [I*(A+ R) =II(A+ R) and A+ R € (gb).

Proposition 4.4. Given operators A, R € B(X) such that R is a Riesz operator which commutes with A,
if 500, (A) = isoo, (A + R) and &% (A) = @ (A + R), then

uBw uBw

A€ (gb) <= A+ Re< (gb), and A € (gab) <= A+ R € (gab).

Proof. We have already seen that A € (gb) implies A+ R € (gb). If, instead, A € (gab), then A € (¢Bt) and
II(A) = II(A). Since the hypotheses imply II%(A) = I1*(A + R) and II(A) = II(A + R), see Proposition
3.2, (A+ R) € (gab). Since the reverse implication in either of the cases follows by symmetry, the proof is
complete. [

A couple of variations of Weyl’s theorem which have attracted some attention wvis-a-vis variations of
Browder’s theorem are the properties (w) and (gw), where A € B(X) satisfies

property (w) if 0,(A) N 0aw(A)C = Eg(A), equivalently A € (a — Bt),Iy(A) = 1E(A) = Ey(A);
property (gw) if 0,(A) Noupw(A)C = E(A), equivalently A € (a — gBt),I1(A) = 11%(A) = E(A).
Evidently, property (w) implies both properties (ab) and (b), and property (gw) implies both properties
(gab) and (gb). Just as evidently, the reverse implications fail.
Theorem 4.5. Given A € B(X):
(a) {Ae (b) <= Ac (w)} < {Eo(A) Noguw(A) =0}.
(b) {A € (gb) <= A € (gw)} < {E(A) Noypw(4) = 0}.
(c)(i) A € (w) = A € (ab), (ii)) {A € (ab) A A* has SVEP on 04,(A)° No,(A)} = A € (b), (iii)
{Ae ()N (Ey(A)Nogw(A) =0} = A € (w).
(d)(i) A € (gw) = A € (gab), (i) A € {(gab) A A* has SVEP on 04, (A)° Noy,(A)} = A € (gb), (iii)
{A € (gb) N(E(A)Noupw(A) =0)} = A € (gw).
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Proof. (a). Property (w) implies property (b) (without further additional hypothses). For the reverse
implication, we observe from A € (b) that A € (a — Bt) and II3(A) = IIy(A). Hence, since IIj(A) C Ey(A),
A € (b) implies A € (w) if and only if Ey(A4) \ II¢(A) = 0, i.e., if and only if
0 = FEo(A) N{0a(A)N0oaw(A)C}°
= {Eo(A) N0a(A)°} U{Eo(A) Noau(A)}
= Fg(A) Noaw(A).
(b). The proof of the equivalence here is similar to that for the equivalence of part (a); the equivalence holds
if and only if
0 = EB(A)\IA)=E(A)N{0.(A) Noupw(A)°}°
= {E(A4)N0a(A)°} U{E(A) Noupw(A)}
= FE(A)Noupw(A).
(c). The implication (w) == (ab) is evident. If A € (ab), then A € (Bt) and A* has SVEP on o, (A)°. If
we now assume that A* has SVEP on 04,,(A)° N0, (A), then A* has SVEP on
an(A)c = Uw(A)C U{oaw (A)C \Uw(A)C}
= 0u(A)° U{0a(A)° Noy,(A)}.

Consequently, 04, (A)¢ = 0, (A)¢. Hence, since
I§(A) = 0(A) N0w(A)° = 0a(A) N0w(A) = 04(A) Noaw(A)

and II§(A) =1Iy(A), A € (b). Consider now A € (b) A {Ep(A) Nogw(A) = 0}. We have:
Eo(A)\Tlo(4) = Eo(A) \II5(A) = Eo(A) N {oa(A) N oau(A)}
= {Eo(4) Noa(A)°} U{Eo(A) Noau(A)}
= Eo(A)Nogw(4) =0,
ie., IIp(A) = Ep(A). Hence A € (w).

(d). The implication (gw) => (gab) is evident; the proof of the remaining implications being similar to that
of the implications in part (c¢), we shall be brief. Since

A € (gab) = A € (¢Bt),I1*(A) = 1I(A) < A € (Bt),[1*(A) = TI(A),
the hypothesis A* has SVEP on 0,4, (A)° No,(A) implies A* has SVEP on 7,4, (A)C. Hence, as seen above,
A€ (a— Bt),1*(A) =TI(A) < A € (a — ¢gBt),I1*(A) = TI(A) < A € (gb).

The proof now follows since E(A) =II(A) if and only if F(A) Noypw(4A) =0. O

5. Weyl’s Theorems: Equivalences.

It is well known that if either of A and A* has SVEP, then A satisfies (all four versions of) Browder’s
theorem. A necessary and sufficient condition for A € (Bt) and A € (¢gBt) (resp., A € (a — Bt) and
A € (a— gBt)) is that A has SVEP on o,,(A)° (resp., 04w (A)°) [1, 8, 17].

Let, for an operator A € B(X), EZ (A) = {\ € iso0,(A) : a(A — \) = 00}, 0 = 0 Or 0.

Theorem 5.1. (A). A € (gWt) = A € (Wt) and the reverse implication A € (Wt) = A € (¢Wt) holds
if and only if Ex(A) Nisoop,(A) = 0.

(B). A€ (a—Wt)= A€ (Wt) and the reverse implication A € (Wt) = A € (a — Wt) holds if and
only if E§(A) Nisooy,(A) = 0.
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(C). A€ (a—gWt) = A e (gWt) and the reverse implication A € (gWt) = A € (a — gWt) holds if
and only if B (A) Nisoopy,(A) = 0.

(D). A€ (a—gWt) = A € (a — Wt) and the reverse implication A € (a — Wt) = A € (a — gWt)
holds if and only if E% (A) Nisoo,pw(A) = 0.
Proof. (A). The forward implication (is well known) and follows from
A€ (gWit) A€ (gBt), E(A) Nopy,(A) =0
€ (Bt), E(A) Nopw(4) =0
€ (Bt), Eo(A)Nopw(A) =0
€ (Bt), Eg(A)Noy(A) =0 <= A e (W),

MM

since

Eo(A)Now(4) = {Eo(A)Nopw(A)}U{Eo(A) N (0w(4)\ ouw(4))}
Eo(A) N (0w(A)\ 05w (A))

(since Eo(A)Nopw(A4)=0)
(Bo(4) N 750 (A)) N o (4)

IIH(A) Noyw(A) = 0.

Nl

Conversely,

Ae(Wt) = Aec (Bt),Ey(A)Noy(A)=0
A

= € (9Bt), Eo(A) Naoy,(A) = 0.

Thus
Ae (Wt)y= A€ (¢gBt),E(A)Nopu(A) =0 < Aec (gWt)

if and only if

E(A)Nopw(A) = {Ey(A)Nopu(A)}U{Ex(A)Nop,(A)}
= FEx(A)Nopw(A4) (since Eg(A)Nopw(A) C Ey(A)No,(A) =0)
0

(B). The forward implication (once again, is well known and) follows from

Ac(a—Wt) > A€ (a—Bt), ES(A) N oau(A) =0
= A€ (Bt),E}(A)Noau(A) =10
. Ae(B),E (A) A Gan(A) =
s A (BY), Bo(A) N ow(A) =0,

Eo(A)Now(A) = {Eo(A)Noaw(A)} UL{E(A) N (0w(A) \ 0aw(A))}
Eo(A) N (0w(A)\ 00w (A))

(since Eo(A) Noaw(A) =0)

{E0(A) N oaw (A)C} Now(A)

o(A) N 0 (A4) = 0.

Nl

Conversely, if A € (Wt) (equivalently, o(A) Ny, (A)¢ = TIH(A) = Ey(A)), then

E§(A) \ Bo(A) = {E§(A) Na(A)} ULEG(A) Now(A)} = B§(A) Now(A)
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and E§(A) = Eo(A) if and only if E§(A) Noy(A) = 0. (Similarly, T1¢(A) = I1o(A) if and only if TIZ(A) N
ow(A) =0.) Hence

w(A)° =Tlo(4) = Eo(4)

W(A)° = To(A) = E8(A)

= (. Tt is clear from Ey(A) = Eg(A) that A* has SVEP on E§(A). Since the
equivalence A € 0,,(A)¢ <= \ € 0,4, (A)€ holds if and only if A* has SVEP at )\, we have:

A€ (Wt) = 0,(A) N 04u(A)° = E(A) <= A€ (a — W)

if and only if E§(A) No,(A) = 0.
(C). The implication A € (a — gWt) = A € (gWt) (again, well known) follows from

Ac(a—gWt) <= Ac(a—gBt),E(A)Noupw(A) =0
= € (9Bt), E*(A) Noupw(A) =0
— A€ (9Bt),E(A)Noypw(A) =10
(since E(A) Noyupw(A) C E*(A) Noypw(A))
= A€ (gBt),E(A)Nopw(4) =0 (<= A e (gWt)),

E(A)Nopw(A) = {E(A)Noupw(A)} ULE(A) N (0Bw(A) \ oupw(A))}
E(A) N (08w(A) \ 0upw(A))

(B(A) N oupw (A)°} N 0 pulA)
= H(A) N G‘Bw(A) = 0.

For the reverse implication, we start by observing that if 4 € (gWt) (equivalently, if o(A) N o gy (A)° =
II(A) = E(A)), then

EY(A)\ E(A) = {E*(A) No(A)°} U{EY(A) Nopu(A)} = EY(A) Nopw(A)
implies
EY(A) = B(A) <= E%(A) N opy(A) = 0.
(Similarly, TI%(A) = TI(A) if and only if IT*(A) N o gy (A) = 0.) Hence
A€ (gWt) <= o(A) Nopw(A) = E(A) = E*(A)

if and only if E“( YNopw(A) = 0. Since E(A) = E*(A) implies A* has SVEP on E%(A), and the equivalence
A€ opw(A)F <= )€ aqu(A) holds if and only if A* has SVEP at A,

A€ (W) < 0u(A) Nopa(A)F = E*(4), E(A) = E*(4) = II(4) = II*(A)
=  04(A)Noupw(4 ) = FE'(A) (<= A € (a — gWWt))

if and only if E%(A) Nopw(4) =0.
(D).The forward implication A € (a — gWt) = A € (a — Wt) (again, well known) follows from

Ac(a—gWt) <= Ac(a—gBt),E(A)Noupw(A) =
—  Ac (a—Bt), E*(A)Noupw(A) = @
( ) =0

= A€ (a-— Bt) (A> N 0(1111( (<:> A€ (CL - Wt))a
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E§(A)Noaw(4) = {EF(A)Noupw(A)} U{EG(A) N (0aw(A) \ oubw(A))}
= E§(A) N (0aw(A) \ oupw(A)
{E(A) N oupw (A} Nogw(
I3 (A) Nogw(A4) = 0.
For the reverse implication, we argue
A€ (a—Wt) < A€ (a—Bt),Ef(A)Nogw(4) =10
< A€ (a—gBt),Ej(A)Nogw(4) =0
= A€ (a—gBt),E*(A) Noypw(A) =0(<= A € (a — gWt))

)
A)

if and only if
EY(A)Nouwpw(A) = {EG(A)Noupw(A)} U{ESL(A) Noupw(A)}
= E2(A)Noupw(4)
(sinceE§(A) Noupw(A) C ES(A) Noaw(A) =0)
= 0.
This completes the proof. [

49

The following well known corollaries [1, 16, 17, 277 ]| demonstrate instances of operators satisfying the

hypotheses of Theorem 5.1.
Corollary 5.2. A sufficient condition for A € B(X) to satisfy:
(A). Ae (Wt) = A e (gWt) is that A is polaroid.
(B). Aec (Wt) = A € (a — Wt) is that A is a-polaroid.
(C). A e (gWt) = A € (a— gWt) is that A is a-polaroid.
(D). A€ (a—Wt)= A€ (a—gWt) is that A is left- polaroid.
Proof. (A). The hypothesis A € (Wt) implies
A€ (Bt) <= Ac (gBt) <= 0(A) Nop,(A)° =TI(A)(C E(A)).
Since A is polaroid, F(A) CII(A) (equivalently, E(A) = II(A)). Hence A € (gWt).
(B). If A is a-polaroid, then
Ej(A) = To(A) € Eo(A) € Ef(A) = Ej(A) =Tlo(A) = Ep(A)
= {E§(A)Noy(A) =0<<= Ey(A) No,(A) =0}
Hence, A € (Wt) and A is a-polaroid imply
Ae (Wt),E§(A)Noy(A)=0= A€ (a — Wi).
(C). As in the proof of (B) above, if A is a -polaroid, then
E*(A)=1I(A) CE(A) C E*(A) = E*(A) =TI(A) = E(A)
= {E*(A)Nou(A)=0= E*(A)Nopw(4) =0}.
Hence, A € (¢Wt) and A is a-polaroid imply

A€ (gWt),E*(A) Noypw(A) =0 = A € (a — gWi).

(D). If Ais left polaroid, then E*(A) = I1*(A). Hence if A € (a—Wt) and is left polaroid, then A € (a—Wt)

and E*(A) Noypw(A) =0, equivalently A € (a — gWt). O
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Remark 5.3. No advantage is to be gained by assuming A is left polaroid (or right polaroid, or even
a-polaroid) in (A) of the Corollary for the reason that A is polaroid at a point in E(A) if and only if it is
left polaroid (resp., right polaroid, a-polaroid) at the point. (An operator A € B(X) is right polaroid if A*
is left polaroid.) One may, however, replace the requirement that A is a-polaroid in (B) by A is polaroid at
points in isoo, (A) which are finite multiplicity eigenvalues of A.

Perturbation by commuting Riesz operators Given an A € B(X) and a Riesz operator R € B(X)
such that [A,R] = AR — RA = 0, a sufficient condition for A € (a — Wt) = A+ R € (a — Wt) and
A€ (a—gWt) = A+ R € (a — gWt) is that A is finitely a-isoloid [16, Theorem 4.10]. Since finitely
polaroid operators are finitely isoloid, and finitely a-polaroid operators are finitely a-isoloid, Corollary 5.2
implies:

Corollary 5.4. Given operators A, R € B(X) with R a Riesz operator which commutes with A, a sufficient
condition for:

(i) A+ R e (Wt) = A+ R € (gWt) is that A is finitely polaroid.

(i) A+ Re (Wt) = A+Rec (a—Wt) and A+ R € (yWt) = A+ R € (a — gWt) is that A is finitely
a-polaroid.

(iii)) A+ R € (Wt) = A+ R € (a — gWt) is that A is finitely left polaroid.

Proof. The proof in all cases is similar: We prove (ii). If A is finitely a-polaroid, then E§(A) Nisoog,(A) C
ITo(A) Nisoo gy, (A) = 0. Hence, A € (Wt) = A € (a — Wt). Again, since A is finitely a-polaroid implies A
is (both) finitely isoloid and finitely a-isoloid,

A+Re (Wt)<= Ae (Wt) and A+ R€ (a—Wt) <= A€ (a—Wt).
Hence, if A is finitely a-polaroid, then
A+Re (Wt)«—= Aec (Wt)= Ac(a—Wt)< A+ R < (a— Wt).

O

6. Properties (w), (gw) and Weyl type theorems: Equivalences
It is immediate from
A€ (w) <= A€ (a—Bt),II§(A) =y(A) = Ey(A), Eg(A) Noguw(A) =10

and
A€ (gw) <= A€ (a — gBt),I1*(A) =1I(A) = E(A), E(A) Noypw(4) =0
that
(w) = (Wt) and (gw) = (¢gW1).

(Recall that (a — Bt) = (Bt) and (a—gBt) = (¢BT).) Reverse implications do not hold; see example be-
low. Property (w) neither implies nor is implied by (a—Wt). For example, if U € B(¢?) is the forward unilat-
eral shift, @Q; and Q2 are the operators Q1 (w1, z2,73,...) = (%, %, ...) and Qa2(71, 72, 73, ...) = (0,22, 73, ...),
A1 =U®Q, and Ay = U @ Q-, then

04(A1) = 0aw(A1) = 0D U{0}, Eg(Ar) = TI5(A1) = Tlp(A1) = 0, Ej (A1) = {0},
0a(Az) = 0D U {0}, 04w (A2) = 0D, Eg(As) = 0, Ej(As) = {0}.

Clealrly,

Ay € (w), Ay ¢ (a—Wt),As € (a — Wt) (hence also) Az € (Wt)),and As ¢ (w).
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Similarly (gw) neither implies nor is implied by (a — gWt). The forward implication (gw) = (w) holds,
as the following argument shows. Since (a — gBt) = (a — Bt), if A € (gw), then II*(A4) = TI(A4) and
I (A) =1IH(A) (C Ep(A)). Let A € Ey(A). Then A € E(A), with 0 < a(4A — ) < oo, and A € (gw) imply
A € 04 (A) N0 aw(A)C. Consequently, Eg(A) C 04(A)N0aw(A)¢ =TE(A) (= o(A) C Eg(A)), and A € (w).
The reverse implication fails, as follows from a consideration of the operator A; above (when it is seen that
0a(A) N oupw(A)° = {0} # E(A;)). The following theorem considers the implications (w) <= (a — Wt),
(gw) <= (a — gWt) and (w) = (gw).

Theorem 6.1. Given A € B(X):

(i). A€ (w) <= A€ (a—Wt) if and only if E§(A) Noy,(A) = 0.

(it). A€ (gw) < A € (a — gWt) if and only if E“(A) Nopw(A) = 0.

(iti). A€ (w) = A€ (gw) if and only if Ex(A) Noupw(A) = 0.

Proof. (i). If A € (w), then (04(A) N 0aw(A)¢ = Eg(A), Eg(A) = i (A) = 1IE(A), and)
A€ (a— Bt) AMIg(A) = Eg(A)} = A € (Bt) A {IIp(A) = Eg(A)} <= A € (Wt).
Hence
Ac(a—Wt) < Ey(A) = EA) < E}(A)NEy(A)° =
c

= {Eg(A)Na(A) U {ES(A) Now(A)}
— E{(A)No,(4) =
Conversely, A € (a — Wt) (implies A € (Wt)) and E§(A) N oy (A) = 0 imply
E§(A) N Eo(A)¢ = Bj(A) N {o(A)° Uow(A)}
= E{(A)Noy,(A4)=0.
Thus, if A € (a — Wt) and E§(A) N oaw(A) =0, then

0
0

0a(A) N 04w (A)° = ES(A) = Eo(A) = A € (w).
(ii). If A € (gw), then (04(A) N oupw(A)¢ = E(A), E(A) =II(A) = 11*(A), and)
A€ (a—gBt) ANII(A) = E(A)} = A € (¢Bt) A{II(A) = E(A)} <= A € (gW1).
Hence
A€ (a—gWt) < EA)=E(A)

= {BY(A)No(A)°}U{E (A) Nopw,(A)} =10
e E(A)Nopw(d) =0.

Conversely, A € (a — gWt) (implies A € (¢gWt)) and E%(A) Nopw(A4) = 0 imply

EY(A)NE(A)° = E4(A) N {c(A)° Uop,(A)}
= Ea(A> N O'Bw<A) = 0.
Thus, if A € (a — gWt) and E*(A) Nopy(A) =0, then

0a(A) Noupw(A)° = E4(A) = E(A) < A € (gw).
(iii). By definition,

Ae(w) < A€ (a—Bt), Ey(A) =1II,(A) =II(A)
< A€ (a—gBt), Ey(A)=1(A)=I15(A),
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and
A€ (gw) <= A€ (a—gBt), E(A)=1I(A) =TI*(A).
Hence a necessary and sufficient condition for A € (w) to imply A € (gw) is that E(A) = II*(A). Since
BA\TI*(A) = {E(A)N0a(A)°} U{E(A) Noupu(A)}
(A€ (w) = A€ (a—gBt))
= E(A)Noupw(A) = {Eo(A) Noupw(A)} U{Ex(A) Noupw(A)}
= Ex(A)Noupw(A) (A€ (w) = Eo(A) Nouw(A) =0),
it follows that our necessary and sufficient condition reduces to Ex(A4) Noypw(A) =0. O

Theorem 6.1 has a number of consequences, amongst them the following corollary from [? | Corollary 3.8].

Corollary 6.2. A sufficient condition for the equivalences
Ac(w)<= A€ (gw) <= Ac(a—gWt) <= A€ (a — W)
is that A is a-polaroid.

Proof. If A is a-polaroid, then
A€ EY(A) = Me1II(4), M€ Ej(A) = X e1lx(4).

Hence
E(A)Nopw(A)=0=FE*(A)Nopw(A), and
Eo(A)Noy(A) =0=E§(A)Noy(A).
O

Remark 6.3. The example of the operator A; above shows that the condition E§(A)Noy,(A) = 0 can not be
replaced in Theorem 6.1(i) by Eo(A)No,(A) = 0. The same examples shows also that E*(A)Nogy,(A) =0
can not be replaced in (ii) of the theorem by E(A) Nopy,(A) = 0.

7. Properties (R), (aR) etc. and equivalences

Given an operator A € B(X), A satisfies property:

(R) if Eg(A) =TI¢(A) (equivalently, Eo(A) = 0,(A) Noap(A)C);
(aR) if £3(A) =TIo(A) (equivalently, E¢(A) = o(A) Noy(A)°);
(9R) if E(A) =T1I%(A) (equivalently, F(A) = 0,(A) N oyupp(A)°);
(agR) if E¢(A) =TI(A) (equivalently, E*(A) = o(A) Nopy(A)°);
(aw) if (A) N o,(A)° = ES(A);

(gaw) if 0(A) Nopw(A)C = E(A);

(Bgw) if 0,(A) N oupw(A)C = Eo(A).

These properties (alongwith a few others which we have chosen not to consider here), and their relation-
ship with various versions of Browder and Weyl type theorems, have been studied in a number of papers in
the recent past; see [4, 18, 29, 33] for further references. We study these properties in the following, concen-
trating upon the role they play in defining equivalences between various versions of the Browder and Weyl

theorems. In the process we obtain a number of previously known results. We start with some observations
(the proofs of which being straight forward are left to the reader). An operator A € B(X) satisfies:

Property (R) if and only if II3(A) = Eo(A) = IIo(A), equivalently, if and only if Fo(A) Nogw(A) = 0. Left
polaroid operators A satisfy (R).
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Property (aR) if and only if II(A) = II§(A) = E§(A), equivalently, if and only if E§(A) No,(A4) =0. A
a-polaroid implies A satisfies (aR).

Property (gR) if and only if E(A) = II(A) = II%(A), equivalently if and only if E(A) N oupw(A) = 0
(< E(A)Noups(A) = 0). Left polaroid operators A satisfy (gR).

Property (agR) if and only if E*(A) = II(A) = II1%(A), equivalently if and only if E%(A) Nop,(4) =0. A

a-polaroid implies A satisfies (agR).

Furthermore:

(aR) = (R), (agR) = (gR), (agR) N (gW1) = (a — gWt), (aR) A (Wt) = (a — WT).

The reverse implications in the above, in general, fail: We give here a simple example to show (a —
gWt) = (agR) A (gWt) and (a — gWt) &= (agR) A (a — Wt) (leaving it for the reader to construct
examples to show that the remaining reverse implication also fail). Let U € B(#) be the forward unilateral
shift and let A=U &0 € B(H & H). Then

0(A) = 0y(A) = 05w (A) = D,0,(A) = 04w (A) = oupw(A) = D U {0},
II(A) = E(A) = (,11°(A) = E*(A) = {0}, and II§(A) = E§(A) = 0.

Clearly,
A€ (a—Wt),(gWt) and (a — gWt) but A ¢ (agR).

Theorem 7.1. Operators in B(X) satisfy the following equivalences:

(I). (aR) N (Wt) <= (a — Wit) A (R), (agR) A (gWt) <= (a — gWt) A (gR) <> (agR) N (Wt).
(). (gw) <= (w) A (gR) <= (gW1) A (gR) <= (Wt) A (gR) <= (Bt) A (gR) <= (gw) A (R).
(III). (ab) A (R) <= (Wt) A (R) < (b) A (R).

Proof. (I). Given A € B(X),
A€ (a—Wt)= A e (Wt) = Ey(4)Noy,(A) =0

hence if also A € (R) (so that E§(A) = Ep(4)), then E§(A) No,(A) = 0. Applying Theorem 5.1(B) we
have:
Ac(a—WiH)AN(R) <= Aec(Wt)A
& Ac (Wi),II5(A) = Ej(A) = Eo(A) = 1lo(A4)
— Ac (WA

Again, if A € (a — gWt) A (gR), then E%(A) Nopyw(A) = 0. Hence, applying Theorem 5.1(C) and (B), we
have:

A€ (a—gWt) A (gR) A€ (gW1) A (gR),TI%(A) = E*(A)
A€ (gWt),II%(A) = E(A) = E(A) = II(A)

A€ (gWt) A (agR)

111

and

I*(A) = E*(A)

= A € (Bt) < A€ (¢9Bt))
=FE*A)=E(A) =1I(4)

(since A € (Wt)
Ae (Wt),I1*(A
Ae (Wt) A (agR).

A€ (a—gWt)N(gR) <= Ae (Wit)A (gR),
)

Iy
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(IT). The equivalence (Bt) A (gR) <= (gBt) A (¢gR) is immediate from the equivalence (Bt) < (¢Bt).
Given an A € B(X), we have:

A € (gw) € (a — gBt),11"(A) = II(A) = E(A)

€ (a — Bt),I5(A) = TIh(A) = Eo(A),T1(A) = E(A)

€ (w) A (gR)

€ (Bt),1I5(A) = 1Ip(A) = Eo(A),11*(A) = E(A) (<= A € (Bt) A (gR))
€ (¢Bt),11°(A) =1I(A) = E(A)

€ (9Bt) A (gR), A € (gWi) A (gR).

MMM

Here the implication A € (Bt) A (gR) = A € (w) A (gR) follows from I1%(A) = E(A) (implies II§(A) =
Ey(A)) and A € (a — Bt) since A has SVEP on

Oaw (A)C = Ow (A)C U{oaw (A) \ Ow (A)C}
= 0uw(A)° U{oa(A) N {o(A4) UTI(A)}}
= 0w (A)° U {{oauw(A)° Na(A)°} U{oau(A)° NTIG(A)}}
= Uw(A)C U{0aw(A ) n U(A)C}

Again, since A € (gw) implies A € (Bt), and since A € (Bt) (equivalently, A € (¢Bt)) and I1I*(A) = ( )
together imply A has SVEP on 0,,(A4)° (see the argument above), A € (a — Bt) A {lI*(A) =
(equivalently, A € (a—gBt)A{I1*(A) = E(A)}. We have A € (Bt)A{I1*(A) = E(A)} implies A € (g ) (R).
Hence

A€ (gu)A(R) < Ae(Bt),II%(A) = B(A) = II(A)

(III). Since
o(A) Now(A)° = TIo(A), Ho(A) = HS(A)
= 04(A) N0aw(A) =o(A), H(A) = II5(A)

(see the argument above, part (I7), proving that A € (Bt) and IIo(A) = II§(A) implies A € (a — Bt) and
ITH(A) =113 (A)), we have:

Ae (Wt)A(R) o(A)Now(A)C = Ey(A), Eo(A) =115 (A)

o(A) Ny (A)C =TI§(A), Eg(A) = TI5(A)

A € (ab) A (R)

o(A) Now(A)° =TIh(A),IIo(A) = Eo(A) = II§(A)
0a(A) N 0w (A)° =TIo(A), Eg(A) = TI3(A

(b) A (R).

[

This completes the proof. [

Neither of the properties (R), (aR), (gR) and (agR) implies either of the properties (aw), (gaw) and
(Bgw). Tt is straightforward to see that (aw) implies (Bt), (gaw) implies (gBt) and (Bgw) implies (gBt) (so
that, in particular, all three properties imply (Bt)). Properties (R), (aR), (gR) and (agR) do not, however,
imply (Bt). To see this consider the operator A =U & U*, where U € B(H) is the forward unilateral shift,
when it is seen that

= 04uw(A) = 0D, IIH(A) = 1I§(A) = II(A) = 1I*(A) = Eyx(A)
= EJ(A)=EA)=E*(A)=0,Ac (R)A(aR) A (gR) A (agR), A ¢ (aw) V (gaw) V (Bgw).
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The a-polaroid property, A € isoo,(A) <= X € II(A), acts as “an equalizer” for certain pairs of these
properties in the sense that if A is a-polaroid, then:

A€ (R) < Eg(A) =1IH(A) =1I§(A) = Ef(A) < A € (aR),

A€ (gR) < E(A) =1I(A) =T1*(A) = E*(A) < A € (agR),

and if A is finitely a-polaroid, then

A€ (R)<= A€ (aR) <= A€ (yR) <= A € (agR), A € (aw) <= A € (gaw),
A€ (R)AN(Bt)<= A€ (aR)\ (Bt) <= A€ (gR) AN (Bt) <= A € (agR) A (Bt)
<— A € (aw) <= A € (gaw).

The a-polaroid hypothesis can not be replaced by the polaroid hypothesis.Thus
(R) A (polaroid) #= (aR) A (polaroid), (gR) A (polaroid) #= (agR) A (polaroid),

as the following example shows. Let A = U @ @, where U € B(f?) is the forward unilateral shift and
Q € B(£?) is the quasinilpotent operator Q(x1, 2,23, ) = (%,%,--+). Then

isoo(A) = 0(=> A is polaroid), Ey(A) = I (A) = 0 = E(A) = II(A),

0 =1lo(A) # Eg(A) = {0},0 =1I(A) # E*(A) = {0}.

Evidently,
§ Ae (R)A(gR) and A ¢ (aR)V (agR).

Again, since

o(A)Now(A)C =0 # {0} and
a(A) Nopu(A)° =0 # {0} = E*(A),

it follows that
A ¢ (aw) V (gaw).

Finally, if we define B € B(¢? @ ¢2) by B = U @0, then B is polaroiod, o(B) N,(B)¢ = 0 = E3(A) (i.e.,
B € (aw)) and o(A) Nop,(A)° =0 # E*(A) = {0} (so that B ¢ (gaw)). B, however, satisfies properties
(aR) and (Bgw).

8. Perturbation by commuting Riesz operators: Preservation

If AR € B(X), R is a Riesz operator and [4, R] = AR — RA =0, then A (similarly, A*) has SVEP at
a point if and only if A+ R (resp., A* + R*) has SVEP at the point [6], and A + R has the same Weyl and
a-Weyl spectrum as A [28]. The following lemma is a more general version of a known result [27].

Lemma 8.1. Given operators A, R € B(X), with R a Riesz operator which commutes with A,
E,(A+R)No,(A) Cisooy(A),
where Z, stands for Z or Z, (exclusive ’or’).

Proof. The proof in both the cases being similar, we consider E,(A + R) N o,(A) C isoo,(A). Take a
A€ E,(A+ R)Noy(A). Since A is isolated in o,(A + R), there exists a deleted neighbourhood N(X) of A
such that p ¢ o,(A + R) for all u € N.()\). The hypothesis A € o,(A) implies that either A € acco,(A) or
A € isoo,(A): We prove that A ¢ acco,(A). Suppose to the contrary that A € acco,(A). Then there exists
a sequence {i,} C Ne(X\) Noy(A) converging to A. Since i, & 0o(A + R), fin € 0aw(A + R)C, and hence
fin € Taw(A)C for all natural numbers n. Furthermore, since A 4 R has SVEP at p,, implies A has SVEP at
fins fin € TIE(A) for all n. But then this, by the punctured neighbourhood theorem [1], implies A € o4, (A4)C,
and hence (since A has SVEP at A\) A € ITI4(A) - a contradiction. [J
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In the following, we start by considering the preservation of properties (R) and (aR) under perturbation
by commuting Riesz operators. Throughout the following R € B(X) shall denote a Riesz operator which
commutes with A € B(X). (Reader be warned that R, on its own- no parentheses, denotes a Riesz operator
and (R) denotes property (R).)

Theorem 8.2. If A € B(X) is such that isoo,(A + R) = isoc,(A), then:

(I).{A€(R)= A+ Re (R)} < {Ey(A+ R) C 0,(A),is00,(A) NEg(A +R) CII3(A)}.

(II). {A € (aR) = A+ R € (aR)} <= {E§(A+ R) C 04(A),is00,(A) NEF(A+ R) CII§(A)}.

Proof. (I). Since A € (R) if and only if Ey(A) = II§(A), the Browder and a-Browder spectra are stable

under perturbation by commuting Riesz operators, and SVEP at points is preserved by commuting Riesz
operators, the hypothesis isoo, (A) = is00, (A + R) implies (see Proposition 3.1) that

A€ (R) < FEo(A) =1I(A) =II§(A+ R) = (A + R) = Iy (A).
Evidently, IIo(A 4+ R) C Ey(A+ R). Hence A € (R) implies A+ R € (R) if and only if

Eo(A+ R) CIly(A+ R) =1I}(A) = Eo(4)
<— FEo(A+ R) Co(A),isoc,(A) N Ey(A+ R) CTIIF(A).
(IT). The proof here is similar, so we shall be brief. If isoo,(A) = isoo.(A + R), then
A€ (aR) <= Ej(A) =1Ip(A) =1IH(A+ R) =I5 (A + R) =1I5(A),
and hence
{Ae(R)= A+ Re (aR)} < EJ(A+R)CIIj(A+R)=1I3(A) = E§(A4)
— Ej(A+ R) Co,(A),is00,(A)NEG(A+ R) CIIJ(A).
This completes the proof. [
Perturbation by a commuting nilpotent N € B(X') preserves the spectrum, the approximate point spectrum
and the eigenvalues of A. Hence: A € (R) = A+ N € (R) and A € (aR) = A+ R € (aR). Recall that
o(A) and o,(A) are also preserved under perturbation by commuting quasinilpotent operators Q € B(X).
Ensuring isoo,(A4) N Eg(A + Q) C IIp(A) (similarly, ensuring isoo,(A4) N E§(A + Q) C II%(A)) however
requires an additional hypothesis. One such hypothesis is that A is polaroid (resp., left polaroid). More
generally, if isooy,(A) = () (resp., 180044, (A) = 0), then
A €500, (A) N Eo(A+ Q) = X € 0, (A)° N Eo(A+ Q) C Ty(A)
(resp., \ € 15004 (A) N EHA+ Q) = X € 0aw(A)° NEL(A+ Q) C IIE(A)).
For finite rank operators F' € B(X) (or, operators F' € B(X) such that F' is finite rank for some natural
number n) such that [A4, F] = 0 and isoc, (A+ F) = isoo4(A), 0,(A+F) = 0,(A), 0, = 0 or 6,. Once again,
if A is polaroid then A € (R) = A+ R € (R), and if A is left polaroid then A € (aR) = A+ R € (aR).
Putting it altogether, we have:
Corollary 8.3. Given an operator A € B(X), if:
(a) N € B(X) is a nilpotent operator such that [A, N] =0, then

Ae(R)<= A+ N € (R),Ac (aR) <= A+ N € (aR).

(b) Q € B(X) is a quasinilpotent operator such that [A,Q] = 0, then a sufficient condition for (i) A €
(R) <= A+ Q € (R) is that isoc,,(A) = 0 and a sufficient condition for A € (aR) <= A+ Q € (aR) is
that 1500 4y (A) = 0.

(¢c) F € B(X) is a finite rank operator such that [A, F| = 0 and isoc,(A) = isoo,(A+ F), then a sufficient
condition for (i) A € (R) <= A+ F € (R) is that is00,(A) = 0 and for (i1) A € (aR) <= A+ F € (aR)
is that is00 4, (A) = 0.
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The hypothesis iS00,y (A) = () for an operator A € B(X) implies A € 04, (A)€ for A € isoo,(A); hence,
since A has SVEP at all such A, A € TI3(A). Thus, if A € Ey(A) for an operator A € B(X) such that
8004w (A) = 0, then (A* has SVEP at A, therefore) A € IIj(A), and hence for A to satisfy A € (R) we must
have TIp(A) = IT§(A). (Observe that whereas IIo(A) C Ep(A), we do not in general have II3(A) C Ey(A).)
The following theorem shows that the hypothesis isoo4,(A) = 0 is sufficient for the implication A € (R)
implies A + R € (R) for commuting Riesz operators R ssuch that isoo,(A) = isoo,(A + R).

Theorem 8.4. Given operators A,R € B(X) such that R is a Riesz operator, [A,R] = 0 and isoo,(A) =
isoo, (A +R), if:

(i). isoo,(A) =0, then A€ (R) < A+ R € (R).

(i1). 15004 (A) = 0, then A € (aR) <= A+ R € (aR).

Proof. (i). Given a A € Eo(A+ R), either A € 0(A) or A ¢ o(A). If A € 0(A), then A € Ex(A+ R)No(A) C
isoo(A), and this (since isoo,,(A) = 0)) implies A € 0,(A)° = 0, (A + R)C. Since A ¢ o(A) automatically
implies A € 0, (A + R)C, it follows (from IIo(A + R) C Eo(A + R)) that

A€ Ey(A+ R) <= X eIlp(A+ R), equivalently Eo(A+ R) =1Iy(A+ R).

Consequently, A + R € (R) if and only if IIo(A + R) = IIZ(A + R), equivalently, if and only if (4 + R)*
has SVEP on II§(A + R). Recall from Proposition 3.1 that the hypothesis isoo, (A) = isoo, (A + R) implies
IIH(A) =p(A+ R) and II§(A) = I (A + R). Hence if A € (R), then Ey(A) =II§(A) and A* has SVEP at
points in IT¢(R). Since (A + R)* has SVEP at a point if and only if A* has SVEP at the point, (A + R)*
has SVEP on II¢(A + R). Consequently, A € (R) implies A + R € (R). The reverse implication follows by
symimetry.

(#3). The proof here being similar to that of part (i), we shall be brief. For every A € E§(A+ R), A+ R
has SVEP at A and A € 04, (A + R)¢. Hence E$(A + R) = II3(A + R), and A + R € (aR) if and only if
IT§(A+ R) = IIp(A+ R). Since the hypothesis is00,(A) = is00,(A + R) implies II§(A) = II§(A + R), and
since A € (aR) if and only if E§(A4) =TI(A), (IIo(A) CTIF(A) C E§(A) ensures II§(A) = I1g(A), and hence
that) (A + R)* has SVEP on II¢(A 4+ R). Thus A € (aR) implies A + R € (aR). The reverse implication
being evident by symmetry, the proof is complete. [

It is obvious from isooy,(A) C 18004, (A) that Theorem 8.4(i) holds with the hypothesis isoo,,(A) = 0
replaced by the hypothesis is004,(A4) = 0. The example of the operator B = A ® R € B((?> @ (?), where
A € B(£?) is the forward unilateral shift and R € B(¢?) is the quasinilpotent R(z1, xa, z3,--+) = (%, %3 ...),
is00y,(B) = 0, is004,(B) = {0}, Eo(A) = TIE(A) = IH(A) = 0, IIo(B) = 0 and E§(B) = {0}, proves that
the condition isoow(A) = ) is not sufficient for the transfer of property (aR) from A to its perturbation
A + R. Neither of the conditions isoc,, (A) = 0 and isoc,,(A) = 0 is necessary in Theorem 8.4: Taking
A € B(H) to be the zero operator, and R € B(H) to be a (non-trivial) nilpotent operator, it is seen
that 0(A) = 04(4) = 0(A+ R) = 04,(A+ R) = {0}, Ep(A) = IIg(A) = Ex(A+ R) = 1IE(A+ R) = 0,
ow(A) = o4w(A) = {0}, and both A and A+ R € (R). Observe that the hypotheses of Theorem 8.2 are
satisfied. The example of the operators A and R of Example 4.3 shows that Theorem 8.4, as also Theorem
8.2, is liable to fail in the absence of the hypothesis isoo,(A) = isoo, (A + R).

The argument of the proof of Theorem 8.2 does not extend to prove the preservation of properties (gR)
and (agR) under commuting Riesz perturbations. The problem (just as for the case of operators in (gb)
and (gab)) lies with the failure of the stability of B-Weyl and upper B-Weyl spectra under commuting Riesz
perturbations. The removal of the points iSooay (A) for an operator A € B(X) ensures (0p,(A) = 0y (A)
and) oyupw(A) = 04w(A), and then, given isoo,(A) = isoo,(A + R), A € (¢R) if and only if A+ R € (gR)
and A € (agR) if and only if A+ R € (agR).

Theorem 8.5. Given an operator A € B(X), if is004,(A) = 0 and isoo,(A) = isooc,(A + R), then
A€ (gR) < A+ Re€ (gR) and A € (agR) < A+ R € (agR).



B. P. Duggal / FAAC 9 (2) (2017), 3762 58

Proof. Since 1800,y (A) = isoo.w (A + R), the hypothesis isooq,(A) = @ implies 0ypw(A) = aw(A) =
Oaw(A+ R) = o0yupw(A + R). By definition A € (¢R) if and only if E(A) = II*(A) (eqmvalently7 E(A) =
I (A), I1*(A) =TI(A4)) and A € (agR) if and only if E*(A) = II(A) (equivalently, E*(A) = I1*(A) = II(A)).
Hence, see Proposition 3.2,

A€ (gR) = E(A) =TI*(A) =TI*(A+ R) =II(A+ R) C E(A+ R) and

A€ (agR) = E°(A) = II(A) = I%(A) = I%(A + R) C E*(A+R), TI%(A+ R) = II(A+ R)

(since A* has SVEP at points in E(A) = II(A + R), respectively at points in II(A) = II(A + R), implies
(A+ R)* has SVEP on II°(A + R)). Consider now a A € E(A) or E“(A). Then A € E%(A) and, as seen in
the proof of Theorem 8.4, A € 0ypw(A + R)¢ (= 04w(A + R)¢) and A + R has SVEP at A. Consequently,
A € II*(A + R), proving thereby that F(A+ R) = I*(A+ R) if A € (gR) and E*(A+ R) =1I[(A+ R) if
A € (agR). Since the reverse implication follows by symmetry, the proof is complete. [

The hypothesis isoo,(A) = @ (on its own) is not sufficient for the validity of Theorem 8.5, and (just as
Theorem 8.4) the theorem may fail in the absence of the hypothesis isoo, (A) = isoo,(A+R): Consider, once
again, the operators A and R of Example 4.3, when it is seen that E(A) = I1%(A) = 0 (so that A € (gR))
and E(A+ R) =0 # {1} =T1%(A+ R) (and A+ R ¢ (gR)).

Perturbation by commuting nilpotents preserves properties (gR) and (agR); for commuting finite rank
operators which preserve isolated points of the point spectrum, a sufficient condition for the preservation of
the properties (gR) and agR) is that the operator is left-polaroid (- a condition guaranteed by SVEP and
the hypothesis isoo.y (A) = 0).

Corollary 8.6. (a). A € (gR) (A € (agR)) if and only if A+ N € (gR) (resp., A+ N € (agR)) for
nilpotent operators N € B(X) satisfying [A, N] = 0.

(b). Given a finite rank operators F € B(X) such that [A, F] = 0 and isoc,(A + F) = isoo,(A), if: (i) A
is polaroid, then A € (gR) if and only if A+ F € (gR); (i) A is left-polaroid, then A € (agR) if and only if
A+ F € (agR).

Proof. (a). For commuting nilpotent N, 0,(A 4+ N) = 0,(A), 0, = 0 or 0., and E*(A + N) = E*(A),
E* = FE or E° Recall from [19, Theorem 2.6] that II(A + N) = II(A). Since either of the hypotheses
A € (gR) and A € (agR) implies A* has SVEP on I1*(A), II1*(A) = TI(A) = TI(A+ N) = II*(A + N) (see
the statement following the proof of Proposition 3.3). Hence the proof.

(b). The hypotheses imply o.(A + F) = 0,(A), 0, = o or g, and (see Proposition 3.3) A € II(A) if and
only if A € TI(A + F) (resp., A € II%(A) if and only if A € II*(A + F)). We start by considering (i). If
A € (gR), then E4(A) =II(A) = I1*(A) and

AMNeEA+4+F)= \€isoo(A+F) <= Acisoog(A) <= A€ Il(A) =TI(A) <= A I*(A+ F).

Hence E(A+ F) CII*(A + F). Since the semi B-Fredholm spectrum of an operator is stable under finite
rank perturbations [9],

{TI(A) = T1%(A)} <= {isoo(A) Nope(A)° =isoo,(A) N oupe(A)C}
— {isoo(A+ F)Nope(A+ F)¢ =is00,(A+ F)Noupe(A+ F)}
— {[(A+F)=1%A+F)}.

But then
E(A+F)CNI*(A4+ F)=lI(A+ F)CE(A+F) < A€ (yR) = A+ F € (yR).

The reverse implication follows from a consideration of the operator A = (A+ F) — F.
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To complete the proof, we consider now case (ii). Then A is left ploaroid, and assuming A € (agR) (so
that £%(A) =T(A) =11%(A) (= E(A)) and
AEEYA+F)= A€isoo,(A+ F) <= X €isoo,(4)
= Acll*(A) <= NcII*(A+F)= A€ EY(A+F).
Hence E%(A + F) = II*(A + F). Since, see above, II(4) = II*(A) implies II(A + F') = II*(A + F),
E*(A+ F) =1I(A + F); equivalently, A € (agR) implies A+ F' € (agR). The reverse implication follows
from a consideration of the operator A= (A+ F)—F. O

The Corollary fails for commuting quasinilpotents Q, i.e., A polaroid or left polaroid and A € (gR) does
not imply A 4+ @ € (gR). This follows from a consideration of the operator A+ Q =0+ Q € B(H), Q an
injective quasinilpotent, when it is seen that A € (gR) A (agR) but A+ Q ¢ (gR) V (agR).

It is easily seen from the definition that
A € (aw) <= 0(A) N0y (A)° = EZ(A) = Eg(A) = TIH(A) = TIE(A).
In particular, A € (aw) implies A € (Bt), hence also that A+ R € (Bt), i.e
A€ (aw) = 0(A+ R)No,(A+ R)° =Ty(A+R)

(for Riesz operator R commuting with A). Assume now that isoo,(A) = isoo,(A+R). Then Proposition 3.1
implies that II3(A + R) = II§(A), and hence since II§(A) = IIy(A) that (A+ R)* has SVEP on II§(A + R).
Consequently, II(A + R) = IIo(A + R) and 0(A + R) No,(A+ R)¢ = IE(A + R).

Theorem 8.8(a) If isoo,(A) = isoo,(A + R), then A € (aw) implies A+ R € (aw) if and only if E§(A +
R)Nouw(A) =0.

Proof. We have already seen that o(A + R) N oy, (A + R)¢ = I&(A + R). Assume now that E$(A + R) N
0aw(A) = 0. Then A € EZ(A + R) implies A € 04 (A + R)° = 04,(A)C. Since A+ R has SVEP at A,

A € IIE(A + R). The necessity of the condition E§(A + R) N 04(A) = 0 being evident from II¢(A + R) =
E§(A+ R), the proof is complete. [

Considering operators satisfying property (gaw) it is seen that

A€ (gaw) <= 0(A) Nopw(A)°¢ = EY(A) = E(A) = TI(A) = I1%(A);
A € (gaw) = A € (¢gBt) <= A+ R € (¢Bt).

If we assume now that isoc,(A) = isoo,(A + R) and @59 (A + R) = &89 (A) (Recall: 5% (A) =
1500 4w (A) N 0uBw (A)C), then Proposition 3.1 implies that 11¢(A + R) = I1%(A). Hence, since A* has SVEP
on II*(A4), o(A+ R)Nopw(A+ R) =11*(A+ R).

Theorem 8.8(b) If isoo,(A) = isoo.(A + R) and @5 (A + R) = B9 (A), A € (gaw) implies A+ R €
(gaw) if and only if E*(A+ R) Noupw(A) = 0.

Proof. The necessity being evident, the sufficiency of the condition would follow once we have proved E*( A+

R) =T11*(A + R), and for this it would suffice to prove E%(A+ R) C I1I*(A + R). The hypotheses ®5¢, (A +
R) = @9 (A) and E*(A + R) Noupw(A) = 0 imply

EY(A+R)Noyp,(4) = {E“(A+R)Noyp, (A} U{E (A+ R)Noupw(A)}

=  E*(A+R)N{oupuw(4) Uoyp,(A)}

)=

E*A+R)Nogw(A) = E*(A+ R)Noaw(A+ R)

= {E“(A+R)ﬁoqu(A+R)}U{E“(A+R)ﬂafgw(A+R)}
— E“(A+R)No%%, (A+R)=0.

uBw

Hence A € E%(A + R) implies \ € 05w (A + R)C; since A+ R has SVEP at \, A € [I*(A+ R). O
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An argument similar to that above works for operators A € (Bgw). Since A* has SVEP at points in Fy(A),
and since a(A — A) < oo at points A € Ey(A),

A€ (Bgw) <= 04(A)Noupw(A)° = Eo(A) =Tlo(A) = TI2(A)

& 0,(A) N oaw(A)C =TIE(A) =TIH(A) = Ey(A).
Thus A € (a — Bt) (equivglently, A € (a — gBt)) and A* has SVEP on II§(A) for operators A € (Bgw).
Theorem 8.8(c) If isoo,(A) = isoo,(A + R), then A € (Bgw) implies A+ R € (Bgw) if and only if
Eo(A+ R)Nogw(A) =0.
Proof. We start by observing that
Ey(A+ R)N0uw(A+ R) = Eg(A+ R) N {0upw(A+ R)UDEY (A+ R)}
= {FEo(A+R)Noupw(A+R)}YU{E(A+R)N®5S (A+ R)}.

We claim that Eo(A + R) N @5 (A + R) = (). For if not, then there exists a A € Eg(A+ R) Noqw(A+ R)
such that 0 < (A + R — \) < oo and (A + R — X\)(X) is not closed. Since A ¢ o,p5,(A + R), there exists
an integer d > 1 such that (A + R — \)%(X) is closed. But then, since a(A+ R~ \) < 0o, d =1 - a

contradiction. Hence

Eo(A+ R) N au(A) = 0 <= Eg(A+ R) N owpw(A+ R) = 0.

Consequently,
Eo(A+R)NII*(A4+R) = Ey(A+R)N{0.(A+ R Uocupu(A+R)}
= {Ey(A4+R)No(A+RCYU{Ey(A+R)Noupw(A+R)}
= 0,

and therefore that o, (A + R) N oupw(A + R)¢ = Eg(A+ R), ie., A+ R € (Bgw). O

If N € B(X) is a nilpotent operator which commutes with A, then A+ N and A have the same eigenvalues
(the same eigenvalues of finite multiplicity and the same eigenvalues of infinite multiplicity). Hence:

Ef(A+ N)Now(A+ N)=E§(A)Noy,(A4), and
Ey(A+ N)ogw(A+ N) = Eg(A) Nogw(A);
also, since 0,5y, (.) is stable under perturbation by commuting nilpotents (see the proof of Proposition 4.4)
E*(A4+ N)Noypw(A+ N)=E*(A) Noypw(A).
Hence
A € (aw) (resp. A € (gaw), A € (Bgw)) = A+ N € (aw)
(resp. A+ N € (gaw), A+ N € (Bgw)).
The preceding argument works equally well for commuting finite rank operators F' such that iso,0,(A) =
isoq,0(A + F). Perturbation by commuting quasinilpotent operators does not result in an as satisfactory a

result. Additional hypotheses are required. We summarize this, and the conclusion for nilpotent and finite
rank operators in the following.

Corollary 8.9 Let A € B(X) be such that A commutes with operators N, F and Q € B(X) , where N
is a nilpotent, F™ is finite rank for some positive integer n with isoo,(A) = isoo,(A + F'), and Q is a
quasinilpotent. Then

A€ (aw) <= A+ X € (aw), A € (gaw) <= A+ X € (gaw), A € (Bgw) <= A+ X € (Bgw),
where X = N, or F. Furthermore:
If A is isoloid, then A € (Bgw) = A+ Q € (Bgw);
if A is a-isoloid, then A € (gaw) = A+ Q € (gaw);
if A is finitely a-isoloid, then A € (aw) = A+ Q € (aw).
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Proof. Observe that: if A is isoloid, then A\ € Eg(A+ Q) = X € isoo(A) = X € Ey(A); if A is a-isoloid,
then A € E(A+ Q) = X € iso0,(A) = X € E*(A); if A is finitely a-isoloid, then A € E§(A+Q) = X €
isoo,(A) = A € E§(A). Hence

Eo(A+Q)Noaw(A) € Eo(A) Noaw(A) =0 if A€ (Bgw),

EY(A+ Q) N {is00auw(A)° Noaw(A)} € EY(A) Noupw(d) =0 if A€ (gaw),
E§(A4+Q)Now(A) CES(A)Noy,(A) =0 if A€ (aw)
and the proof is complete. [J
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