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Abstract. The presence, or the lack of, SVEP on the holes of the Weyl (resp., a-Weyl) spectrum of a
Banach space operator characterizes Browder and generalized Browder (resp., a-Browder and generalized
a-Browder) theorems for the operator. The isolated points of the Weyl spectrum (resp., the a-Weyl
spectrum, the B-Weyl spectrum and the upper B-Weyl spectrum) play a similar role in determining
Weyl’s (resp., a-Weyl’s, generalizedWeyl’s and generalized a-Weyl’s) theorem for the operator. This paper
establishes the role played by the isolated points of these Weyl spectra in establishing equivalences between
Browder, Weyl type theorems, their (recently considered) avatars and perturbations by commuting Riesz
operators.

1.. Introduction

Let B(X ) (resp., B(H)) denote the algebra of operators, equivalently bounded linear transformations,
on a complex infinite dimensional Banach space X (resp., Hilbert space H) into itself. Given A ∈ B(X ), let
σ(A), σa(A), σw(A), σaw(A) and σab(A) denote, respectively, the spectrum, the approximate point spectrum,
the Weyl spectrum, the approximate Weyl (equivalently, a-Weyl) and approximate Browder (equivalently,
a-Browder) spectrum of A; let Π0(A), Π

a
0(A), E0(A) and Ea

0 (A) denote, respectively, the set of finite rank
poles (of the resolvent) of A, the set of finite rank left poles of A, the set of finite multiplicity eigenvalues
which are isolated points of σ(A) and the set of finite multiplicity eigenvalues which are isolated points of
σa(A). Recall, [1], that A ∈ B(X ) satisfies Browder’s theorem (a-Browder’s theorem) , A ∈ (Bt) (resp.,
A ∈ (a−Bt)), if σ(A)\σw(A) = Π0(A) (resp., if σa(A)\σaw(A) = Πa

0(A)), and A satisfies Weyl’s theorem (a-
Weyl’s theorem), A ∈ (Wt) (resp.,A ∈ (a−Wt)), if σ(A)\σw(A) = E0(A) (resp., σa(A)\σaw(A) = Ea

0 (A)).
Browder and Weyl theorems have been considered in the recent past by a number of authors and there
exists in the current literature a large body of information on Browder and Weyl thoerems, their generalized
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extensions and their variations (see [1–4, 7–12, 14–17, 19–21, 31–33] for further references). It is well known
that A ∈ (Bt) if and only if A has SVEP, the single-valued extension property, on the complement σw(A)C of
σw(A) (in C), A ∈ (a−Bt) if and only if A has SVEP on the complement σaw(A)

C of σaw(A), A ∈ (Wt) if
and only if A ∈ (Bt) and E0(A) = Π0(A) and A ∈ (a−Wt) if and only if A ∈ (a−Bt) and Ea

0 (A) = Πa
0(A)

[17].

If we let η′S denote the union of the holes (i.e., of the bounded components of the complement SC of
S in C [24]), then a characterization of operators satisfying (Bt) or (gBt) (resp., (a − Bt) or (a − gBt)) is
obtained as the set of A ∈ B(X ) which have SVEP on η′σw(A) (resp., which have SVEP on η′σaw(A)) [18,
Theorem 4.1 and Lemma 4.5]. Similarly, a characterization of operators satisfying (Wt) (resp., (gWt)) is
obtained as the set of operators A ∈ B(X ) such that A ∈ (Bt) and E0(A) ∩ isoσw(A) = ∅ (resp., A ∈ (Bt)
and E(A) ∩ isoσBw(A) = ∅), and a characterization of operators satisfying (a −Wt) (resp., (a − gWt)) is
obtained as the set of operators A ∈ B(X ) such that A ∈ (a − Bt) and Ea

0 (A) ∩ isoσaw(A) = ∅ (resp.,
A ∈ (a − Bt) and Ea(A) ∩ isoσuBw(A) = ∅). (Here σBw(A) and σuBw(A) denote, respectively, the B–
Weyl and upper B–Weyl spectrum of A.) Isolated points isoσw(A), isoσaw(A) etc. play a crucial role also
in defining relationships between different variations of Weyl type theorems and their perturbations by
commuting Riesz operators. Thus, if we let A ∈ (b) = {A ∈ B(X ) : σa(A) ∩ isoσaw(A) = Π0(A)} [5], A ∈
(w) = {A ∈ B(X ) : σa(A) ∩ isoσaw(A) = E0(A)} [2], A ∈ (gb) = {A ∈ B(X ) : σa(A) ∩ isoσuBw(A) = Π(A)}
[11] and A ∈ (gw) = {A ∈ B(X ) : σa(A)∩ isoσuBw(A) = E(A)} [13], then A ∈ (w) ⇐⇒ A ∈ (b) if and only if
E0(A) ∩ isoσaw(A) = ∅ [18, Theorem 5.1] and A ∈ (gw) ⇐⇒ A ∈ (gb) if and only if E(A) ∩ isoσuBw(A) = ∅
[18, Corollary 5.2]. Again, if R ∈ B(X ) is a Riesz operator which commutes with A, then A ∈ (w) implies
A + R ∈ (w) if and only if E0(A + R) ∩ isoσaw(A) = ∅ and A∗ has SVEP on isoσa(A + R) ∩ σaw(A)C [18,
Theorem 6.1].

This paper, which continues the work started in [18], further explores the important role played by
the isolated points of various Weyl spectra in determining equivalences between Browder, Weyl theorems,
their variants and their perturbations by commuting Riesz operators. Using at times what are essentially
algebraic arguments, we prove, amongst other results, that if A ∈ B(X ), then:

{A ∈ (Wt) ⇐⇒ A ∈ (gWt)} ⇐⇒ E(A) ∩ isoσBw(A) = ∅;
{A ∈ (Wt) ⇐⇒ A ∈ (a−Wt)} ⇐⇒ Ea

0 (A) ∩ isoσw(A) = ∅;
{A ∈ (gWt) ⇐⇒ A ∈ (a− gWt)} ⇐⇒ Ea(A) ∩ isoσBw(A) = ∅;
{A ∈ (a−Wt) ⇐⇒ A ∈ (a− gWt)} ⇐⇒ Ea(A) ∩ isoσuBw(A) = ∅;
{A ∈ (w) ⇐⇒ A ∈ (a−Wt)} ⇐⇒ Ea

0 (A) ∩ isoσw(A) = ∅;
{A ∈ (gw) ⇐⇒ A ∈ (a− gWt)} ⇐⇒ Ea(A) ∩ isoσBw(A) = ∅, and

{A ∈ (w) ⇐⇒ A ∈ (gw)} ⇐⇒ E(A) ∩ isoσuBw(A) = ∅.

Again, if R is a Riesz operator in B(X ) which commutes with A, isoσa(A) = isoσa(A + R), and Φiso
uBw(A)

denotes the set {λ : λ ∈ isoσaw(A) ∩ σuBw(A)
C}, then:

{σ(A) ∩ σw(A)
C = Ea

0 (A)} ⇐⇒ {σ(A+R) ∩ σw(A+R)C = Ea
0 (A+R)}

if and only if Ea
0 (A+R) ∩ isoσaw(A) = ∅;

{σ(A) ∩ σBw(A)
C = Ea(A)} ⇐⇒ {σ(A+R) ∩ σBw(A+R)C = Ea(A+R)}

if and only if Ea(A+R) ∩ Φiso
uBw(A) = ∅;

if isoσaw(A) = ∅, then {E0(A) = Πa
0(A)} ⇐⇒ {E0(A + R) = Πa

0(A + R)};
if Φiso

uBw(A) = ∅, then {E(A) = Πa(A)} ⇐⇒ {E(A+R) = Πa(A+R)};
if isoσaw(A) = ∅, then {Ea

0(A) = Π0(A)} ⇐⇒ {Ea
0(A + R) = Π0(A + R)} and

if Φiso
uBw(A) = ∅, then {Ea(A) = Π(A)} ⇐⇒ {Ea(A+R) = Π(A+R)}.

The results of the paper, alongwith proving a large number of new results, subsume a substantial number
of extant results. The plan of the paper is as follows. We introduce additional notation and terminology in
Section 2, Section 3 consists of some complementary results, Sections 4, 5, 6 and 7 deal with equivalences for
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Browder, Weyl type theorems and their variants, and Section 8 considers the preservation of these properties
under perturbation by commuting Riesz operators.

2.. Notation and terminology

In addition to the notation and terminology already introduced, we shall use the following further notation
and terminology. The boundary of a subset S of the set C of complex numbers will be denoted by ∂S and
we shall write SC for the complement of S in C. We denote the open unit disc by D and its closure by D.
An operator A ∈ B(X ) has SVEP, the single-valued extension property, at a point λ0 ∈ C if for every open
disc Dλ0 centered at λ0 the only analytic function f : Dλ0 −→ X satisfying (A− λ)f(λ) = 0 is the function
f ≡ 0. (Here, and in the sequel, we have shortened A− λI to A− λ.) Every A ∈ B(X ) has SVEP at points
in the resolvent ρ(A) = C\σ(A) and the boundary ∂σ(A) of the spectrum σ(A). We say that T has SVEP if
it has SVEP at every λ ∈ C. The ascent of A, asc(A) (resp. descent of A, dsc(A)), is the least non-negative
integer n such that A−n(0) = A−(n+1)(0) (resp., An(X ) = An+1(X )): If no such integer exists, then asc(A)
(resp. dsc(A))= ∞. It is well known that asc(A) < ∞ implies A has SVEP at 0, dsc(A) < ∞ implies A∗ (=
the dual operator) has SVEP at 0, finite ascent and descent for an operator implies their equality, and that
a point λ ∈ σ(A) is a pole (of the resolvent) of A if and only if asc(A− λ) = dsc(A− λ) < ∞ [1, 23, 25].

A ∈ B(X ) is: upper semi–Fredholm at λ ∈ C, λ ∈ Φuf (A) (or, A − λ ∈ Φ+(X )), if (A − λ)(X ) is closed
and the deficiency index α(A− λ) = dim(A− λ)−1(0) < ∞; lower semi–Fredholm at λ ∈ C, λ ∈ Φlf (A) (or,
A − λ ∈ Φ−(X )) , if β(A − λ) = dim(X/(A − λ)(X )) < ∞; A − λ is semi–Fredholm, A − λ ∈ Φ±(X ), if
A − λ is either upper or lower semi–Fredholm, and A is Fredholm at λ ∈ C, λ ∈ Φ(A) or A − λ ∈ Φ(X ),
if A − λ is both upper and lower semi–Fredholm. The index of a semi–Fredholm operator is the integer
ind(A) = α(A)−β(A). Corresponding to these classes of one sided Fredholm operators, we have the following
spectra: The upper semi Fredholm spectrum σuf (A) = {λ ∈ σ(A) : A−λ /∈ Φ+(X )}, the lower semi Fredholm
spectrum σlf (A) = {λ ∈ σ(A) : A − λ /∈ Φ−(X )} and the Fredholm spectrum σe(A) = σuf (A) ∪ σlf (A).
A ∈ B(X ) is upper Weyl (resp., lower Weyl, (simply) Weyl) at 0 if it is upper semi Fredholm with ind(A) ≤ 0
(resp., lower semi Fredholm with ind(A) ≥ 0, Fredholm with ind(A) = 0). The upper (or, approximate) Weyl
spectrum, the lower (or, surjectivity) Weyl spectrum and the Weyl spectrum of A are respectively the sets
σaw(A) = {λ ∈ σa(A) : λ /∈ Φ+(A) or ind(A−λ) ̸≤ 0}, σsw(A) = {λ ∈ σs(A) : λ /∈ Φ−(A) or ind(A−λ) ̸≥ 0}
and σw(A) = σaw(A)∪σsw(A). It is well known, [1, Theorems 3.16, 3.17], that a semi- Fredholm operator A
(resp., its conjugate operator A∗) has SVEP at a point λ if and only if asc(A−λ) < ∞ (resp., dsc(A−λ) < ∞)
; furthermore, if A− λ is Weyl (resp., upper Weyl), i.e. if λ ∈ Φ(A) and ind(A− λ) = 0 (resp., λ ∈ Φ+(A)
and ind(A− λ) ≤ 0), then A has SVEP at λ implies λ ∈ isoσ(A) with asc(A− λ) = dsc(A− λ) < ∞ (resp.,
λ ∈ isoσa(A) with asc(A− λ) < ∞). If we let σab(A) = {λ ∈ σa(A) : λ /∈ Φ+(A) or asc(A− λ) ̸< ∞} and
σsb(A) = {λ ∈ σs(A) : λ /∈ Φ−(A) or des(A − λ) ̸< ∞} denote, respectively, the upper (or approximate)
and the lower (or surjectivity) Browder spectrum of A, then σsb(A) = σab(A

∗) and σb(A) = σab(A)∪ σsb(A)
is the Browder spectrum of A. ( For further information on Fredholm theory, SVEP, and isolated points etc,
see [1, 23–25, 30].)

A generalization of Fredholm and Weyl spectrum is obtained as follows. An operator A ∈ B(X ) is
semi B-Fredholm if there exists an integer n ≥ 1 such that An(X ) is closed and the induced operator
A[n] = A|An(X ), A[0] = A, is semi Fredholm (in the usual sense). It is seen that if A[n] ∈ Φ±(X ) for an
integer n ≥ 1, then A[m] ∈ Φ±(X ) for all integers m ≥ n, and one may unambiguously define the index
of A by ind(A) = α(A) − β(A) (= ind(A[n])) [10]. Upper semi B-Fredholm, lower semi B-Fredholm and
B-Fredholm spectra of A are then the sets

σuBf (A) = {λ ∈ σ(A) : A− λ is not upper semi B-Fredholm},
σlBf (A) = {λ ∈ σ(A) : A− λ is not lower semi B-Fredholm}, and
σBe(A) = σuBf (A) ∪ σlBf (A).



B. P. Duggal / FAAC 9 (2) (2017), 37–62 40

Letting

σBw(A) = {λ ∈ σ(A) : λ ∈ σBe(A) or ind(A− λ) ̸= 0},
σaBw(A) = {λ ∈ σa(A) : λ ∈ σuBf (A) or ind(A− λ) ̸≤ 0},
σsBw(A) = {λ ∈ σs(A) : λ ∈ σlBf (A) or ind(A− λ) ̸≥ 0},
σBb(A) = {λ ∈ σ(A) : λ ∈ σBe(A) or asc(A− λ) ̸= dsc(A− λ)},
σaBb(A) = {λ ∈ σa(A) : λ ∈ σuBf (A) or asc(A− λ) = ∞}, and

σsBb(A) = {λ ∈ σs(A) : λ ∈ σlBf (A) or dsc(A− λ) = ∞}

denote, respectively, the the B-Weyl, the upper B-Weyl, the lower B-Weyl, the B-Browder, the upper B-
Browder and the lower B-Browder spectrum of A, we have σBw(A) = σaBw(A) ∪ σsBw(A), σBb(A) =
σaBb(A) ∪ σsBb(A), σaBw(A) = σsBw(A

∗) and σaBb(A) = σsBb(A
∗).

3.. Some complementary results.

The following implications are well known [8, Theorems 2.1 and 2.2]:

σw(A) = σb(A) ⇐⇒ σBw(A) = σBb(A) ⇐⇒ σ(A) \ σBw(A) = Π(A) ⇐⇒ A has SVEP at points in
σ(A) \ σBw(A), and

σaw(A) = σab(A) ⇐⇒ σaBw(A) = σaBb(A) ⇐⇒ σa(A) \ σaBw(A) = Πa(A) ⇐⇒ A has SVEP at points
in σa(A) \ σaBw(A).

Evidently, σaw(A) ⊆ σw(A) and σaBw(A) ⊆ σBw(A); hence

σaBw(A) = σaBb(A) ⇐⇒ σaw(A) = σab(A) =⇒ σw(A) = σb(A) ⇐⇒ σBw(A) = σBb(A)

(where the one way implications are strict). Following current terminology [1, 8, 10, 16], we say that an
operator A ∈ B(X ) satisfies

Browder’s theorem , A ∈ (Bt), if σw(A) = σb(A), equivalently σ(A) ∩ σw(A)
C = Π0(A);

generalized Browder’s theorem, A ∈ (gBt), if σBw(A) = σBb(A), equivalently σ(A) ∩ σBw(A)
C = Π(A);

a-Browder’s theorem, A ∈ (a−Bt), if σaw(A) = σab(A), equivalently σa(A) ∩ σaw(A)
C = Πa

0(A);

generalized a-Browder’s theorem, or A ∈ (a− gBt), if σaBw(A) = σaBb(A), equivalently σa(A)∩σuBw(A) =
Πa(A).

Let E(A) = {λ ∈ isoσ(A) : 0 < α(A− λ)} and Ea(A) = {λ ∈ isoσa(A) : 0 < α(A− λ)}. We say that the
operator A ∈ B(X ) satisfies:

Weyl’s theorem , A ∈ (Wt), if σ(A) ∩ σw(A)
C = E0(A);

generalized Weyl’s theorem, A ∈ (gWt), if σ(A) ∩ σBw(A)C = E(A);

a-Weyl’s theorem, A ∈ (a−Wt), if σa(A) ∩ σaw(A)
C = Ea

0 (A);

generalized a-Weyl’s theorem, A ∈ (a− gWt), if σa(A) ∩ σuBw(A) = Ea(A).

The following implications

(a− gWt) =⇒ (gWt) =⇒ (Wt), (a− gWt) =⇒ (a−Wt) =⇒ (Wt)

hold, but the reverse implications are in general false [1, 10, 15–17]. It is evident that (Wt) =⇒ (Bt),
(a − Wt) =⇒ (a − Bt), (gWt) =⇒ (gBt) and (a − gWt) =⇒ (a − gBt). Also, since Πx

0(A) ⊆ Ex
0 (A)

and Πx(A) ⊆ Ex(A), where Πx = Π or Πa and correspondingly Ex = E or Ea, a necessary and sufficient
condition for an A ∈ (Bt) to satisfy A ∈ (Wt) is that E0(A) ⊆ Π0(A) (resp., A ∈ (gBt) to satisfy A ∈ (gWt)
is that E(A) ⊆ Π(A), A ∈ (a − Bt) to satisfy A ∈ (a −Wt) is that Ea

0 (A) ⊆ Πa
0(A) and A ∈ (a − gBt) to

satisfy A ∈ a− (gWt) is that Ea(A) ⊆ Πa(A)). Since

Ea
0 (A) = {Ea

0 (A) ∩ σaw(A)
C} ∪ {Ea

0 (A) ∩ σaw(A)}
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and since Ea
0 (A) ∩ σaw(A)

C ⊆ Πa
0(A), a sufficient condition for Ea

0 (A) ⊆ Πa
0(A) is

Ea
0 (A) ∩ σaw(A) = Ea

0 (A) ∩ isoσaw(A) = ∅.

Similarly, a sufficient condition for E0(A) ⊆ Π0(A) is E0(A)∩ isoσw(A) = ∅. These conditions are necessary
too [18, Theorem 4.8].

A ∈ B(X ) is polaroid if λ ∈ isoσ(A) implies asc(A − λ) = dsc(A − λ) (i.e., if the isolated points of the
spectrum of A are poles of the resolvent of A), A is finitely polaroid if points λ ∈ isoσ(A) are finite rank
poles of the resolvent of A, A is left polaroid if λ ∈ isoσa(A) implies asc(A − λ) = d < ∞ for some integer
d > 0 and (A − λ)d+1(X ) is closed (i.e., if the isolated points of the approximate point spectrum of A are
left poles of the resolvent of A), A is finitely left polaroid if points λ ∈ isoσa(A) are finite rank left poles of
A, and A is a-polaroid if points λ ∈ isoσa(A) are poles of A . Given A ∈ B(X ), it is clear that a-polaroid
operators are polaroid; furthermore

Π0(A) ⊆ Πa
0(A) ⊆ Πa(A), Π0(A) ⊆ Π(A) ⊆ Πa(A),

where the reverse inclusions generally fail (see [1, 23, 25, 30? ]). A ∈ B(X ) is isoloid (finitely isoloid)
if points λ ∈ isoσ(A) are eigenvalues (resp., finite multiplicity eigenevalues) of A; A is a-isoloid (finitely
a-isoloid) if points λ ∈ isoσa(A) are eigenvalues (resp., finite multiplicity eigenvalues) of A. It is clear that
A is polaroid implies A is isoloid and A is left polaroid implies A is a-isoloid (where the reverse implications
are, in general, false). Recall from [6] that perturbation by commuting Riesz operators preserves SVEP at
points. The left polaroid and polaroid properties do not survive perturbation by commuting Riesz operators:
The 0 operator is polaroid but its perturbation A = 0 + R by the non-nilpotent quasinilpotent operator
R(x1, x2, x3, ...) = (x2

2 , x3

3 , ...) is neither left polaroid nor polaroid. However:

Proposition 3.1. If a Riesz operator R ∈ B(X ) is such that [A,R] = 0 and isoσa(A + R) = isoσa(A) for
an operator A ∈ B(X ), then Πa

0(A+R) = Πa
0(A) and Π0(A+R) = Π0(A).

Proof. We have:

Πa
0(A+R) = {λ ∈ isoσa(A+R) : λ ∈ σaw(A+R)C}

= {λ ∈ isoσa(A) : λ ∈ σaw(A)
C} = Πa

0(A)

and

Π0(A+R) = {λ ∈ isoσ(A+R) : λ ∈ σw(A+R)C}
= {λ ∈ isoσa(A+R) : λ ∈ σaw(A+R)C , (A+R)∗ has SVEP at λ}
= {λ ∈ isoσa(A) : λ ∈ σaw(A)

C , A∗ has SVEP at λ}
= {λ ∈ σ(A) : λ ∈ σw(A)

C} = Π0(A).

This completes the proof.

Proposition 3.1 is an improved version of [18, Proposition 3.1].

The hypothesis A is finitely left polaroid (resp., finitely polaroid) implies isoσa(A)∩ isoσaw(A) = ∅ (resp.,
isoσ(A)∩ isoσw(A) = ∅); hence, if A is finitely left polaroid (resp., finitely polaroid), then Πa

0(A)\Πa
0(A+R)

is contained in the resolvent ρa(A + R) (resp., Π0(A) \ Π0(A+R) is contained in the resolvent ρ(A + R))
of A + R (for every Riesz operator R commuting with A). A sufficient condition for A and A + R, R a
Riesz operator commuting with A, to be finitely left polaroid (resp., finitely polaroid) is that isoσaw(A) = ∅
(resp., isoσw(A) = ∅). Indeed a stronger result is possible in the case in which isoσaw(A) = ∅.

Since λ ∈ σaw(A) \ σuBw(A) if and only if λ ∈ σaw(A) and A − λ is upper semi B-Fredhom with
ind(A − λ) ≤ 0, there exists an ϵ > 0 such that A − µ is upper semi-Fredholm of ind(A − µ) ≤ 0 for all
0 < |µ−λ| < ϵ [22], i.e., µ ∈ σaw(A)

C for all 0 < |µ−λ| < ϵ. If we now let Φiso
uBw(A) = {λ ∈ isoσaw(A) : λ /∈

σuBw(A)}, then σaw \ σuBw(A) = Φiso
uBw(A), equivalently

σaw(A) = σuBw(A) ∪ Φiso
uBw(A).
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(Berkani and Zariouh, [13], have observed that σaw(A) \ σuBw(A) ⊆ isoσaw(A), equivalently σaw(A) ⊆
σuBw(A) ∪ isoσaw(A). We note here that the inclusion may be proper, as follows from a consideration of
the operator 0⊕R of the example above.) A similar argument proves that

σw(A) = σBw(A) ∪ Φiso
Bw(A),

where Φiso
Bw(A) = {λ ∈ isoσw(A) : λ /∈ σBw(A)}.

Proposition 3.2. If A,R ∈ B(X ), where R is Riesz, [A,R] = 0 and isoσa(A) = isoσa(A + R), then a
necessary and sufficient condition for Πa(A+R) = Πa(A), and a sufficient condition for Π(A+R) = Π(A),
is that Φiso

uBw(A) = Φiso
uBw(A+R).

Proof. Sufficiency. If Φiso
uBw(A) = Φiso

uBw(A+R), then

Πa(A) = {λ ∈ isoσa(A) : λ ∈ ΦuBw(A)}
= {λ ∈ isoσa(A) : λ ∈ σaw(A)

C ∪ Φiso
uBw(A),A has SVEP at λ}

= {λ ∈ isoσa(A) : λ ∈ σaw(A + R)C ∪ Φiso
uBw(A),A has SVEP at λ}

= {λ ∈ isoσa(A + R) : λ ∈ σaw(A + R)C ∪ Φiso
uBw(A + R),A+R has SVEP at λ}

= {λ ∈ isoσa(A + R) : λ ∈ σuBw(A + R)C} ⊆ Πa(A + R),

and (arguing similarly)

Πa(A+R) = {λ ∈ isoσa(A + R) : λ ∈ ΦuBw(A + R)}
= {λ ∈ σa(A) : λ ∈ σaw(A)C ∪ Φiso

uBw(A), A has SVEP at λ}
= {λ ∈ isoσa(A) : λ ∈ ΦuBw(A)} ⊆ Πa(A).

Thus the condition is sufficient for Πa(A+R) = Πa(A). The proof of the sufficiency for Π(A+R) = Π(A)
follows from the following argument:

Π(A) = {λ ∈ isoσ(A) : λ ∈ σBw(A)
C}

⊆ {λ ∈ isoσ(A) : λ ∈ ΦuBw(A),A and A∗ have SVEP at λ}
= {λ ∈ isoσa(A) : λ ∈ σaw(A)

C ∪ Φiso
uBw(A),A and A∗ have SVEP at λ}

= {λ ∈ isoσa(A + R) : λ ∈ σaw(A + R)C ∪ Φiso
uBw(A + R),A+R and (A + R)∗

have SVEP at λ}
= {λ ∈ isoσ(A + R) : λ ∈ ΦuBw(A + R),A+R and (A + R)∗ have SVEP at λ}
= {λ ∈ isoσa(A + R) : λ ∈ ΦBw(A + R)} ⊆ Π(A + R);

arguing similarly, Π(A+R) ⊆ Π(A) (and the proof of the sufficiency is complete).

Necessity. Given isoσa(A + R) = isoσa(A), since Πa(A) = Πa(A+R) if and only if

{λ : λ ∈ ΦuBw(A) \ ΦuBw(A+R), A (hence also A+R) has SVEP at λ} = ∅,

we must have

∅ = {σaw(A)C ∪ Φiso
uBw(A)} ∩ {σaw(A+R) ∩ Φiso

uBw(A+R)C}
= {σaw(A)C ∪ Φiso

uBw(A)} ∩ {σaw(A) ∩ Φiso
uBw(A+R)C}

= {Φiso
uBw(A) ∩ σaw(A)} ∩ Φiso

uBw(A+R)C}
= Φiso

uBw(A) \ Φiso
uBw(A+R),

i.e., Φiso
uBw(A) = Φiso

uBw(A+R).

Recall from [18, Proposition 3.3] that the polaroid and the left polaroid properties for an operator
A ∈ B(X ) survive perturbation by commuting finite rank perturbations F ∈ B(X ) such that isoσa(A+F ) =
isoσa(A). The following proposition says a bit more.
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Proposition 3.3. Let A,F ∈ B(X ), where [A,F ] = 0. If Fn is finite rank for some integer n > 0 and
isoσa(A) = isoσa(A+ F ), then Πa(A+ F ) = Πa(A) (resp., Π(A+ F ) = Π(A)).

Proof. Recall from [9] that the semi B-Fredholm spectrum of an operator is stable under finite rank pertur-
bations. Since σa(A) = σa(A+R) and

λ ∈ Πa(A+ F ) ⇐⇒ λ ∈ isoσa(A+ F ) ∩ σuBw(A+ F )C

⇐⇒ λ ∈ isoσa(A+ F ) ∩ σuBe(A+ F )C ⇐⇒ λ ∈ isoσa(A) ∩ σuBe(A)
C

⇐⇒ λ ∈ isoσa(A) ∩ σuBw(A)C ⇐⇒ λ ∈ Πa(a),

Πa(A + F ) = Πa(A). Since isoσa(A) = isoσa(A + F ) implies σ(A + F ) = σ(A), a similar argument proves
Π(A+ F ) = Π(A).

The proposition implies in particular that if N ∈ B(X ) is a nilpotent operator which commutes with A ∈
B(X ), then Πa(A+N) = Πa(A) and Π(A+N) = Π(A). We observe here that the Proposition 3.3 does not
extend to commuting quasinilpotents [13].

4.. Variations on Browder’s Theorem: Equivalences

The a-Browder and a-Weyl theorems are obtained from (their classical counterparts) Browder and Weyl
theorems σ(A)∩σw(A)

C = Π0(A) and σ(A)∩σw(A)
C = E0(A) by replacing σ(A) by σa(A), σw(A) by σaw(A),

Π0(A) by Πa
0(A) and E0(A) by Ea

0 (A); similarly, the generalized versions of the Browder and Weyl theorems
(resp., the a-generalized versions of the Browder and Weyl theorems) are obtained upon replacing σw(A),
Π0(A) and E0(A) by σBw(A), Π(A) and E(A) (resp., σaw(A), Π

a
0(A) and Ea

0 (A) by σuBw(A), Π
a(A) and

Ea(A)). A number of further variations, obtained by making other suitably meaningful choices, have been
considered in the recent past (see [2, 3, 5, 7, 11, 12, 14, 29] for a flavour of the type of variations considered).
Prominent amongst the variations to Browder type theorems that have attracted some attention are the
properties (b), (ab), (gb) and (gab). We say that an operator A ∈ B(X ) satisfies property:

(b) if σa(A) ∩ σaw(A)
C = Π0(A), equivalently A ∈ (a−Bt),Πa

0(A) = Π0(A);

(gb) if σa(A) ∩ σaBw(A)
C = Π(A), equivalently A ∈ (a− gBt),Πa(A) = Π(A);

(ab) if σ(A) ∩ σw(A)C = Πa
0(A), equivalently A ∈ (Bt),Π0(A) = Πa

0(A);

(gab) if σ(A) ∩ σBw(A)
C = Πa(A), equivalently A ∈ (gBt),Π(A) = Πa(A).

It is clear from the definitions above that

(gb) =⇒ (b) =⇒ (ab), (gb) =⇒ (gab) =⇒ (ab)

{(b) =⇒ (gb)} ⇐⇒ {Πa
0(A) = Π0(A)}, {(ab) =⇒ (gab)} ⇐⇒ {Πa(A) = Π(A)}.

The operator A = U ⊕ 0 ∈ B(H ⊕H), where U is the forward unilateral shift, satisfies A ∈ (ab) ∧ (b) and
A /∈ (gab) ∨ (gb) (for the reason that σ(A) = σw(A) = D, σa(A) = σaw(A) = ∂D ∪ {0}, Π0(A) = Πa

0(A) =
∅ = Π(A) and Πa(A) = {0}). Observe that A∗ does not have SVEP on σaw(A)

C ∩ σw(A) = {0}.

For an operator A ∈ B(X ), let Π∞(A) (resp., Πa
∞(A)) denote the set Π∞(A) = Π(A) \Π0(A) of infinite

rank poles (resp., the set Πa
∞(A) = Πa(A)\Πa

0(A) of infinite rank left poles) of A; let E∞(A) (resp., Ea
∞(A))

denote the set E∞(A) = E(A) \ E0(A) of infinite multiplicity eigenvalues of A which are isolated points of
σ(A) (resp., denote the set Ea

∞(A) = Ea(A) \ Ea
0 (A) of infinite multiplicity eigenvalues of A which are

isolated points of σa(A)).

Proposition 4.1. Given an operator A ∈ B(X ),

(i) {A ∈ (b) ⇐⇒ A ∈ (ab)} ∨ {A ∈ (gb) ⇐⇒ A ∈ (gab)} ⇐⇒ {A has SVEP on σaw(A)
C ∩ σw(A)}.

Furthermore,



B. P. Duggal / FAAC 9 (2) (2017), 37–62 44

(ii) A ∈ (ab) =⇒ A ∈ (gab) if and only if Πa
∞(A) ∩ σBw(A) = ∅, and A ∈ (b) =⇒ (gb) if and only if

Πa
∞(A) ∩ σuBw(A) = ∅.

Proof. (i). The proof for both the implications being similar, we prove

{A ∈ (gab) ⇐⇒ A ∈ (gb)} ⇐⇒ {A has SVEP on σaw(A)C ∩ σw(A)}.

As remarked upon above (gb) =⇒ (gab) (no additional hypotheses required); to complete the proof, we
prove

{A ∈ (gab) =⇒ A ∈ (gb)} ⇐⇒ {A has SVEP on σaw(A)
C ∩ σw(A)}.

Since A ∈ (gab) implies A ∈ (gBt), hence A ∈ (Bt), and since A ∈ (Bt) if and only if A has SVEP on
σw(A)

C , A has SVEP on σaw(A)
C if and only if A has SVEP on

σaw(A)
C \ σw(A)

C = σaw(A)
C ∩ σw(A).

Noticing that already Πa(A) = Π(A) (given A ∈ (gab)), the proof follows since A ∈ (a − Bt) (hence
A ∈ (a− gBt)) if and only if A has SVEP on σaw(A)

C .

(ii). We argue:

A ∈ (ab) ⇐⇒ A ∈ (Bt),Π0(A) = Πa
0(A) ⇐⇒ A ∈ (gBt),Π0(A) = Πa

0(A)

=⇒ A ∈ (gBt),Π(A) = Πa(A)

if and only if

Πa(A) \Π(A) = {Πa(A) ∩ σ(A)C} ∪ {Πa(A) ∩ σBw(A)} = Πa(A) ∩ σBw(A)

= {Πa
0(A) ∩ σBw(A)} ∪ {Πa

∞(A) ∩ σBw(A)}
= Πa

∞(A) ∩ σBw(A) (since Πa
0(A) ∩ σBw(A) ⊆ Πa

0(A) ∩ σw(A) = ∅)
= ∅

and

A ∈ (b) ⇐⇒ A ∈ (a−Bt),Π0(A) = Πa
0(A) ⇐⇒ A ∈ a− (gBt),Π0(A) = Πa

0(A)

=⇒ A ∈ (a− gBt),Π(A) = Πa(A)

if and only if

Πa(A) \Π(A) = {Πa(A) ∩ σ(A)C} ∪ {Πa(A) ∩ σBw(A)} (since A ∈ (a− gBt) =⇒ A ∈ (gBt))

= Πa(A) ∩ σBw(A) = {Πa
0(A) ∩ σBw(A)} ∪ {Πa

∞(A) ∩ σBw(A)}
= Πa

∞(A) ∩ σBw(A) (since Πa
0(A) ∩ σBw(A) ⊆ Π0(A) ∩ σBw(A) = ∅)

= ∅.

This completes the proof.

It is immediate from Proposition 4.1 that a sufficient condition for {A ∈ (ab) =⇒ A ∈ (b)} ∨ {A ∈
(gab) =⇒ A ∈ (gb)} is that isoσa(A) ∩ σw(A) = ∅, and a sufficient condition for A ∈ (ab) =⇒ A ∈ (gab)
(resp., A ∈ (b) =⇒ (gb)) is that Πa(A) ∩ σBw(A) = ∅ ( resp., Πa(A) ∩ σuBw(A) = ∅).
Commuting Riesz perturbations preserve Browder’s theorems (all four varieties) [18] and the Browder and
Weyl spectra (both the regular and the approximate regular varieties) [20, 28]. Thus, if A,R ∈ B(X ),
where R is a Riesz operator such that [A,R] = 0, then A ∈ (b) (resp., A ∈ (ab)) implies A + R ∈ (a − Bt)
(resp., A + R ∈ (Bt)). Let A ∈ (b), and let λ ∈ Πa

0(A + R) = isoσa(A + R) ∩ σaw(A + R)C . Then either
λ ∈ σaw(A) or λ /∈ σaw(A). (Here we may assume that λ ∈ σ(A); for if λ is not in σ(A), then A∗ has
SVEP at λ implies (A+R)∗ has SVEP at λ which in turn implies, precisely the implication we are after, i.e.
λ ∈ Π0(A + R).) If λ ∈ σaw(A), then λ ∈ σaw(A + R) implies λ /∈ σaw(A + R)C , which is a contradiction.
Hence λ ∈ σaw(A)C . Since A+R has SVEP at λ implies A has SVEP at λ, λ ∈ Πa

0(A) = Π0(A). Hence A∗,
so also (A+R)∗, has SVEP at λ. Conclusion: Πa

0(A+R) ⊆ Π0(A+R). The reverse inclusion being obvious,
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Πa
0(A+R) = Π0(A+R), and A+R ∈ (b). A similar argument proves that A ∈ (ab) implies A+R ∈ (ab).

Thus:

Proposition 4.2. Given A,R ∈ B(X ), where R is a Riesz operator such that [A,R] = 0, A ∈ (b) ⇐⇒
A+R ∈ (b) and A ∈ (ab) ⇐⇒ A+R ∈ (ab).

The argument above does not extend to operators satisfying properties (gb) and (gab), as the following
example shows.

Example 4.3. Let A = U ⊕ I ∈ B(ℓ2 ⊕ ℓ2) and R = 0⊕ F ∈ B(ℓ2 ⊕ ℓ2), where U is the forward unilateral
shift and F is the finite rank operator F (x1, x2, x3, · · · ) = (−x1

2 , 0, 0, · · · ). Then

σ(A) = σw(A) = σBw(A) = D, σa(A) = σaw(A) = σuBw(A) = ∂D,Π(A) = Πa(A) = ∅

and A ∈ (gb), σ(A+R) = D, σa(A+R) = ∂D ∪ {1
2
}, σw(A+R) = σBw(A+R) = D,

σaw(A+R) = σuBw(A+R) = ∂D,Π(A+R) = ∅,Πa(A+R) = {1
2
}, A+R ∈ (gBt)

and A+R /∈ (gb).

Observe that isoσa(A) = ∅, σa(A+R) has an isolated point, and Πa
0(A+R) ̸= Π0(A+R).

Consider A ∈ (gb). Then A ∈ (a − gBt) and Πa(A) = Π(A). If R ∈ B(X ) is a Riesz operator
which commutes with A, then A + R ∈ (a − gBt) and (A + R)∗ has SVEP on Πa(A). Assume now that
isoσa(A) = isoσa(A + R) and Φiso

uBw(A) = Φiso
uBw(A + R). Then, see Proposition 3.2, Πa(A) = Πa(A + R),

and hence (A+R)∗ has SVEP on Πa(A+R). Thus Πa(A+R) = Π(A+R) and A+R ∈ (gb).

Proposition 4.4. Given operators A,R ∈ B(X ) such that R is a Riesz operator which commutes with A,
if isoσa(A) = isoσa(A + R) and Φiso

uBw(A) = Φiso
uBw(A+R), then

A ∈ (gb) ⇐⇒ A+R ∈ (gb), and A ∈ (gab) ⇐⇒ A+R ∈ (gab).

Proof. We have already seen that A ∈ (gb) implies A+R ∈ (gb). If, instead, A ∈ (gab), then A ∈ (gBt) and
Π(A) = Πa(A). Since the hypotheses imply Πa(A) = Πa(A + R) and Π(A) = Π(A + R), see Proposition
3.2, (A+ R) ∈ (gab). Since the reverse implication in either of the cases follows by symmetry, the proof is
complete.

A couple of variations of Weyl’s theorem which have attracted some attention vis-a-vis variations of
Browder’s theorem are the properties (w) and (gw), where A ∈ B(X ) satisfies

property (w) if σa(A) ∩ σaw(A)C = E0(A), equivalently A ∈ (a−Bt),Π0(A) = Πa
0(A) = E0(A);

property (gw) if σa(A) ∩ σuBw(A)
C = E(A), equivalently A ∈ (a− gBt),Π(A) = Πa(A) = E(A).

Evidently, property (w) implies both properties (ab) and (b), and property (gw) implies both properties
(gab) and (gb). Just as evidently, the reverse implications fail.

Theorem 4.5. Given A ∈ B(X ):

(a) {A ∈ (b) ⇐⇒ A ∈ (w)} ⇐⇒ {E0(A) ∩ σaw(A) = ∅}.
(b) {A ∈ (gb) ⇐⇒ A ∈ (gw)} ⇐⇒ {E(A) ∩ σuBw(A) = ∅}.
(c)(i) A ∈ (w) =⇒ A ∈ (ab), (ii) {A ∈ (ab) ∧ A∗ has SVEP on σaw(A)

C ∩ σw(A)} =⇒ A ∈ (b), (iii)
{A ∈ (b) ∧ (E0(A) ∩ σaw(A) = ∅} =⇒ A ∈ (w).

(d)(i) A ∈ (gw) =⇒ A ∈ (gab), (ii) A ∈ {(gab) ∧ A∗ has SVEP on σaw(A)
C ∩ σw(A)} =⇒ A ∈ (gb), (iii)

{A ∈ (gb) ∧ (E(A) ∩ σuBw(A) = ∅)} =⇒ A ∈ (gw).
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Proof. (a). Property (w) implies property (b) (without further additional hypothses). For the reverse
implication, we observe from A ∈ (b) that A ∈ (a−Bt) and Πa

0(A) = Π0(A). Hence, since Π0(A) ⊆ E0(A),
A ∈ (b) implies A ∈ (w) if and only if E0(A) \Πa

0(A) = ∅, i.e., if and only if

∅ = E0(A) ∩ {σa(A) ∩ σaw(A)
C}C

= {E0(A) ∩ σa(A)
C} ∪ {E0(A) ∩ σaw(A)}

= E0(A) ∩ σaw(A).

(b). The proof of the equivalence here is similar to that for the equivalence of part (a); the equivalence holds
if and only if

∅ = E(A) \Πa(A) = E(A) ∩ {σa(A) ∩ σuBw(A)
C}C

= {E(A) ∩ σa(A)
C} ∪ {E(A) ∩ σuBw(A)}

= E(A) ∩ σuBw(A).

(c). The implication (w) =⇒ (ab) is evident. If A ∈ (ab), then A ∈ (Bt) and A∗ has SVEP on σw(A)
C . If

we now assume that A∗ has SVEP on σaw(A)
C ∩ σw(A), then A∗ has SVEP on

σaw(A)
C = σw(A)C ∪ {σaw(A)

C \ σw(A)C}
= σw(A)C ∪ {σaw(A)

C ∩ σw(A)}.

Consequently, σaw(A)
C = σw(A)C . Hence, since

Πa
0(A) = σ(A) ∩ σw(A)C = σa(A) ∩ σw(A)C = σa(A) ∩ σaw(A)

C

and Πa
0(A) = Π0(A), A ∈ (b). Consider now A ∈ (b) ∧ {E0(A) ∩ σaw(A) = ∅}. We have:

E0(A) \Π0(A) = E0(A) \Πa
0(A) = E0(A) ∩ {σa(A) ∩ σaw(A)C}C

= {E0(A) ∩ σa(A)
C} ∪ {E0(A) ∩ σaw(A)}

= E0(A) ∩ σaw(A) = ∅,

i.e., Π0(A) = E0(A). Hence A ∈ (w).

(d). The implication (gw) =⇒ (gab) is evident; the proof of the remaining implications being similar to that
of the implications in part (c), we shall be brief. Since

A ∈ (gab) =⇒ A ∈ (gBt),Πa(A) = Π(A) ⇐⇒ A ∈ (Bt),Πa(A) = Π(A),

the hypothesis A∗ has SVEP on σaw(A)
C ∩ σw(A) implies A∗ has SVEP on σaw(A)

C . Hence, as seen above,

A ∈ (a−Bt),Πa(A) = Π(A) ⇐⇒ A ∈ (a− gBt),Πa(A) = Π(A) ⇐⇒ A ∈ (gb).

The proof now follows since E(A) = Π(A) if and only if E(A) ∩ σuBw(A) = ∅.

5.. Weyl’s Theorems: Equivalences.

It is well known that if either of A and A∗ has SVEP, then A satisfies (all four versions of) Browder’s
theorem. A necessary and sufficient condition for A ∈ (Bt) and A ∈ (gBt) (resp., A ∈ (a − Bt) and
A ∈ (a− gBt)) is that A has SVEP on σw(A)

C (resp., σaw(A)
C) [1, 8, 17].

Let, for an operator A ∈ B(X ), Ex
∞(A) = {λ ∈ isoσx(A) : α(A− λ) = ∞}, σx = σ or σa.

Theorem 5.1. (A). A ∈ (gWt) =⇒ A ∈ (Wt) and the reverse implication A ∈ (Wt) =⇒ A ∈ (gWt) holds
if and only if E∞(A) ∩ isoσBw(A) = ∅.

(B). A ∈ (a−Wt) =⇒ A ∈ (Wt) and the reverse implication A ∈ (Wt) =⇒ A ∈ (a−Wt) holds if and
only if Ea

0 (A) ∩ isoσw(A) = ∅.
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(C). A ∈ (a− gWt) =⇒ A ∈ (gWt) and the reverse implication A ∈ (gWt) =⇒ A ∈ (a− gWt) holds if
and only if Ea

∞(A) ∩ isoσBw(A) = ∅.
(D). A ∈ (a − gWt) =⇒ A ∈ (a − Wt) and the reverse implication A ∈ (a − Wt) =⇒ A ∈ (a − gWt)

holds if and only if Ea
∞(A) ∩ isoσuBw(A) = ∅.

Proof. (A). The forward implication (is well known) and follows from

A ∈ (gWt) ⇐⇒ A ∈ (gBt), E(A) ∩ σBw(A) = ∅
⇐⇒ A ∈ (Bt), E(A) ∩ σBw(A) = ∅
=⇒ A ∈ (Bt), E0(A) ∩ σBw(A) = ∅
⇐⇒ A ∈ (Bt), E0(A) ∩ σw(A) = ∅ ⇐⇒ A ∈ (Wt),

since

E0(A) ∩ σw(A) = {E0(A) ∩ σBw(A)} ∪ {E0(A) ∩ (σw(A) \ σBw(A))}
= E0(A) ∩ (σw(A) \ σBw(A))

(since E0(A) ∩ σBw(A) = ∅)
= (E0(A) ∩ σBw(A)C) ∩ σw(A)

⊆ Π0(A) ∩ σw(A) = ∅.

Conversely,

A ∈ (Wt) ⇐⇒ A ∈ (Bt), E0(A) ∩ σw(A) = ∅
⇐⇒ A ∈ (gBt), E0(A) ∩ σw(A) = ∅.

Thus

A ∈ (Wt) =⇒ A ∈ (gBt), E(A) ∩ σBw(A) = ∅ ⇐⇒ A ∈ (gWt)

if and only if

E(A) ∩ σBw(A) = {E0(A) ∩ σBw(A)} ∪ {E∞(A) ∩ σBw(A)}
= E∞(A) ∩ σBw(A) (since E0(A) ∩ σBw(A) ⊆ E0(A) ∩ σw(A) = ∅)
= ∅.

(B). The forward implication (once again, is well known and) follows from

A ∈ (a−Wt) ⇐⇒ A ∈ (a−Bt), Ea
0 (A) ∩ σaw(A) = ∅

=⇒ A ∈ (Bt), Ea
0 (A) ∩ σaw(A) = ∅

=⇒ A ∈ (Bt), E0(A) ∩ σaw(A) = ∅
⇐⇒ A ∈ (Bt), E0(A) ∩ σw(A) = ∅,

since

E0(A) ∩ σw(A) = {E0(A) ∩ σaw(A)} ∪ {E0(A) ∩ (σw(A) \ σaw(A))}
= E0(A) ∩ (σw(A) \ σaw(A))

(since E0(A) ∩ σaw(A) = ∅)
= {E0(A) ∩ σaw(A)

C} ∩ σw(A)

⊆ Π0(A) ∩ σw(A) = ∅.

Conversely, if A ∈ (Wt) (equivalently, σ(A) ∩ σw(A)
C = Π0(A) = E0(A)), then

Ea
0 (A) \ E0(A) = {Ea

0 (A) ∩ σ(A)C} ∪ {Ea
0 (A) ∩ σw(A)} = Ea

0 (A) ∩ σw(A)
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and Ea
0 (A) = E0(A) if and only if Ea

0 (A) ∩ σw(A) = ∅. (Similarly, Πa
0(A) = Π0(A) if and only if Πa

0(A) ∩
σw(A) = ∅.) Hence

A ∈ (Wt) ⇐⇒ σ(A) ∩ σw(A)C = Π0(A) = E0(A)

=⇒ σ(A) ∩ σw(A)C = Π0(A) = Ea
0 (A)

if and only if Ea
0 (A) ∩ σw(A) = ∅. It is clear from E0(A) = Ea

0 (A) that A
∗ has SVEP on Ea

0 (A). Since the
equivalence λ ∈ σw(A)

C ⇐⇒ λ ∈ σaw(A)
C holds if and only if A∗ has SVEP at λ, we have:

A ∈ (Wt) =⇒ σa(A) ∩ σaw(A)C = Ea
0 (A) ⇐⇒ A ∈ (a−Wt)

if and only if Ea
0 (A) ∩ σw(A) = ∅.

(C). The implication A ∈ (a− gWt) =⇒ A ∈ (gWt) (again, well known) follows from

A ∈ (a− gWt) ⇐⇒ A ∈ (a− gBt), Ea(A) ∩ σuBw(A) = ∅
=⇒ A ∈ (gBt), Ea(A) ∩ σuBw(A) = ∅
=⇒ A ∈ (gBt), E(A) ∩ σuBw(A) = ∅

(since E(A) ∩ σuBw(A) ⊆ Ea(A) ∩ σuBw(A))

=⇒ A ∈ (gBt), E(A) ∩ σBw(A) = ∅ (⇐⇒ A ∈ (gWt)),

since

E(A) ∩ σBw(A) = {E(A) ∩ σuBw(A)} ∪ {E(A) ∩ (σBw(A) \ σuBw(A))}
= E(A) ∩ (σBw(A) \ σuBw(A))

= {E(A) ∩ σuBW (A)C} ∩ σBw(A)

= Π(A) ∩ σBw(A) = ∅.

For the reverse implication, we start by observing that if A ∈ (gWt) (equivalently, if σ(A) ∩ σBw(A)
C
=

Π(A) = E(A)), then

Ea(A) \ E(A) = {Ea(A) ∩ σ(A)C} ∪ {Ea(A) ∩ σBw(A)} = Ea(A) ∩ σBw(A)

implies

Ea(A) = E(A) ⇐⇒ Ea(A) ∩ σBw(A) = ∅.

(Similarly, Πa(A) = Π(A) if and only if Πa(A) ∩ σBw(A) = ∅.) Hence

A ∈ (gWt) ⇐⇒ σ(A) ∩ σBw(A) = E(A) = Ea(A)

if and only if Ea(A)∩σBw(A) = ∅. Since E(A) = Ea(A) implies A∗ has SVEP on Ea(A), and the equivalence
λ ∈ σBw(A)

C ⇐⇒ λ ∈ σuBw(A)
C holds if and only if A∗ has SVEP at λ,

A ∈ (gWt) ⇐⇒ σa(A) ∩ σBw(A)C = Ea(A), E(A) = Ea(A) = Π(A) = Πa(A)

=⇒ σa(A) ∩ σuBw(A)C = Ea(A)(⇐⇒ A ∈ (a− gWt))

if and only if Ea(A) ∩ σBw(A) = ∅.
(D).The forward implication A ∈ (a− gWt) =⇒ A ∈ (a−Wt) (again, well known) follows from

A ∈ (a− gWt) ⇐⇒ A ∈ (a− gBt), Ea(A) ∩ σuBw(A) = ∅
=⇒ A ∈ (a−Bt), Ea(A) ∩ σuBw(A) = ∅
=⇒ A ∈ (a−Bt), Ea

0 (A) ∩ σaw(A) = ∅ (⇐⇒ A ∈ (a−Wt)),
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since

Ea
0 (A) ∩ σaw(A) = {Ea

0 (A) ∩ σuBw(A)} ∪ {Ea
0 (A) ∩ (σaw(A) \ σuBw(A))}

= Ea
0 (A) ∩ (σaw(A) \ σuBw(A))

= {E(A) ∩ σuBW (A)C} ∩ σaw(A)

= Πa
0(A) ∩ σaw(A) = ∅.

For the reverse implication, we argue

A ∈ (a−Wt) ⇐⇒ A ∈ (a−Bt), Ea
0 (A) ∩ σaw(A) = ∅

⇐⇒ A ∈ (a− gBt), Ea
0 (A) ∩ σaw(A) = ∅

=⇒ A ∈ (a− gBt), Ea(A) ∩ σuBw(A) = ∅(⇐⇒ A ∈ (a− gWt))

if and only if

Ea(A) ∩ σuBw(A) = {Ea
0 (A) ∩ σuBw(A)} ∪ {Ea

∞(A) ∩ σuBw(A)}
= Ea

∞(A) ∩ σuBw(A)

(sinceEa
0 (A) ∩ σuBw(A) ⊆ Ea

0 (A) ∩ σaw(A) = ∅)
= ∅.

This completes the proof.

The following well known corollaries [1, 16, 17, 27? ] demonstrate instances of operators satisfying the
hypotheses of Theorem 5.1.

Corollary 5.2. A sufficient condition for A ∈ B(X ) to satisfy:

(A). A ∈ (Wt) =⇒ A ∈ (gWt) is that A is polaroid.

(B). A ∈ (Wt) =⇒ A ∈ (a−Wt) is that A is a-polaroid.

(C). A ∈ (gWt) =⇒ A ∈ (a− gWt) is that A is a-polaroid.

(D). A ∈ (a−Wt) =⇒ A ∈ (a− gWt) is that A is left- polaroid.

Proof. (A). The hypothesis A ∈ (Wt) implies

A ∈ (Bt) ⇐⇒ A ∈ (gBt) ⇐⇒ σ(A) ∩ σBw(A)C = Π(A)(⊆ E(A)).

Since A is polaroid, E(A) ⊆ Π(A) (equivalently, E(A) = Π(A)). Hence A ∈ (gWt).

(B). If A is a-polaroid, then

Ea
0 (A) = Π0(A) ⊆ E0(A) ⊆ Ea

0 (A) =⇒ Ea
0 (A) = Π0(A) = E0(A)

=⇒ {Ea
0 (A) ∩ σw(A) = ∅ ⇐⇒ E0(A) ∩ σw(A) = ∅}.

Hence, A ∈ (Wt) and A is a-polaroid imply

A ∈ (Wt), Ea
0 (A) ∩ σw(A) = ∅ =⇒ A ∈ (a−Wt).

(C). As in the proof of (B) above, if A is a -polaroid, then

Ea(A) = Π(A) ⊆ E(A) ⊆ Ea(A) =⇒ Ea(A) = Π(A) = E(A)

=⇒ {Ea(A) ∩ σw(A) = ∅ =⇒ Ea(A) ∩ σBw(A) = ∅}.
Hence, A ∈ (gWt) and A is a-polaroid imply

A ∈ (gWt), Ea(A) ∩ σuBw(A) = ∅ =⇒ A ∈ (a− gWt).

(D). If A is left polaroid, then Ea(A) = Πa(A). Hence if A ∈ (a−Wt) and is left polaroid, then A ∈ (a−Wt)
and Ea(A) ∩ σuBw(A) = ∅, equivalently A ∈ (a− gWt).
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Remark 5.3. No advantage is to be gained by assuming A is left polaroid (or right polaroid, or even
a-polaroid) in (A) of the Corollary for the reason that A is polaroid at a point in E(A) if and only if it is
left polaroid (resp., right polaroid, a-polaroid) at the point. (An operator A ∈ B(X ) is right polaroid if A∗

is left polaroid.) One may, however, replace the requirement that A is a-polaroid in (B) by A is polaroid at
points in isoσa(A) which are finite multiplicity eigenvalues of A.

Perturbation by commuting Riesz operators Given an A ∈ B(X ) and a Riesz operator R ∈ B(X )
such that [A,R] = AR − RA = 0, a sufficient condition for A ∈ (a − Wt) =⇒ A + R ∈ (a − Wt) and
A ∈ (a − gWt) =⇒ A + R ∈ (a − gWt) is that A is finitely a-isoloid [16, Theorem 4.10]. Since finitely
polaroid operators are finitely isoloid, and finitely a-polaroid operators are finitely a-isoloid, Corollary 5.2
implies:

Corollary 5.4. Given operators A,R ∈ B(X ) with R a Riesz operator which commutes with A, a sufficient
condition for:

(i) A+R ∈ (Wt) =⇒ A+R ∈ (gWt) is that A is finitely polaroid.

(ii) A+ R ∈ (Wt) =⇒ A+ R ∈ (a−Wt) and A+ R ∈ (gWt) =⇒ A+ R ∈ (a− gWt) is that A is finitely
a-polaroid.

(iii) A+R ∈ (Wt) =⇒ A+R ∈ (a− gWt) is that A is finitely left polaroid.

Proof. The proof in all cases is similar: We prove (ii). If A is finitely a-polaroid, then Ea
0 (A)∩ isoσaw(A) ⊆

Π0(A)∩ isoσaw(A) = ∅. Hence, A ∈ (Wt) =⇒ A ∈ (a−Wt). Again, since A is finitely a-polaroid implies A
is (both) finitely isoloid and finitely a-isoloid,

A+R ∈ (Wt) ⇐⇒ A ∈ (Wt) and A+R ∈ (a−Wt) ⇐⇒ A ∈ (a−Wt).

Hence, if A is finitely a-polaroid, then

A+R ∈ (Wt) ⇐⇒ A ∈ (Wt) =⇒ A ∈ (a−Wt) ⇐⇒ A+R ∈ (a−Wt).

6.. Properties (w), (gw) and Weyl type theorems: Equivalences

It is immediate from

A ∈ (w) ⇐⇒ A ∈ (a−Bt),Πa
0(A) = Π0(A) = E0(A), E0(A) ∩ σaw(A) = ∅

and
A ∈ (gw) ⇐⇒ A ∈ (a− gBt),Πa(A) = Π(A) = E(A), E(A) ∩ σuBw(A) = ∅

that
(w) =⇒ (Wt) and (gw) =⇒ (gWt).

(Recall that (a−Bt) =⇒ (Bt) and (a−gBt) =⇒ (gBT ).) Reverse implications do not hold; see example be-
low. Property (w) neither implies nor is implied by (a−Wt). For example, if U ∈ B(ℓ2) is the forward unilat-
eral shift, Q1 and Q2 are the operators Q1(x1, x2, x3, ...) = (x2

2 , x3

3 , ...) and Q2(x1, x2, x3, ...) = (0, x2, x3, ...),
A1 = U ⊕Q1 and A2 = U ⊕Q2, then

σa(A1) = σaw(A1) = ∂D ∪ {0}, E0(A1) = Πa
0(A1) = Π0(A1) = ∅, Ea

0 (A1) = {0},
σa(A2) = ∂D ∪ {0}, σaw(A2) = ∂D, E0(A2) = ∅, Ea

0 (A2) = {0}.

Clealrly,

A1 ∈ (w), A1 /∈ (a−Wt), A2 ∈ (a−Wt) (hence also) A2 ∈ (Wt)), and A2 /∈ (w).
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Similarly (gw) neither implies nor is implied by (a − gWt). The forward implication (gw) =⇒ (w) holds,
as the following argument shows. Since (a − gBt) =⇒ (a − Bt), if A ∈ (gw), then Πa(A) = Π(A) and
Πa

0(A) = Π0(A) (⊆ E0(A)). Let λ ∈ E0(A). Then λ ∈ E(A), with 0 < α(A− λ) < ∞, and A ∈ (gw) imply
λ ∈ σa(A)∩σaw(A)

C . Consequently, E0(A) ⊆ σa(A)∩σaw(A)
C = Πa

0(A) (= Π0(A) ⊆ E0(A)), and A ∈ (w).
The reverse implication fails, as follows from a consideration of the operator A1 above (when it is seen that
σa(A) ∩ σuBw(A)

C = {0} ̸= E(A1)). The following theorem considers the implications (w) ⇐⇒ (a −Wt),
(gw) ⇐⇒ (a− gWt) and (w) =⇒ (gw).

Theorem 6.1. Given A ∈ B(X ):

(i). A ∈ (w) ⇐⇒ A ∈ (a−Wt) if and only if Ea
0 (A) ∩ σw(A) = ∅.

(ii). A ∈ (gw) ⇐⇒ A ∈ (a− gWt) if and only if Ea(A) ∩ σBw(A) = ∅.
(iii). A ∈ (w) =⇒ A ∈ (gw) if and only if E∞(A) ∩ σuBw(A) = ∅.

Proof. (i). If A ∈ (w), then (σa(A) ∩ σaw(A)
C = E0(A), E0(A) = Π0(A) = Πa

0(A), and)

A ∈ (a−Bt) ∧ {Π0(A) = E0(A)} =⇒ A ∈ (Bt) ∧ {Π0(A) = E0(A)} ⇐⇒ A ∈ (Wt).

Hence

A ∈ (a−Wt) ⇐⇒ E0(A) = Ea
0 (A) ⇐⇒ Ea

0 (A) ∩ E0(A)
C = ∅

⇐⇒ {Ea
0 (A) ∩ σ(A)C} ∪ {Ea

0 (A) ∩ σw(A)} = ∅
⇐⇒ Ea

0 (A) ∩ σw(A) = ∅.

Conversely, A ∈ (a−Wt) (implies A ∈ (Wt)) and Ea
0 (A) ∩ σw(A) = ∅ imply

Ea
0 (A) ∩ E0(A)

C = Ea
0 (A) ∩ {σ(A)C ∪ σw(A)}

= Ea
0 (A) ∩ σw(A) = ∅.

Thus, if A ∈ (a−Wt) and Ea
0 (A) ∩ σaw(A) = ∅, then

σa(A) ∩ σaw(A)C = Ea
0 (A) = E0(A) =⇒ A ∈ (w).

(ii). If A ∈ (gw), then (σa(A) ∩ σuBw(A)C = E(A), E(A) = Π(A) = Πa(A), and)

A ∈ (a− gBt) ∧ {Π(A) = E(A)} =⇒ A ∈ (gBt) ∧ {Π(A) = E(A)} ⇐⇒ A ∈ (gWt).

Hence

A ∈ (a− gWt) ⇐⇒ Ea(A) = E(A)

⇐⇒ {Ea(A) ∩ σ(A)C} ∪ {Ea(A) ∩ σBw(A)} = ∅
⇐⇒ Ea(A) ∩ σBw(A) = ∅.

Conversely, A ∈ (a− gWt) (implies A ∈ (gWt)) and Ea(A) ∩ σBw(A) = ∅ imply

Ea(A) ∩ E(A)C = Ea(A) ∩ {σ(A)C ∪ σBw(A)}
= Ea(A) ∩ σBw(A) = ∅.

Thus, if A ∈ (a− gWt) and Ea(A) ∩ σBw(A) = ∅, then

σa(A) ∩ σuBw(A)C = Ea(A) = E(A) ⇐⇒ A ∈ (gw).

(iii). By definition,

A ∈ (w) ⇐⇒ A ∈ (a−Bt), E0(A) = Π0(A) = Πa
0(A)

⇐⇒ A ∈ (a− gBt), E0(A) = Π0(A) = Πa
0(A),
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and

A ∈ (gw) ⇐⇒ A ∈ (a− gBt), E(A) = Π(A) = Πa(A).

Hence a necessary and sufficient condition for A ∈ (w) to imply A ∈ (gw) is that E(A) = Πa(A). Since

E(A) \Πa(A) = {E(A) ∩ σa(A)
C} ∪ {E(A) ∩ σuBw(A)}

(A ∈ (w) =⇒ A ∈ (a− gBt))

= E(A) ∩ σuBw(A) = {E0(A) ∩ σuBw(A)} ∪ {E∞(A) ∩ σuBw(A)}
= E∞(A) ∩ σuBw(A) (A ∈ (w) =⇒ E0(A) ∩ σuBw(A) = ∅),

it follows that our necessary and sufficient condition reduces to E∞(A) ∩ σuBw(A) = ∅.

Theorem 6.1 has a number of consequences, amongst them the following corollary from [? , Corollary 3.8].

Corollary 6.2. A sufficient condition for the equivalences

A ∈ (w) ⇐⇒ A ∈ (gw) ⇐⇒ A ∈ (a− gWt) ⇐⇒ A ∈ (a−Wt)

is that A is a-polaroid.

Proof. If A is a-polaroid, then

λ ∈ Ea(A) =⇒ λ ∈ Π(A), λ ∈ Ea
0 (A) =⇒ λ ∈ Π0(A).

Hence
E(A) ∩ σBw(A) = ∅ = Ea(A) ∩ σBw(A), and

E0(A) ∩ σw(A) = ∅ = Ea
0 (A) ∩ σw(A).

Remark 6.3. The example of the operator A1 above shows that the condition Ea
0 (A)∩σw(A) = ∅ can not be

replaced in Theorem 6.1(i) by E0(A)∩σw(A) = ∅. The same examples shows also that Ea(A)∩σBw(A) = ∅
can not be replaced in (ii) of the theorem by E(A) ∩ σBw(A) = ∅.

7.. Properties (R), (aR) etc. and equivalences

Given an operator A ∈ B(X ), A satisfies property:

(R) if E0(A) = Πa
0(A) (equivalently, E0(A) = σa(A) ∩ σab(A)

C);

(aR) if Ea
0 (A) = Π0(A) (equivalently, E

a
0 (A) = σ(A) ∩ σb(A)

C);

(gR) if E(A) = Πa(A) (equivalently, E(A) = σa(A) ∩ σuBb(A)C);

(agR) if Ea(A) = Π(A) (equivalently, Ea(A) = σ(A) ∩ σBb(A)
C);

(aw) if σ(A) ∩ σw(A)
C = Ea

0 (A);

(gaw) if σ(A) ∩ σBw(A)C = Ea(A);

(Bgw) if σa(A) ∩ σuBw(A)
C = E0(A).

These properties (alongwith a few others which we have chosen not to consider here), and their relation-
ship with various versions of Browder and Weyl type theorems, have been studied in a number of papers in
the recent past; see [4, 18, 29, 33] for further references. We study these properties in the following, concen-
trating upon the role they play in defining equivalences between various versions of the Browder and Weyl
theorems. In the process we obtain a number of previously known results. We start with some observations
(the proofs of which being straight forward are left to the reader). An operator A ∈ B(X ) satisfies:

Property (R) if and only if Πa
0(A) = E0(A) = Π0(A), equivalently, if and only if E0(A) ∩ σaw(A) = ∅. Left

polaroid operators A satisfy (R).
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Property (aR) if and only if Π0(A) = Πa
0(A) = Ea

0 (A), equivalently, if and only if Ea
0 (A) ∩ σw(A) = ∅. A

a-polaroid implies A satisfies (aR).

Property (gR) if and only if E(A) = Π(A) = Πa(A), equivalently if and only if E(A) ∩ σuBw(A) = ∅
(⇐⇒ E(A) ∩ σuBb(A) = ∅). Left polaroid operators A satisfy (gR).

Property (agR) if and only if Ea(A) = Π(A) = Πa(A), equivalently if and only if Ea(A) ∩ σBw(A) = ∅. A
a-polaroid implies A satisfies (agR).

Furthermore:

(aR) =⇒ (R), (agR) =⇒ (gR), (agR) ∧ (gWt) =⇒ (a− gWt), (aR) ∧ (Wt) =⇒ (a−Wt).

The reverse implications in the above, in general, fail: We give here a simple example to show (a −
gWt) ̸=⇒ (agR) ∧ (gWt) and (a − gWt) ̸=⇒ (agR) ∧ (a − Wt) (leaving it for the reader to construct
examples to show that the remaining reverse implication also fail). Let U ∈ B(H) be the forward unilateral
shift and let A = U ⊕ 0 ∈ B(H⊕H). Then

σ(A) = σw(A) = σBw(A) = D, σa(A) = σaw(A) = σuBw(A) = ∂D ∪ {0},
Π(A) = E(A) = ∅,Πa(A) = Ea(A) = {0}, and Πa

0(A) = Ea
0 (A) = ∅.

Clearly,

A ∈ (a−Wt), (gWt) and (a− gWt) but A /∈ (agR).

Theorem 7.1. Operators in B(X ) satisfy the following equivalences:

(I). (aR) ∧ (Wt) ⇐⇒ (a−Wt) ∧ (R), (agR) ∧ (gWt) ⇐⇒ (a− gWt) ∧ (gR) ⇐⇒ (agR) ∧ (Wt).

(II). (gw) ⇐⇒ (w) ∧ (gR) ⇐⇒ (gWt) ∧ (gR) ⇐⇒ (Wt) ∧ (gR) ⇐⇒ (Bt) ∧ (gR) ⇐⇒ (gw) ∧ (R).

(III). (ab) ∧ (R) ⇐⇒ (Wt) ∧ (R) ⇐⇒ (b) ∧ (R).

Proof. (I). Given A ∈ B(X ),

A ∈ (a−Wt) =⇒ A ∈ (Wt) =⇒ E0(A) ∩ σw(A) = ∅;

hence if also A ∈ (R) (so that Ea
0 (A) = E0(A)), then Ea

0 (A) ∩ σw(A) = ∅. Applying Theorem 5.1(B) we
have:

A ∈ (a−Wt) ∧ (R) ⇐⇒ A ∈ (Wt) ∧ (R),Πa
0(A) = Ea

0 (A)

⇐⇒ A ∈ (Wt),Πa
0(A) = Ea

0 (A) = E0(A) = Π0(A)

⇐⇒ A ∈ (Wt) ∧ (aR).

Again, if A ∈ (a − gWt) ∧ (gR), then Ea(A) ∩ σBw(A) = ∅. Hence, applying Theorem 5.1(C) and (B), we
have:

A ∈ (a− gWt) ∧ (gR) ⇐⇒ A ∈ (gWt) ∧ (gR),Πa(A) = Ea(A)

⇐⇒ A ∈ (gWt),Πa(A) = Ea(A) = E(A) = Π(A)

⇐⇒ A ∈ (gWt) ∧ (agR)

and

A ∈ (a− gWt) ∧ (gR) ⇐⇒ A ∈ (Wt) ∧ (gR),Πa(A) = Ea(A)

(since A ∈ (Wt) =⇒ A ∈ (Bt) ⇐⇒ A ∈ (gBt))

⇐⇒ A ∈ (Wt),Πa(A) = Ea(A) = E(A) = Π(A)

⇐⇒ A ∈ (Wt) ∧ (agR).
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(II). The equivalence (Bt) ∧ (gR) ⇐⇒ (gBt) ∧ (gR) is immediate from the equivalence (Bt) ⇐⇒ (gBt).
Given an A ∈ B(X ), we have:

A ∈ (gw) ⇐⇒ A ∈ (a− gBt),Πa(A) = Π(A) = E(A)

⇐⇒ A ∈ (a−Bt),Πa
0(A) = Π0(A) = E0(A),Π

a(A) = E(A)

⇐⇒ A ∈ (w) ∧ (gR)

⇐⇒ A ∈ (Bt),Πa
0(A) = Π0(A) = E0(A),Πa(A) = E(A)(⇐⇒ A ∈ (Bt) ∧ (gR))

⇐⇒ A ∈ (gBt),Πa(A) = Π(A) = E(A)

⇐⇒ A ∈ (gBt) ∧ (gR), A ∈ (gWt) ∧ (gR).

Here the implication A ∈ (Bt) ∧ (gR) =⇒ A ∈ (w) ∧ (gR) follows from Πa(A) = E(A) (implies Πa
0(A) =

E0(A)) and A ∈ (a−Bt) since A has SVEP on

σaw(A)
C = σw(A)C ∪ {σaw(A)

C \ σw(A)C}
= σw(A)C ∪ {σaw(A)

C ∩ {σ(A) ∪Π0(A)}}
= σw(A)C ∪ {{σaw(A)

C ∩ σ(A)C} ∪ {σaw(A)
C ∩Πa

0(A)}}
= σw(A)C ∪ {σaw(A)

C ∩ σ(A)C}.

Again, since A ∈ (gw) implies A ∈ (Bt), and since A ∈ (Bt) (equivalently, A ∈ (gBt)) and Πa(A) = E(A)
together imply A has SVEP on σaw(A)C (see the argument above), A ∈ (a − Bt) ∧ {Πa(A) = E(A)}
(equivalently, A ∈ (a−gBt)∧{Πa(A) = E(A)}. We have A ∈ (Bt)∧{Πa(A) = E(A)} implies A ∈ (gw)∧(R).
Hence

A ∈ (gw) ∧ (R) ⇐⇒ A ∈ (Bt),Πa(A) = E(A) = Π(A)

⇐⇒ A ∈ (Bt) ∧ (gR).

(III). Since

σ(A) ∩ σw(A)
C = Π0(A),Π0(A) = Πa

0(A)

⇐⇒ σa(A) ∩ σaw(A)
C = Π0(A),Π0(A) = Πa

0(A)

(see the argument above, part (II), proving that A ∈ (Bt) and Π0(A) = Πa
0(A) implies A ∈ (a − Bt) and

Π0(A) = Πa
0(A)), we have:

A ∈ (Wt) ∧ (R) ⇐⇒ σ(A) ∩ σw(A)C = E0(A), E0(A) = Πa
0(A)

⇐⇒ σ(A) ∩ σw(A)C = Πa
0(A), E0(A) = Πa

0(A)

⇐⇒ A ∈ (ab) ∧ (R)

⇐⇒ σ(A) ∩ σw(A)C = Π0(A),Π0(A) = E0(A) = Πa
0(A)

⇐⇒ σa(A) ∩ σaw(A)
C = Π0(A), E0(A) = Πa

0(A)

⇐⇒ (b) ∧ (R).

This completes the proof.

Neither of the properties (R), (aR), (gR) and (agR) implies either of the properties (aw), (gaw) and
(Bgw). It is straightforward to see that (aw) implies (Bt), (gaw) implies (gBt) and (Bgw) implies (gBt) (so
that, in particular, all three properties imply (Bt)). Properties (R), (aR), (gR) and (agR) do not, however,
imply (Bt). To see this consider the operator A = U ⊕ U∗, where U ∈ B(H) is the forward unilateral shift,
when it is seen that

σ(A) = σa(A) = D, σw(A) = σaw(A) = ∂D,Π0(A) = Πa
0(A) = Π(A) = Πa(A) = E0(A)

= Ea
0 (A) = E(A) = Ea(A) = ∅, A ∈ (R) ∧ (aR) ∧ (gR) ∧ (agR), A /∈ (aw) ∨ (gaw) ∨ (Bgw).
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The a-polaroid property, λ ∈ isoσa(A) ⇐⇒ λ ∈ Π(A), acts as “an equalizer” for certain pairs of these
properties in the sense that if A is a-polaroid, then:

A ∈ (R) ⇐⇒ E0(A) = Π0(A) = Πa
0(A) = Ea

0 (A) ⇐⇒ A ∈ (aR),

A ∈ (gR) ⇐⇒ E(A) = Π(A) = Πa(A) = Ea(A) ⇐⇒ A ∈ (agR),

and if A is finitely a-polaroid, then

A ∈ (R) ⇐⇒ A ∈ (aR) ⇐⇒ A ∈ (gR) ⇐⇒ A ∈ (agR), A ∈ (aw) ⇐⇒ A ∈ (gaw),

A ∈ (R) ∧ (Bt) ⇐⇒ A ∈ (aR) ∧ (Bt) ⇐⇒ A ∈ (gR) ∧ (Bt) ⇐⇒ A ∈ (agR) ∧ (Bt)

⇐⇒ A ∈ (aw) ⇐⇒ A ∈ (gaw).

The a-polaroid hypothesis can not be replaced by the polaroid hypothesis.Thus

(R) ∧ (polaroid) ̸=⇒ (aR) ∧ (polaroid), (gR) ∧ (polaroid) ̸=⇒ (agR) ∧ (polaroid),

as the following example shows. Let A = U ⊕ Q, where U ∈ B(ℓ2) is the forward unilateral shift and
Q ∈ B(ℓ2) is the quasinilpotent operator Q(x1, x2, x3, · · · ) = (x2

2 , x3

3 , · · · ). Then

isoσ(A) = ∅(=⇒ A is polaroid), E0(A) = Πa
0(A) = ∅ = E(A) = Π(A),

∅ = Π0(A) ̸= Ea
0 (A) = {0}, ∅ = Π(A) ̸= Ea(A) = {0}.

Evidently,
A ∈ (R) ∧ (gR) and A /∈ (aR) ∨ (agR).

Again, since
σ(A) ∩ σw(A)

C = ∅ ≠ {0} and

σ(A) ∩ σBw(A)
C = ∅ ̸= {0} = Ea(A),

it follows that
A /∈ (aw) ∨ (gaw).

Finally, if we define B ∈ B(ℓ2 ⊕ ℓ2) by B = U ⊕ 0, then B is polaroiod, σ(B) ∩ σw(B)C = ∅ = Ea
0 (A) (i.e.,

B ∈ (aw)) and σ(A) ∩ σBw(A)
C = ∅ ̸= Ea(A) = {0} (so that B /∈ (gaw)). B, however, satisfies properties

(aR) and (Bgw).

8.. Perturbation by commuting Riesz operators: Preservation

If A,R ∈ B(X ), R is a Riesz operator and [A,R] = AR − RA = 0, then A (similarly, A∗) has SVEP at
a point if and only if A+R (resp., A∗ +R∗) has SVEP at the point [6], and A+R has the same Weyl and
a-Weyl spectrum as A [28]. The following lemma is a more general version of a known result [27].

Lemma 8.1. Given operators A,R ∈ B(X ), with R a Riesz operator which commutes with A,

Ex(A+R) ∩ σx(A) ⊆ isoσx(A),

where Zx stands for Z or Za (exclusive ’or’).

Proof. The proof in both the cases being similar, we consider Ea(A + R) ∩ σa(A) ⊆ isoσa(A). Take a
λ ∈ Ea(A+ R) ∩ σa(A). Since λ is isolated in σa(A+ R), there exists a deleted neighbourhood Nϵ(λ) of λ
such that µ /∈ σa(A + R) for all µ ∈ Nϵ(λ). The hypothesis λ ∈ σa(A) implies that either λ ∈ accσa(A) or
λ ∈ isoσa(A): We prove that λ /∈ accσa(A). Suppose to the contrary that λ ∈ accσa(A). Then there exists
a sequence {µn} ⊂ Nϵ(λ) ∩ σa(A) converging to λ. Since µn /∈ σa(A + R), µn ∈ σaw(A + R)C , and hence
µn ∈ σaw(A)

C for all natural numbers n. Furthermore, since A+R has SVEP at µn implies A has SVEP at
µn, µn ∈ Πa

0(A) for all n. But then this, by the punctured neighbourhood theorem [1], implies λ ∈ σaw(A)
C ,

and hence (since A has SVEP at λ) λ ∈ Πa
0(A) - a contradiction.
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In the following, we start by considering the preservation of properties (R) and (aR) under perturbation
by commuting Riesz operators. Throughout the following R ∈ B(X ) shall denote a Riesz operator which
commutes with A ∈ B(X ). (Reader be warned that R, on its own- no parentheses, denotes a Riesz operator
and (R) denotes property (R).)

Theorem 8.2. If A ∈ B(X ) is such that isoσa(A + R) = isoσa(A), then:

(I). {A ∈ (R) =⇒ A+R ∈ (R)} ⇐⇒ {E0(A+R) ⊆ σa(A), isoσa(A) ∩ E0(A + R) ⊆ Πa
0(A)}.

(II). {A ∈ (aR) =⇒ A+R ∈ (aR)} ⇐⇒ {Ea
0 (A+R) ⊆ σa(A), isoσa(A) ∩ Ea

0(A + R) ⊆ Πa
0(A)}.

Proof. (I). Since A ∈ (R) if and only if E0(A) = Πa
0(A), the Browder and a-Browder spectra are stable

under perturbation by commuting Riesz operators, and SVEP at points is preserved by commuting Riesz
operators, the hypothesis isoσa(A) = isoσa(A + R) implies (see Proposition 3.1) that

A ∈ (R) ⇐⇒ E0(A) = Πa
0(A) = Πa

0(A+R) = Π0(A+R) = Π0(A).

Evidently, Π0(A+R) ⊆ E0(A+R). Hence A ∈ (R) implies A+R ∈ (R) if and only if

E0(A+R) ⊆ Π0(A+R) = Πa
0(A) = E0(A)

⇐⇒ E0(A+R) ⊆ σ(A), isoσa(A) ∩ E0(A+R) ⊆ Πa
0(A).

(II). The proof here is similar, so we shall be brief. If isoσa(A) = isoσa(A + R), then

A ∈ (aR) ⇐⇒ Ea
0 (A) = Π0(A) = Π0(A+R) = Πa

0(A+R) = Πa
0(A),

and hence

{A ∈ (R) =⇒ A+R ∈ (aR)} ⇐⇒ Ea
0 (A+R) ⊆ Πa

0(A+R) = Πa
0(A) = Ea

0 (A)

⇐⇒ Ea
0 (A+R) ⊆ σa(A), isoσa(A) ∩ Ea

0 (A+R) ⊆ Πa
0(A).

This completes the proof.

Perturbation by a commuting nilpotent N ∈ B(X ) preserves the spectrum, the approximate point spectrum
and the eigenvalues of A. Hence: A ∈ (R) =⇒ A+N ∈ (R) and A ∈ (aR) =⇒ A+ R ∈ (aR). Recall that
σ(A) and σa(A) are also preserved under perturbation by commuting quasinilpotent operators Q ∈ B(X ).
Ensuring isoσa(A) ∩ E0(A + Q) ⊆ Π0(A) (similarly, ensuring isoσa(A) ∩ Ea

0 (A + Q) ⊆ Πa
0(A)) however

requires an additional hypothesis. One such hypothesis is that A is polaroid (resp., left polaroid). More
generally, if isoσw(A) = ∅ (resp., isoσaw(A) = ∅), then

λ ∈ isoσa(A) ∩ E0(A+Q) =⇒ λ ∈ σw(A)
C ∩ E0(A+Q) ⊆ Π0(A)

(resp., λ ∈ isoσa(A) ∩ Ea
0 (A+Q) =⇒ λ ∈ σaw(A)

C ∩ Ea
0 (A+Q) ⊆ Πa

0(A)).

For finite rank operators F ∈ B(X ) (or, operators F ∈ B(X ) such that Fn is finite rank for some natural
number n) such that [A,F ] = 0 and isoσa(A+F ) = isoσa(A), σx(A+F ) = σx(A), σx = σ or σa. Once again,
if A is polaroid then A ∈ (R) =⇒ A+ R ∈ (R), and if A is left polaroid then A ∈ (aR) =⇒ A+ R ∈ (aR).
Putting it altogether, we have:

Corollary 8.3. Given an operator A ∈ B(X ), if:

(a) N ∈ B(X ) is a nilpotent operator such that [A,N ] = 0, then

A ∈ (R) ⇐⇒ A+N ∈ (R), A ∈ (aR) ⇐⇒ A+N ∈ (aR).

(b) Q ∈ B(X ) is a quasinilpotent operator such that [A,Q] = 0, then a sufficient condition for (i) A ∈
(R) ⇐⇒ A + Q ∈ (R) is that isoσw(A) = ∅ and a sufficient condition for A ∈ (aR) ⇐⇒ A + Q ∈ (aR) is
that isoσaw(A) = ∅.
(c) F ∈ B(X ) is a finite rank operator such that [A,F ] = 0 and isoσa(A) = isoσa(A+ F ), then a sufficient
condition for (i) A ∈ (R) ⇐⇒ A+ F ∈ (R) is that isoσw(A) = ∅ and for (ii) A ∈ (aR) ⇐⇒ A+ F ∈ (aR)
is that isoσaw(A) = ∅.
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The hypothesis isoσaw(A) = ∅ for an operator A ∈ B(X ) implies λ ∈ σaw(A)
C for λ ∈ isoσa(A); hence,

since A has SVEP at all such λ, λ ∈ Πa
0(A). Thus, if λ ∈ E0(A) for an operator A ∈ B(X ) such that

isoσaw(A) = ∅, then (A∗ has SVEP at λ, therefore) λ ∈ Π0(A), and hence for A to satisfy A ∈ (R) we must
have Π0(A) = Πa

0(A). (Observe that whereas Π0(A) ⊆ E0(A), we do not in general have Πa
0(A) ⊆ E0(A).)

The following theorem shows that the hypothesis isoσaw(A) = ∅ is sufficient for the implication A ∈ (R)
implies A+R ∈ (R) for commuting Riesz operators R ssuch that isoσa(A) = isoσa(A + R).

Theorem 8.4. Given operators A,R ∈ B(X ) such that R is a Riesz operator, [A,R] = 0 and isoσa(A) =
isoσa(A + R), if:

(i). isoσw(A) = ∅, then A ∈ (R) ⇐⇒ A+R ∈ (R).

(ii). isoσaw(A) = ∅, then A ∈ (aR) ⇐⇒ A+R ∈ (aR).

Proof. (i). Given a λ ∈ E0(A+R), either λ ∈ σ(A) or λ /∈ σ(A). If λ ∈ σ(A), then λ ∈ E0(A+R)∩σ(A) ⊆
isoσ(A), and this (since isoσw(A) = ∅) implies λ ∈ σw(A)

C = σw(A + R)C . Since λ /∈ σ(A) automatically
implies λ ∈ σw(A+R)C , it follows (from Π0(A+R) ⊆ E0(A+R)) that

λ ∈ E0(A+R) ⇐⇒ λ ∈ Π0(A+R), equivalently E0(A+R) = Π0(A+R).

Consequently, A + R ∈ (R) if and only if Π0(A + R) = Πa
0(A + R), equivalently, if and only if (A + R)∗

has SVEP on Πa
0(A+R). Recall from Proposition 3.1 that the hypothesis isoσa(A) = isoσa(A +R) implies

Π0(A) = Π0(A+R) and Πa
0(A) = Πa

0(A+R). Hence if A ∈ (R), then E0(A) = Πa
0(A) and A∗ has SVEP at

points in Πa
0(R). Since (A + R)∗ has SVEP at a point if and only if A∗ has SVEP at the point, (A + R)∗

has SVEP on Πa
0(A+ R). Consequently, A ∈ (R) implies A+ R ∈ (R). The reverse implication follows by

symmetry.

(ii). The proof here being similar to that of part (i), we shall be brief. For every λ ∈ Ea
0 (A + R), A + R

has SVEP at λ and λ ∈ σaw(A + R)C . Hence Ea
0 (A + R) = Πa

0(A + R), and A + R ∈ (aR) if and only if
Πa

0(A + R) = Π0(A + R). Since the hypothesis isoσa(A) = isoσa(A + R) implies Πa
0(A) = Πa

0(A + R), and
since A ∈ (aR) if and only if Ea

0 (A) = Π0(A), (Π0(A) ⊆ Πa
0(A) ⊆ Ea

0 (A) ensures Π
a
0(A) = Π0(A), and hence

that) (A + R)∗ has SVEP on Πa
0(A + R). Thus A ∈ (aR) implies A + R ∈ (aR). The reverse implication

being evident by symmetry, the proof is complete.

It is obvious from isoσw(A) ⊆ isoσaw(A) that Theorem 8.4(i) holds with the hypothesis isoσw(A) = ∅
replaced by the hypothesis isoσaw(A) = ∅. The example of the operator B = A ⊕ R ∈ B(ℓ2 ⊕ ℓ2), where
A ∈ B(ℓ2) is the forward unilateral shift and R ∈ B(ℓ2) is the quasinilpotent R(x1, x2, x3, · · · ) = (x2

2 , x3

3 , · · · ),
isoσw(B) = ∅, isoσaw(B) = {0}, E0(A) = Πa

0(A) = Π0(A) = ∅, Π0(B) = ∅ and Ea
0 (B) = {0}, proves that

the condition isoσw(A) = ∅ is not sufficient for the transfer of property (aR) from A to its perturbation
A + R. Neither of the conditions isoσw(A) = ∅ and isoσaw(A) = ∅ is necessary in Theorem 8.4: Taking
A ∈ B(H) to be the zero operator, and R ∈ B(H) to be a (non-trivial) nilpotent operator, it is seen
that σ(A) = σa(A) = σ(A + R) = σa(A + R) = {0}, E0(A) = Πa

0(A) = E0(A + R) = Πa
0(A + R) = ∅,

σw(A) = σaw(A) = {0}, and both A and A + R ∈ (R). Observe that the hypotheses of Theorem 8.2 are
satisfied. The example of the operators A and R of Example 4.3 shows that Theorem 8.4, as also Theorem
8.2, is liable to fail in the absence of the hypothesis isoσa(A) = isoσa(A + R).

The argument of the proof of Theorem 8.2 does not extend to prove the preservation of properties (gR)
and (agR) under commuting Riesz perturbations. The problem (just as for the case of operators in (gb)
and (gab)) lies with the failure of the stability of B-Weyl and upper B-Weyl spectra under commuting Riesz
perturbations. The removal of the points isoσaw(A) for an operator A ∈ B(X ) ensures (σBw(A) = σw(A)
and) σuBw(A) = σaw(A), and then, given isoσa(A) = isoσa(A + R), A ∈ (gR) if and only if A + R ∈ (gR)
and A ∈ (agR) if and only if A+R ∈ (agR).

Theorem 8.5. Given an operator A ∈ B(X ), if isoσaw(A) = ∅ and isoσa(A) = isoσa(A + R), then
A ∈ (gR) ⇐⇒ A+R ∈ (gR) and A ∈ (agR) ⇐⇒ A+R ∈ (agR).
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Proof. Since isoσaw(A) = isoσaw(A + R), the hypothesis isoσaw(A) = ∅ implies σuBw(A) = σaw(A) =
σaw(A + R) = σuBw(A + R). By definition A ∈ (gR) if and only if E(A) = Πa(A) (equivalently, E(A) =
Πa(A), Πa(A) = Π(A)) and A ∈ (agR) if and only if Ea(A) = Π(A) (equivalently,Ea(A) = Πa(A) = Π(A)).
Hence, see Proposition 3.2,

A ∈ (gR) =⇒ E(A) = Πa(A) = Πa(A+R) = Π(A+R) ⊆ E(A+R) and

A ∈ (agR) =⇒ Ea(A) = Π(A) = Πa(A) = Πa(A+R) ⊆ Ea(A+R), Πa(A+R) = Π(A+R)

(since A∗ has SVEP at points in E(A) = Πa(A+ R), respectively at points in Π(A) = Πa(A+ R), implies
(A+R)∗ has SVEP on Πa(A+R)). Consider now a λ ∈ E(A) or Ea(A). Then λ ∈ Ea(A) and, as seen in
the proof of Theorem 8.4, λ ∈ σuBw(A + R)C (= σaw(A + R)C) and A + R has SVEP at λ. Consequently,
λ ∈ Πa(A + R), proving thereby that E(A + R) = Πa(A + R) if A ∈ (gR) and Ea(A + R) = Π(A + R) if
A ∈ (agR). Since the reverse implication follows by symmetry, the proof is complete.

The hypothesis isoσaw(A) = ∅ (on its own) is not sufficient for the validity of Theorem 8.5, and (just as
Theorem 8.4) the theorem may fail in the absence of the hypothesis isoσa(A) = isoσa(A+R): Consider, once
again, the operators A and R of Example 4.3, when it is seen that E(A) = Πa(A) = ∅ (so that A ∈ (gR))
and E(A+R) = ∅ ≠ { 1

2} = Πa(A+R) (and A+R /∈ (gR)).

Perturbation by commuting nilpotents preserves properties (gR) and (agR); for commuting finite rank
operators which preserve isolated points of the point spectrum, a sufficient condition for the preservation of
the properties (gR) and agR) is that the operator is left-polaroid (- a condition guaranteed by SVEP and
the hypothesis isoσaw(A) = ∅).

Corollary 8.6. (a). A ∈ (gR) (A ∈ (agR)) if and only if A + N ∈ (gR) (resp., A + N ∈ (agR)) for
nilpotent operators N ∈ B(X ) satisfying [A,N ] = 0.

(b). Given a finite rank operators F ∈ B(X ) such that [A,F ] = 0 and isoσa(A + F ) = isoσa(A), if: (i) A
is polaroid, then A ∈ (gR) if and only if A+F ∈ (gR); (ii) A is left-polaroid, then A ∈ (agR) if and only if
A+ F ∈ (agR).

Proof. (a). For commuting nilpotent N , σx(A + N) = σx(A), σx = σ or σa, and Ex(A + N) = Ex(A),
Ex = E or Ea. Recall from [19, Theorem 2.6] that Π(A + N) = Π(A). Since either of the hypotheses
A ∈ (gR) and A ∈ (agR) implies A∗ has SVEP on Πa(A), Πa(A) = Π(A) = Π(A +N) = Πa(A +N) (see
the statement following the proof of Proposition 3.3). Hence the proof.

(b). The hypotheses imply σx(A + F ) = σx(A), σx = σ or σa, and (see Proposition 3.3) λ ∈ Π(A) if and
only if λ ∈ Π(A + F ) (resp., λ ∈ Πa(A) if and only if λ ∈ Πa(A + F )). We start by considering (i). If
A ∈ (gR), then Ea(A) = Π(A) = Πa(A) and

λ ∈ E(A+ F ) =⇒ λ ∈ isoσ(A+ F ) ⇐⇒ λ ∈ isoσ(A) ⇐⇒ λ ∈ Π(A) = Πa(A) ⇐⇒ λ ∈ Πa(A+ F ).

Hence E(A + F ) ⊆ Πa(A + F ). Since the semi B-Fredholm spectrum of an operator is stable under finite
rank perturbations [9],

{Π(A) = Πa(A)} ⇐⇒ {isoσ(A) ∩ σBe(A)C = isoσa(A) ∩ σuBe(A)
C}

⇐⇒ {isoσ(A+ F ) ∩ σBe(A+ F )C = isoσa(A+ F ) ∩ σuBe(A+ F )C}
⇐⇒ {Π(A+ F ) = Πa(A+ F )}.

But then

E(A+ F ) ⊆ Πa(A+ F ) = Π(A+ F ) ⊆ E(A+ F ) ⇐⇒ A ∈ (gR) =⇒ A+ F ∈ (gR).

The reverse implication follows from a consideration of the operator A = (A+ F )− F .
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To complete the proof, we consider now case (ii). Then A is left ploaroid, and assuming A ∈ (agR) (so
that Ea(A) = Π(A) = Πa(A) (= E(A)) and

λ ∈ Ea(A+ F ) =⇒ λ ∈ isoσa(A+ F ) ⇐⇒ λ ∈ isoσa(A)

⇐⇒ λ ∈ Πa(A) ⇐⇒ λ ∈ Πa(A+ F ) =⇒ λ ∈ Ea(A+ F ).

Hence Ea(A + F ) = Πa(A + F ). Since, see above, Π(A) = Πa(A) implies Π(A + F ) = Πa(A + F ),
Ea(A + F ) = Π(A + F ); equivalently, A ∈ (agR) implies A + F ∈ (agR). The reverse implication follows
from a consideration of the operator A = (A+ F )− F .

The Corollary fails for commuting quasinilpotents Q, i.e., A polaroid or left polaroid and A ∈ (gR) does
not imply A +Q ∈ (gR). This follows from a consideration of the operator A +Q = 0 +Q ∈ B(H), Q an
injective quasinilpotent, when it is seen that A ∈ (gR) ∧ (agR) but A+Q /∈ (gR) ∨ (agR).

It is easily seen from the definition that

A ∈ (aw) ⇐⇒ σ(A) ∩ σw(A)C = Ea
0 (A) = E0(A) = Π0(A) = Πa

0(A).

In particular, A ∈ (aw) implies A ∈ (Bt), hence also that A+R ∈ (Bt), i.e.,

A ∈ (aw) =⇒ σ(A+R) ∩ σw(A+R)C = Π0(A+R)

(for Riesz operator R commuting with A). Assume now that isoσa(A) = isoσa(A+R). Then Proposition 3.1
implies that Πa

0(A+R) = Πa
0(A), and hence since Πa

0(A) = Π0(A) that (A+R)∗ has SVEP on Πa
0(A+R).

Consequently, Πa
0(A+R) = Π0(A+R) and σ(A+R) ∩ σw(A+R)C = Πa

0(A+R).

Theorem 8.8(a) If isoσa(A) = isoσa(A + R), then A ∈ (aw) implies A+ R ∈ (aw) if and only if Ea
0 (A+

R) ∩ σaw(A) = ∅.

Proof. We have already seen that σ(A + R) ∩ σw(A + R)C = Πa
0(A + R). Assume now that Ea

0 (A + R) ∩
σaw(A) = ∅. Then λ ∈ Ea

0 (A + R) implies λ ∈ σaw(A + R)C = σaw(A)
C . Since A + R has SVEP at λ,

λ ∈ Πa
0(A+ R). The necessity of the condition Ea

0 (A+ R) ∩ σaw(A) = ∅ being evident from Πa
0(A+ R) =

Ea
0 (A+R), the proof is complete.

Considering operators satisfying property (gaw) it is seen that

A ∈ (gaw) ⇐⇒ σ(A) ∩ σBw(A)
C = Ea(A) = E(A) = Π(A) = Πa(A);

A ∈ (gaw) =⇒ A ∈ (gBt) ⇐⇒ A+R ∈ (gBt).

If we assume now that isoσa(A) = isoσa(A + R) and Φiso
uBw(A + R) = Φiso

uBw(A) (Recall: Φiso
uBw(A) =

isoσaw(A) ∩ σuBw(A)
C), then Proposition 3.1 implies that Πa(A+R) = Πa(A). Hence, since A∗ has SVEP

on Πa(A), σ(A+R) ∩ σBw(A+R) = Πa(A+R).

Theorem 8.8(b) If isoσa(A) = isoσa(A + R) and Φiso
uBw(A + R) = Φiso

uBw(A), A ∈ (gaw) implies A + R ∈
(gaw) if and only if Ea(A+R) ∩ σuBw(A) = ∅.

Proof. The necessity being evident, the sufficiency of the condition would follow once we have proved Ea(A+
R) = Πa(A+R), and for this it would suffice to prove Ea(A+R) ⊆ Πa(A+R). The hypotheses Φiso

uBw(A+
R) = Φiso

uBw(A) and Ea(A+R) ∩ σuBw(A) = ∅ imply

Ea(A+R) ∩ σiso
uBw(A) = {Ea(A+R) ∩ σiso

uBw(A)} ∪ {Ea(A+R) ∩ σuBw(A)}
= Ea(A+R) ∩ {σuBw(A) ∪ σiso

uBw(A)}
= Ea(A+R) ∩ σaw(A) = Ea(A+R) ∩ σaw(A+R)

= {Ea(A+R) ∩ σuBw(A+R)} ∪ {Ea(A+R) ∩ σiso
uBw(A+R)}

=⇒ Ea(A+R) ∩ σiso
uBw(A+R) = ∅.

Hence λ ∈ Ea(A+R) implies λ ∈ σuBw(A+R)C ; since A+R has SVEP at λ, λ ∈ Πa(A+R).
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An argument similar to that above works for operators A ∈ (Bgw). Since A∗ has SVEP at points in E0(A),
and since α(A− λ) < ∞ at points λ ∈ E0(A),

A ∈ (Bgw) ⇐⇒ σa(A) ∩ σuBw(A)
C = E0(A) = Π0(A) = Πa

0(A)

⇔ σa(A) ∩ σaw(A)
C = Πa

0(A) = Π0(A) = E0(A).

Thus A ∈ (a−Bt) (equivqlently, A ∈ (a− gBt)) and A∗ has SVEP on Πa
0(A) for operators A ∈ (Bgw).

Theorem 8.8(c) If isoσa(A) = isoσa(A + R), then A ∈ (Bgw) implies A + R ∈ (Bgw) if and only if
E0(A+R) ∩ σaw(A) = ∅.

Proof. We start by observing that

E0(A+R) ∩ σaw(A+R) = E0(A+R) ∩ {σuBw(A+R) ∪ Φiso
uBw(A+R)}

= {E0(A+R) ∩ σuBw(A+R)} ∪ {E0(A+R) ∩ Φiso
uBw(A+R)}.

We claim that E0(A+R) ∩Φiso
uBw(A+R) = ∅. For if not, then there exists a λ ∈ E0(A+R) ∩ σaw(A+R)

such that 0 < α(A + R − λ) < ∞ and (A + R − λ)(X ) is not closed. Since λ /∈ σuBw(A + R), there exists
an integer d > 1 such that (A + R − λ)d(X ) is closed. But then, since α(A + R − λ) < ∞, d = 1 – a
contradiction. Hence

E0(A+R) ∩ σaw(A) = ∅ ⇐⇒ E0(A+R) ∩ σuBw(A+R) = ∅.

Consequently,

E0(A+R) ∩Πa(A+R) = E0(A+R) ∩ {σa(A+R)C ∪ σuBw(A+R)}
= {E0(A+R) ∩ σa(A+R)C} ∪ {E0(A+R) ∩ σuBw(A+R)}
= ∅,

and therefore that σa(A+R) ∩ σuBw(A+R)C = E0(A+R), i.e., A+R ∈ (Bgw).

If N ∈ B(X ) is a nilpotent operator which commutes with A, then A+N and A have the same eigenvalues
(the same eigenvalues of finite multiplicity and the same eigenvalues of infinite multiplicity). Hence:

Ea
0 (A+N) ∩ σw(A+N) = Ea

0 (A) ∩ σw(A), and

E0(A+N)σaw(A+N) = E0(A) ∩ σaw(A);

also, since σuBw(.) is stable under perturbation by commuting nilpotents (see the proof of Proposition 4.4)

Ea(A+N) ∩ σuBw(A+N) = Ea(A) ∩ σuBw(A).

Hence

A ∈ (aw) (resp. A ∈ (gaw), A ∈ (Bgw)) =⇒ A+N ∈ (aw)

(resp. A+N ∈ (gaw), A+N ∈ (Bgw)).

The preceding argument works equally well for commuting finite rank operators F such that isoaσa(A) =
isoaσ(A + F ). Perturbation by commuting quasinilpotent operators does not result in an as satisfactory a
result. Additional hypotheses are required. We summarize this, and the conclusion for nilpotent and finite
rank operators in the following.

Corollary 8.9 Let A ∈ B(X ) be such that A commutes with operators N,F and Q ∈ B(X ) , where N
is a nilpotent, Fn is finite rank for some positive integer n with isoσa(A) = isoσa(A + F ), and Q is a
quasinilpotent. Then

A ∈ (aw) ⇐⇒ A+X ∈ (aw), A ∈ (gaw) ⇐⇒ A+X ∈ (gaw), A ∈ (Bgw) ⇐⇒ A+X ∈ (Bgw),

where X = N , or F . Furthermore:

If A is isoloid, then A ∈ (Bgw) =⇒ A+Q ∈ (Bgw);

if A is a-isoloid, then A ∈ (gaw) =⇒ A+Q ∈ (gaw);

if A is finitely a-isoloid, then A ∈ (aw) =⇒ A+Q ∈ (aw).



B. P. Duggal / FAAC 9 (2) (2017), 37–62 61

Proof. Observe that: if A is isoloid, then λ ∈ E0(A +Q) =⇒ λ ∈ isoσ(A) =⇒ λ ∈ E0(A); if A is a-isoloid,
then λ ∈ Ea(A+Q) =⇒ λ ∈ isoσa(A) =⇒ λ ∈ Ea(A); if A is finitely a-isoloid, then λ ∈ Ea

0 (A+Q) =⇒ λ ∈
isoσa(A) =⇒ λ ∈ Ea

0 (A). Hence

E0(A+Q) ∩ σaw(A) ⊆ E0(A) ∩ σaw(A) = ∅ if A ∈ (Bgw),

Ea(A+Q) ∩ {isoσaw(A)
C ∩ σaw(A)} ⊆ Ea(A) ∩ σuBw(A) = ∅ if A ∈ (gaw),

Ea
0 (A+Q) ∩ σw(A) ⊆ Ea

0 (A) ∩ σw(A) = ∅ if A ∈ (aw)

and the proof is complete.
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