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Abstract. For a given rangesymmetric matrix B, conditions are obtained for all matrices A that lie below
(above) B, to be range symmetric under a given partial ordering on complex matrices with respect to the
indefinite matrix product in an indefinite inner product space.

1. Introduction

An indefinite inner product in Cn is a conjugate symmetric Sesquilinear from [x, y] together with the
regularity condition that [x, y] = 0 for all y ∈ Cn only when x = 0. Any indefinite inner product is associated
with a unique invertible complex matrix J (called a weight) such that [x, y] =< x, Jy > where <,> denotes
the Euclidean inner product on Cn, we also make an additional assumption on J, that is J2 = I, to present
the results with much algebraic ease. Further, there are two different values for dot product of vectors
in indefinite inner product spaces. To overcome these difficulties, a new matrix product, called indefinite
matrix multiplication is introduced and some of its properties are investigated in [9]. A matrix A ∈ Cn×n is
said to be positive semi definite (p.s.d) if Re(x ∗ Ax) ≥ 0 for all x ∈ Cn×1. If A is also Hermitian, then A is to
be a Hermitian positive definite matrix (h.p.s.d) and denoted as A ≥ 0. For A,B ∈ Cn×n, A ≥ B⇔ A− B ≥ 0.
It is well known that, for nonsingular matrices A,B if A ≥ B ≥ 0, then B−1 ≥ A−1 ≥ 0. This was extended
to generalized inverse of certain types of pairs of singular matrices A ≥ B ≥ 0 by Hans J.Warner [4] and
independently by Hartvig [5].

The aim of this manuscript is to extend the Löwner order on Hermitian matrices, one of the standard
partial orders on complex matrices with respect to the indefinite matrix product and discuss the reverse
order laws for various types of generalized inverses as an extension of the results available in the litera-
ture [1, 2, 7, 8], for a wide class of range symmetric matrices in an indefinite inner product space. In section
2, we recall the definitions and preliminary results on complex matrices over an indefinite inner product
space. Characterizations of a range symmetric matrix in an indefinite inner product space in the setting of
an indefinite matrix product established in our work [8] are stated for reference. In section 3, for a given
range symmetric matrix B, conditions are obtained for all matrices A that lie below (above) B, to be range
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symmetric under a given partial ordering on complex matrices with respect to the indefinite matrix product
in an indefinite inner product space. Wherever possible, we provide examples to illustrate our results.

2. Preliminaries

We first recall the notion of an indefinite multiplication of matrices in an indefinite inner product space
℘.

Definition 2.1. Let A ∈ Cm×n, B ∈ Cn×p. Let Jn be an arbitrary but fixed n × n complex matrix such that
Jn = Jn

∗ = Jn
−1. The indefinite matrix product of A and B (relative to J) is defined as A ◦ B = AJnB.

Definition 2.2. For A ∈ Cm×n, A[∗] = JnA∗ Jm is the adjoint of A relative to Jn and Jm, the weights in the appropriate
spaces. Also [Ax, y] = [x,A[∗]y] hold.

Remark 2.3. When Jn is the identity matrix the product reduces to the usual product of matrices and it can be easily
verified that with respect to the indefinite matrix product, rank(A ◦ A[∗]) = rank(A[∗] ◦ A) = rank(A), where as this
rank property fails under the usual matrix multiplication. Thus, the Moore-Penrose inverse of a complex matrix over
an indefinite inner product space always exists, with respect to the indefinite matrix product exists and this is one of
its main advantages.

Definition 2.4. For A ∈ Cn×n is said to be J-invertible if there exists X ∈ Cn×n such that A ◦ X = X ◦ A = Jn. Such
an X is denoted as A[−1] = JA−1J.

Definition 2.5. For A ∈ Cm×n, a matrix X ∈ Cn×m is called Moore-Penrose if it satisfies the following equations:
A ◦ X ◦ A = A, X ◦ A ◦ X = X, (A ◦ X)[∗] = A ◦ X and (X ◦ A)[∗] = X ◦ A. Such an X is denoted by A[†] and
represented as A[†] = JnA†Jm.

Definition 2.6. The range space of A ∈ Cm×n is defined by
Ru(A) = {y = A ◦ x ∈ Cm/x ∈ Cn}.The null space of A is defined by Nu(A) = {x ∈ Cn/A ◦ x = 0}.

Remark 2.7. It is clear that Ru(A) = R(A) and Nu(A[∗]) = N(A∗).

Property 2.8.
(i) (A[∗])[∗] = A.
(ii) (A[†])†] = A.
(iii) (AB)[∗] = B[∗]A[∗].
(iv) R(A[∗]) = R(A)[†].
(v) R(A ◦ A[∗]) = R(A),R(A[∗] ◦ A) = R(A[∗]).
(vi) N(A ◦ A[∗]) = N(A[∗]),N(A[∗] ◦ A) = N(A).

Definition 2.9. A ∈ Cn×n is range symmetric in P if and only if R(A) = R(A[∗]).

Remark 2.10. In particular for J = In, this reduces to the definition of range symmetric matrix in unitary space (or)
equivalently to an EP matrix [1].

We make use of the following equivalent characterizations of a range symmetric matrix in ℘ established
in our earlier work [7].

Theorem 2.11. For A ∈ Cn×n, the following are equivalent:
(i)A is range symmetric in ℘.
(ii)AJ is EP.
(iii)JA is EP.
(iv)N(A) = N(A[∗]).
(v)N(A∗) = N(AJ).
(vi)A[∗] = AK = HA, for some invertible matrices K and H.
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(vii)R(A∗) = R(JA).
(viii)(A ◦ A[†]) = (A[†] ◦ A).
(ix)A is J − EP.
(x)A[†] is a polynomial in A.
(xi)A[†] is range symmetric in ℘.

3. Partial ordering on Range symmetric matrices in ℘.

In Sequal of the Löwner order on Hermitian matrices, several partial orders such as star partial order,
Minus partial order, Sharp partial order on the subclasses of matrices have been studied by many researchers.
Recently, these matrix orders have been extended for matrices in an indefinite inner product space with
respect to the indefinite matrix product. In [3] it has been proven that star partial orders A ≤[∗] B and
A ≤ B are equivalent. The same holds for sharp partial orders A ≤[#] B and AJ ≤# BJ. It can be verified
for the minus partial order that, A ≤[−] B if and only if A ≤− B. In this section, we extend Löwner order on
Hermitian matrices for J-symmtric matrices in an indefinite inner product space ℘ with weight J. A matrix
A is J-symmetric if A = A[∗].

Definition 3.1. A matrix A ∈ Cn×n is said to be J-symmetric positive semi definite in ℘ denoted as A ≥J 0 if and
only if A is J-symmetric and [Ax, x] ≥ 0, for all x ∈ Cn×1

Lemma 3.2. For A ∈ Cn×n, A ≥J 0⇔ A[∗] ≥J 0.

Proof. This directly follows from the Definition 3.1

Theorem 3.3. For A ∈ Cn×n, A ≥J 0⇔ AJ ≥ 0⇔ JA ≥ 0.

Proof. Since A is J-symmetric, A = A[∗] = JA∗ J and [Ax, x] = ⟨Ax, Jx⟩ ≥ 0 for all x ∈ Cn×1.
Hence, (AJ) = (AJ)∗ and ⟨AJx, x⟩ ≥ 0 for all x ∈ Cn×1 ⇔ AJ ≥ 0.
A ≥J 0⇔ A is J-symmetric and [Ax, x] ≥ 0, for all x ∈ Cn×1.

⇔ A = A[∗] and [Ax, x] ≥ 0, for all x ∈ Cn×1.
⇔ JA = (JA)∗ and ⟨JAx, x⟩ = ⟨Ax, Jx⟩ = [Ax, x] ≥ 0,

for all x ∈ Cn×1.
⇔ JA ≥ 0.

Hence, the Theorem.

Corollary 3.4. For A ∈ Cn×n, A ≥J 0⇔ A = R[∗] ◦ R for some R ∈ Cn×n.

Proof. A ≥J 0⇔ JA ≥ 0(By Theorem 3.3)
⇔ JA = R ∗ R
⇔ A = JR ∗ JJR
⇔ A = R[∗] ◦ R(By Definition 2.1).
⇔ JA ≥ 0.

Hence, the Theorem.

Theorem 3.5. For A ∈ Cn×n, A ≥J 0, then for any P ∈ Cn×n,P[∗]AP ≥J 0.

Proof. Let B = P[∗]AP, then by using A = A[∗], property 2.8 (ii) and (iii), B[∗] = P[∗]AP = B.
Hence, B is J-symmetric. For all x ∈ Cn×1,[Bx, x] = [P[∗]APx,Px] = [APx,Px] = [Ay, y] ≥ 0, where y = Px.
Thus B = P[∗]AP ≥J 0. Hence the Theorem.

Theorem 3.6. For A ∈ Cn×n,A ≥J 0⇔ A[†] ≥J 0.
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Proof. A ≥J 0⇔ JA ≥ 0 (By Theorem 3.3)
⇔ (JA)† ≥ 0
⇔ A† J ≥ 0
⇔ A† J ≥J 0 (By Theorem 3.3)
⇔ JA†J ≥J 0 (By Theorem 3.5)
⇔ A[†] ≥J 0.

Hence, the Theorem.

Definition 3.7. For A ∈ Cn×n, the J-symmetric part of A is defined as (Sym A)J =
1
2 (A + A[∗]).

In particular for J = In, it reduces to the symmetric part of A.
Sym A = 1

2 (A + A∗)

Property 3.8. For A ∈ Cn×n, we have the following:
(i) (Sym A)J = (Sym A)[∗]

J = (Sym A[∗])J.
(ii) J(Sym A)J = J( 1

2 (A + A[∗])) = 1
2 (JA + (JA)∗) = Sym(JA).

(iii) (Sym A)J J = 1
2 (A + A[∗])J = 1

2 (AJ + (AJ)∗) = Sym(AJ).

Remark 3.9. From property 3.8 (i) it is clear that (SymA)J is always J − EP being J-Symmetric.

Lemma 3.10. For A ∈ Cn×n, we have the following:
(i) N(SymA)J = N(J(Sym A)J) = N(Sym(JA)).
(ii) R(SymA)J = R((Sym A)J J) = R(Sym(AJ)).

Proof. (i) x ∈ N(SymA)J ⇔ (Sym A)Jx = 0
⇔ J(SymA)Jx = 0
⇔ x ∈ N(J(Sym A)J).

Hence, N(SymA)J = N(J(Sym A)J). The last equality in (i) follows from property 3.8(ii)
(ii) x ∈ R(SymA)J ⇔ x = (Sym A)J y, for some y ∈ Cn×1

⇔ x = ((Sym A)J J)u, for some u=Jy ∈ Cn×1

⇔ x ∈ R((Sym A)J J).
Thus, R(SymA)J = R((Sym A)J J). The last equality in (ii) follows from property 3.8(iii).
Hence, the Lemmma.

Definition 3.11. For some A,B ∈ Cn×n, A ≥J B ⇔ A − B ≥J 0 ⇔ A − B is J-Symmetric and [Ax, x] ≥ [Bx, x] for
all x ∈ Cn×1.

Since, A is J − EP and A is range symmetric in ℘ are equivalent by Theorem 2.11 henceforth, we use A
is J − EP. First, we shall prove lemmas on J − EP matrices which will simply the proof of the main result.

Lemma 3.12. If A ∈ Cn×n is J − EP, then N(A) ⊆ N(Sym A)J
= N(Sym(JA)).

Proof. Since A is J − EP, by Theorem 2.11 N(A) = N(A[∗]). For x ∈ N(A), Ax = A[∗]x = 0.
Hence, (Sym A)Jx = 0 and x ∈ N(Sym A)J. Therefore, by property 3.8(ii), it follows that, N(A) ⊆ N(Sym A)J =
N(Sym(JA)).

Lemma 3.13. Let A ∈ Cn×n. Then A is J − EP and rk(A) = rk(Sym A)J ⇔ N(A) = N(Sym A)J.

Proof. Since A is J − EP, by Lemma 3.12 N(A) ⊆ N(Sym A)J and together with rk(A) = rk(Sym A)J, it follows
that N(A) = N(Sym A)J.
Conversely, if N(A) = N(Sym A)J, then rk(Sym A)J automatically holds. To prove A is J − EP. If possible,
let us assume the contrary, that is, for 0 , x ∈ Cn×1, Ax = 0 and A[∗]x , 0. Then, (Sym A)Jx , 0. Hence,
x < N((Sym A)J). This contradicts that, N(A) = n(Sym A)J.
Hence, A is J − EP.
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Remark 3.14. We observe, that in Lemma 3.13, both the conditions on A are essential. This is illustrated in the
following example.

Example 3.15. Let us consider

A =
[

0 −1
−1 2

]
J =
[
0 1
1 0

]
then JA =

[
−1 2
0 −1

]
.

JA is EP being nonsingular. Hence, A is −EP.

(Sym A)J =

[
1 −1
−1 1

]
.rk(Sym A)J = 1 , rk and N((Sym A)J) 1 N(A).

Theorem 3.16. Let A,B ∈ Cn×n such that A ≥J B. Then the following hold:
(i) If B is J − EP and N(A) ⊆ N(B), then A is J − EP.
(ii) If A is J − EP and N(B) ⊆ N(A), then B is J − EP.

Proof. Since, A ≥J B, by Definition 3.1, A[∗] − B[∗] = (A− B)[∗] = A− B and A− B ≥J 0. For any x ∈ N(A), since
N(A) ⊆ N(B) and B is J − EP, Ax = 0⇒ Bx = B[∗]x = 0⇒ A[∗]x = Ax − Bx + B[∗]x = 0. Therefore,A is E − JP.
Thus, (i) holds. (ii) can be proved in a similar manner. Hence, the Theorem.

Corollary 3.17. Let A,B ∈ Cn×n such that A ≥J B. If B is J − EP then N(A) ⊆ N(B)⇔ R(B) ⊆ R(A).

Proof. If B is J − EP and N(A) ⊆ N(B), then by Theorem 3.16(i) A is J − EP. Hence, N(A) ⊆ N(B)⇔ N(A[∗] ⊆
N(B[∗])⇔ R(B) ⊆ R(A). Hence, the Corollary.

Remark 3.18. In particular, for J = In, Corollary 3.4 reduces to the following:
For A,B ∈ Cn×n such that A ≥ B. If B is EP, then N(A) ⊆ N(B) ⇔ R(B) ⊆ R(A). Further, if B is a.p.d, then the
condition N(A) ⊆ N(B) automatically holds and it reduces to Lemma (2) [6].

Theorem 3.19. Let A,B ∈ Cn×n such that A ≥J B is J − EP and N(A) ⊆ N(B) then the following are equivalent:
(i) N(A) = N(Sym(JB)).
(ii) R(A) = R(Sym(BJ)).
(iii) rk(A) = rk(Sym(JB)).

Proof. (i)⇔ (ii): Since B is J − EP and N(A) ⊆ N(B), by Theorem 3.16 (i) A is J − EP. Further, by
Lemma 3.12,N(B) ⊆ N(Sym(B)). Hence, N(A) ⊆ N(B) ⊆ N(Sym(JB)). Then, by (iii) N(A) = N(Sym(JB)).
(i)⇒ (iii) is trivial. Thus (i)⇔ (iii) hold.
(i)⇔ (ii): This equivalence follows from the fact that A and (Sym B)J are J−EP and from Lemma 3.10. Hence,
the Theorem.

Theorem 3.20. Let A,B ∈ Cn×n such that A ≥J B. If B isJ−EP and (Sym B)J ≥J 0, then the following are equivalent:
(i) R(Sym A)J = R(Sym B)J.
(ii) (Sym B)J)[†] ≥J ((Sym A)J)[†].

Proof. (i)⇔ (ii): A ≥J B ⇒ A[∗] ≥J A[∗] ⇒ (Sym A)J ≥J (Sym B)J. Then, under the given condition on B, we
have (Sym A)J ≥J (Sym B)J ≥J 0. From Theorem 3.3, it follows that ((Sym A)J)J ≥J ((Sym B)J)J ≥J 0. By using
the Property 3.8 (iii), we get Sym(AJ) ≥ Sym(BJ) ≥ 0.
R((Sym A)J) = R((Sym B)J)⇔ R(Sym(AJ)) = R(Sym(BJ)) (By Lemma 3.10)

⇔ (Sym(BJ))† ≥ (Sym(AJ))† (By Theorem 1 of [5])
⇔ ((Sym B)J J)† ≥ ((Sym A)J J)† (By Property 3.8(iii))
⇔ J(Sym B)J)† ≥ J(Sym A)J)†

⇔ ((Sym B)J)† ≥J ((Sym A)J)† (By Theorem 3.3)
⇔ J(Sym B)J

†J ≥J J(Sym A)J)†J (By Theorem 3.5)
⇔ ((Sym B)J)† ≥J ((Sym A)J)† (By Theorem 2.5)

Hence, the Theorem.
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Remark 3.21. In particular, if A ≥J B ≥ j 0, then (Sym A)J = A and (Sym B)J = B. The condition B is J − EP
automatically hold. Theorem 3.19 and Theorem 3.20 reduce to the following:

Corollary 3.22. Let A,B ∈ Cn×n such that A ≥J B ≥J 0. Then the following are equivalent:
(i) N(A) = N(B).
(ii) R(A) = R(B).
(iii) B[†] ≥J A[†].

Remark 3.23. In particular, if A ≥ B ≥ 0 and J = In, then (Sym(A)J) = A and (Sym(B)J) = B and Theorem 3.19
and Theorem 3.20 reduce to the following results:

Corollary 3.24. (Theorem 1 [5]) Let A,B ∈ Cn×n, such that A ≥ B ≥ 0, then B† ≥ A† ⇔ R(A) = R(B).

Corollary 3.25. (Theorem 1 [4]) For A,B ∈ Cn×n, any two of the following conditions imply the other one.
(i) A ≥ B ≥ 0. (ii) rk(A) = rk(B)
(iii) B† ≥ A† ≥ 0.

Remark 3.26. We observe that, in Theorem 3.19, the condition N(A) ⊆ N(B) is essential. This is illustrated in the
following:

Example 3.27. Let A =
[
0 0
0 2

]
and B =

[
0 −1
−1 2

]
. For J =

[
0 1
1 0

]
,

JA =
[
0 2
0 0

]
and JB =

[
−1 2
0 −1

]
. Here, A − B =

[
0 1
1 0

]
= J

is J−symmetric and JA − JB =
[
1 0
0 1

]
≥ 0.

Hence, by Definition 3.1 A ≥J B. B is J − EP, being non-singular. N(A) = {y = (x, 0)t \Ay = 0}. N(A) 1 N(B).

Sym(JB) =
[
−1 1
1 −1

]
. N(Sym(JB)) = {y = [x x]t \ (Sym(JB))y = 0}.

Here, N(A) , N(Sym(JB)) but rk(A) = rk(sym(JB)) = 1. In Theorem 3.19, the statement (i) fails and statement
(iii) holds. Therefore, the condition N(A) ⊆ N(B) is essential in Theorem 3.19.

4. Conclusion

We have extended matrix inequalities on a pair of h.p.s.d matrices in the references [1, 2, 4, 5] and on
a.p.d matrices in [6] for a wider class of range symmetric matrices in an indefinite inner product space.

References

[1] Duffin R.J, Morley T.D, Almost definite operators and electromechanical systems, SIAM J. Appl. Math. 35 (1978) 21-30.
[2] Jayaraman S, EP Matrices in indefinite inner product spaces, Funct. Anal.

Approx.Comput. 4(2) (2012) 23-31.
[3] Jayaraman S, The reverse order law in indefinite inner product spaces, Combinatorial Matrix Theory and Gen. Inverses of Matrices,

Ravindra B. Bapat, Steve J. Kirkland, K. Manjunatha Prasad, Simo Puntanen- Editors, Springer New Delhi,India (2013) 133-141.
[4] Hans J. Warner, On the matrix monotonicity of generalized inversion, Lin.Alg. and Appl. 27 (1979) 21-30.
[5] Hartwig R. E, A note on the partial ordering on positive semi definite matrices, Lin. Multilinear Algebra, 6 (1978) 223-226.
[6] Meenakshi AR, On the partial ordering of almost definite matrices, Czechoslovak. Math. J, 39 (1989) 169-175.
[7] Meenakshi AR, Range symmetric matrices in indefinite inner product space, Int. J. Fuzzy Math. Archive, 5(2) (2015) 49-56.
[8] Mitra S. K., Puri M. L., The fundamental bordered matrix of linear estimation and the Duffin-Morley general linear electromechanical systems,

J. Applicable Analysis. 14 (1983) 241-258.
[9] Ramanathan K, Kamaraj K and Shivakumar K. C., Indefinite product of matrices and applications to indefinite inner product spaces, J.

Anal. 12 (2004) 135-142.


