ON THE CLASS OF n-REAL POWER POSITIVE OPERATORS ON A HILBERT SPACE

Abdelkader Benali ${ }^{\text {a }}$
${ }^{a}$ Faculty of The Exact Science And Computer Science, Mathematics Department,University of Hassiba Benbouali, Chlef Algeria. B.P. 151 Hay Essalem, chlef 02000, Algeria

Abstract

In this paper, we introduce a new class of operators acting on a complex Hilbert space \mathcal{H} which is called n-real power positive operators, denoted by [$n \mathcal{R P}$]. An operator $T \in \mathcal{B}(\mathcal{H})$ is called n-real power positive operator if $T^{n}+T^{* n} \geq 0$ or equivalently $\operatorname{Re}\left\langle T^{n} x \mid x\right\rangle \geq 0$ for all $x \in \mathcal{H}$, where n is positive integer number greater than 1 .

1. Introduction and terminologies

Let \mathcal{H} be a complex Hilbert space. Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators defined in \mathcal{H}. Let T be an operator in $\mathcal{B}(\mathcal{H})$. The operator T is called normal if it satisfies the following condition $T^{*} T=T T^{*}$, i.e., T commutes with T^{*}. The class of quasi-normal operators denoted by [QN], was first introduced and studied by A. Brown ([1]) in 1953. The operator T is quasi-normal if T commutes with $T^{*} T$, i.e.; $T\left(T^{*} T\right)=\left(T^{*} T\right) T$. A. A. S. Jibril (see [2,3]), in 2008 introduced the class of n-power normal operators as a generalization of normal operators and its denoted by $[n N]$. The operator T is called n-power normal if T^{n} commutes with T^{*}, i.e.; $T^{n} T^{*}=T^{*} T^{n}$. In the year 2011, O. A. Mahmoud Sid Ahmed introduced the class of n-power quasi-normal operators denoted by $[n Q N]$ (see $[6,7]$), as a generalization of quasi-normal operators. An operator T is called n-power quasi-normal if T^{n} commutes with $T^{*} T$, i.e.; $T^{n}\left(T^{*} T\right)=\left(T^{*} T\right) T^{n}$.
Recently in [5], the authors introduced and studied the operator T satisfying $T^{2} \geq-T^{* 2}$. In this search, we introduce a new class of operators namely n-real power positive operator denoted by [$n \mathcal{R P}$]. An operator $T \in[n \mathcal{R P}]$ if and only $T^{n}+T^{* n} \geq 0$, for some integer $n=1,2,3, \ldots$. Let $T \in \mathcal{B}(\mathcal{H})$. We can write

$$
\begin{equation*}
T=A+i B \tag{1}
\end{equation*}
$$

where A, B are Hermitian. Such a decomposition is unique, and we have

$$
\begin{equation*}
A=\frac{1}{2}\left(T+T^{*}\right), \quad B=\frac{1}{2 i}\left(T-T^{*}\right) . \tag{2}
\end{equation*}
$$

The operators A and B are called the real and imaginary parts of T, and the decomposition (1) is called the Cartesian decomposition of T.

[^0]
2. Some basic properties of $[n \mathcal{R P}]$

In section two we study some of the basic properties of operators in $[n \mathcal{R} \mathcal{P}]$.
Definition 2.1. For $n \in \mathbb{N}$, an operator $T \in \mathcal{L}(H)$ is said to be n-real power positive operator if

$$
T^{n}+T^{* n} \geq 0
$$

We denote the set of n-real power positive operators by $[n \mathcal{R P}]$.
Example 2.2. Let $T=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{n}\right)$. A simple computation shows that for all $z=\left(z_{1}, \ldots . z_{n}\right) \in \mathbb{C}^{n}$ we have

$$
\left\langle\left(T^{n}+T^{* n}\right) z \mid z\right\rangle=\sum_{1 \leq k \leq n}\left(\lambda_{k}^{n}+{\overline{\lambda_{k}}}^{n}\right)\left|z_{k}\right|^{2}=2 \sum_{1 \leq k \leq n} \operatorname{Re}\left(\lambda_{k}^{n}\right)\left|z_{k}\right|^{2} .
$$

We deduce that if $\operatorname{Re}\left(\lambda_{k}^{n}\right) \geq 0$ for all $k=1,2, \ldots, n$, then $T \in[n \mathcal{R P}]$ and if $\operatorname{Re}\left(\lambda_{k}^{n}\right)<0$ for all $k=1,2, \ldots, n$, then $T \notin[n \mathcal{R P}]$.

Proposition 2.3. Let $T \in \mathcal{B}(\mathcal{H})$ and $n \in \mathbb{N}$ the following properties hold
(1) if $T \in[n \mathcal{R P}]$ then so T^{*}.
(2) $T \in[n \mathcal{R P}]$ if and only if $\operatorname{Re}\left\langle T^{n} x \mid x\right\rangle \geq 0$, for all $x \in \mathcal{H}$.
(3) If T is invertible, then $T \in[n \mathcal{R P}]$ if and only if $T^{-1} \in[n \mathcal{R P}]$.

Proof. (1) Obvious from the Definition 2.1.
(2) In fact, it is well know that

$$
\begin{aligned}
T \in[n \mathcal{R P}] \Longleftrightarrow T^{n}+T^{* n} \geq 0 & \Longleftrightarrow\left\langle\left(T^{n}+T^{* n}\right) x \mid x\right\rangle \geq 0, \forall x \in \mathcal{H} \\
& \Longleftrightarrow\left\langle T^{n} x \mid x\right\rangle+\left\langle T^{* n} x \mid x\right\rangle \geq 0, \forall x \in \mathcal{H} \\
& \Longleftrightarrow\left\langle T^{n} x \mid x\right\rangle+\left\langle x \mid T^{n} x\right\rangle \geq 0, \forall x \in \mathcal{H} \\
& \Longleftrightarrow\left\langle T^{n} x \mid x\right\rangle+\overline{\left\langle T^{n} x \mid x\right\rangle} \geq 0, \forall x \in \mathcal{H} \\
& \Longleftrightarrow 2 \operatorname{Re}\left\langle T^{n} x \mid x\right\rangle \geq 0 .
\end{aligned}
$$

(3) Assume that T is invertible and $T \in[n \mathcal{R P}]$. We have $\operatorname{Re}\left\langle T^{n} x \mid x\right\rangle \geq 0, \forall x \in \mathcal{H}$.

It follows that for all $x \in \mathcal{H}$

$$
0 \leq \operatorname{Re}\left\langle T^{n} T^{-n} x \mid T^{-n} x\right\rangle=\operatorname{Re}\left\langle x \mid T^{-n} x\right\rangle=\operatorname{Re} \overline{\left\langle T^{-n} x \mid x\right\rangle}=\operatorname{Re}\left\langle T^{-n} x \mid x\right\rangle .
$$

Hence $T^{-1} \in[n \mathcal{R P}]$. The converse is obvious.
The following examples show that the two classes $[n \mathcal{R P}]$ and $[(n+1) \mathcal{R P}]$ are not the same.
Example 2.4. Let $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{2}\right)$. A simple computation shows that

$$
T^{2}+T^{* 2}=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right) \text { and } T^{3}+T^{* 3}=\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)
$$

For all $(u, v) \in \mathbb{C}^{2}$ we have

$$
\begin{aligned}
\left\langle\left.\left(T^{2}+T^{* 2}\right)\binom{u}{v} \right\rvert\,\binom{ u}{v}\right\rangle & =2|u|^{2}+4 \operatorname{Re}(u \bar{v})+2|v|^{2} \\
& =2(\operatorname{Re}(u)+\operatorname{Re}(v))^{2}+2(\operatorname{Im}(u)+\operatorname{Im}(v))^{2} \geq 0
\end{aligned}
$$

Hence $T \in[2 \mathcal{R P}]$.
On the other hand

$$
\left\langle\left.\left(T^{3}+T^{* 3}\right)\binom{1}{-1} \right\rvert\,\binom{ 1}{-1}\right\rangle=-2<0
$$

So $T \notin[3 \mathcal{R P}]$.
Example 2.5. Let $T=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{2}\right)$. A simple computation shows that

$$
T^{2}+T^{* 2}=\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) \text { and } T^{3}+T^{* 3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

It follows that $T \notin[2 \mathcal{R P}]$ and $T \in[3 \mathcal{R P}]$.
Example 2.6. Let $T=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{3}\right)$. It is easily to see that $T \notin[n \mathcal{R} \mathcal{P}]$ for all $n=1,2, \ldots$.
Proposition 2.7. ([5]) Let $T=A+i B \in \mathcal{B}(\mathcal{H})$, then $T^{2} \geq T^{* 2}$ if and only if $A^{2} \geq B^{2}$.
In the following proposition, we generalize Proposition 2.2.
Proposition 2.8. Let $T \in \mathcal{B}(\mathcal{H}), T=A+i B$ such that $A B+B A=0$ and $n \in \mathbb{N}$. Then the following properties hold
(1) $T \in[2 n \mathcal{R P}]$ if and only if $\left(A^{2}-B^{2}\right)^{n} \geq 0$.
(2) $T \in[(2 n+1) \mathcal{R P}]$ if and only if $A\left(A^{2}-B^{2}\right)^{n} \geq 0$.

Proof. (1) A simple computation shows that

$$
T^{2 n}=(A+i B)^{2 n}=\left(A^{2}-B^{2}\right)^{n} \text { and } T^{*(2 n)}=(A-i B)^{2 n}=\left(A^{2}-B^{2}\right)^{n}
$$

and so

$$
T^{2 n}+T^{* 2 n}=2\left(A^{2}-B^{2}\right)^{n}
$$

Hence

$$
T \in[2 n \mathcal{R P}] \Longleftrightarrow\left(A^{2}-B^{2}\right)^{n} \geq 0
$$

as required.
(2) A similar argument gives

$$
T^{(2 n+1)}=(A+i B)^{2 n+1}=(A+i B)\left(A^{2}-B^{2}\right)^{n} \text { and } T^{*(2 n+1)}=(A+i B)^{*(2 n+1)}=(A-i B)\left(A^{2}-B^{2}\right)^{n}
$$

and so

$$
T^{2 n+1}+T^{* 2 n+1}=2 A\left(A^{2}-B^{2}\right)^{n}
$$

Hence,

$$
T \in[(2 n+1) \mathcal{R P}] \Longleftrightarrow A\left(A^{2}-B^{2}\right)^{n} \geq 0
$$

as required.

Proposition 2.9. Let $T, S \in \mathcal{B}(\mathcal{H})$ and $n \in \mathbb{N}$. If $T \in[n \mathcal{R P}]$ and S is unitary equivalent to T, then $S \in[n \mathcal{R} \mathcal{P}]$.
Proof. By assumption, there is a unitary equivalent operator $U \in \mathcal{B}(\mathcal{H})$ such that $S=U^{*} T U$, which implies that

$$
S^{*}=U^{*} T^{*} U
$$

Thus we have

$$
S^{n}=U^{*} T^{n} U \quad \text { and } S^{* n}=U^{*} T^{* n} U
$$

Since U is unitary and using the fact that $T^{n} \geq-T^{* n}$ we conclude that

$$
U^{*} T^{n} U \geq-U^{*} T^{* n} U
$$

Thus $S^{n} \geq-S^{* n}$.
Remark 2.10. The following example shows that in general the class $[n \mathcal{R P}]$ is note closed under translation.
Example 2.11. Consider $T=\left(\begin{array}{ccc}1+i & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & 1+i\end{array}\right) \in \mathcal{B}\left(\mathbb{C}^{3}\right)$. From Example 2.1, it is easy to see that $T \in[3 \mathcal{R P}]$ and $T-2 I=\left(\begin{array}{ccc}-1+i & 0 & 0 \\ 0 & -1+i & 0 \\ 0 & 0 & -1+i\end{array}\right) \notin[3 \mathcal{R P}]$.

Proposition 2.12. Let $T \in \mathcal{B}(\mathcal{H})$. If $T \in \bigcap_{1 \leq k \leq n}[k \mathcal{R} \mathcal{P}]$ for some $n=1,2, \ldots$, then $T+\lambda I \in[n \mathcal{R} \mathcal{P}]$ for all $\lambda \geq 0$.
Proof. Since

$$
(T+\lambda I)^{n}=\sum_{0 \leq k \leq n}\binom{n}{k} \lambda^{n-k} T^{k}=\lambda^{n}+\sum_{1 \leq k \leq n}\binom{n}{k} \lambda^{n-k} T^{k}
$$

we have for all $x \in \mathcal{H}$

$$
\operatorname{Re}\left\langle(T+\lambda I)^{n} x \mid x\right\rangle=\lambda^{n}\|x\|^{2}+\sum_{1 \leq k \leq n}\binom{n}{k} \lambda^{n-k} \underbrace{\operatorname{Re}\left\langle T^{k} x \mid x\right\rangle}_{\geq 0} \geq 0
$$

In the following theorem we give a sufficient conditions under which the class $[n \mathcal{R} \mathcal{P}]$ is closed under sum of two operators.

Theorem 2.13. Let $T, S \in[n \mathcal{R P}]$ such that $T^{k} S=-S^{k} T$ for $k=1,2, \ldots, n-1$ for some integer $n=2,3 \ldots$, then $T+S \in[n \mathcal{R P}]$.
Proof. Form the hypothesis it is clear that $(T+S)^{n}=T^{n}+S^{n}$ and so that

$$
(T+S)^{n}+\left(T^{*}+S^{*}\right)^{n}=\underbrace{T^{n}+T^{* n}}_{\geq 0}+\underbrace{S^{n}+S^{* n}}_{\geq 0} \geq 0
$$

The following lemma is well know.
Lemma 2.14. Let $T, S \in \mathcal{B}(\mathcal{H})$ such that $T \geq S$. Then for all $A \in \mathcal{B}(\mathcal{H})$ we have $A^{*} T A \geq A^{*} S A$.
Proposition 2.15. Let $n \in \mathbb{N}$. If $T \in[n \mathcal{R P}]$ is such that $T^{*} T^{2}=T^{2} T^{*}$, then $T^{*} T^{2} \in[n \mathcal{R P}]$.

Proof. Since $T \in[n \mathcal{R P}]$ we have by Lemma 2.1 that

$$
\begin{aligned}
T^{n}+T^{* n} \geq 0 & \Longrightarrow T^{* n} T^{n} T^{n}+T^{* 2 n} T^{n} \geq 0 \\
& \Longrightarrow\left(T^{*} T^{2}\right)^{n}+\left(T^{* 2} T\right)^{n} \geq 0\left(\text { since } T^{*} T^{2}=T^{2} T^{*}\right) \\
& \Longrightarrow\left(T^{*} T^{2}\right)^{n}+\left(T^{*} T^{2}\right)^{* n} \geq 0
\end{aligned}
$$

Hence $T^{*} T^{2} \in[n \mathcal{R P}]$ as required.
In the following proposition we give a characterization of the class [$2 \mathcal{R P}$].
Proposition 2.16. If $T \in \mathcal{B}(\mathcal{H})$ is normal then we have

$$
T \in[2 \mathcal{R P}] \text { if and only if } 2(\operatorname{Re}(T))^{2} \geq|T|^{2}
$$

where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$.
Proof. Assume that $2(\operatorname{Re}(T))^{2} \geq|T|^{2}$ so we have

$$
\begin{aligned}
2(\operatorname{Re}(T))^{2} \geq|T|^{2} & \Longrightarrow 2\left(\frac{T+T^{*}}{2}\right)^{2} \geq T^{*} T \\
& \left.\Longrightarrow T^{2}+2 T^{*} T+T^{* 2} \geq 2 T^{*} T \text { (since } T \text { is normal }\right) \\
& \Longrightarrow T^{2}+T^{* 2} \geq 0
\end{aligned}
$$

We deduce that $T \in[2 \mathcal{R P}]$.
Conversely, assume that $T \in[2 \mathcal{R P}]$. By the fact that $T^{*} T$ is positive we have the following implications

$$
\begin{aligned}
T^{2}+T^{* 2} \geq 0 & \Longrightarrow T^{2}+2 T^{*} T+T^{* 2} \geq 2 T^{*} T \\
& \left.\Longrightarrow\left(T+T^{*}\right)^{2} \geq 2 T^{*} T \text { (since } T \text { is normal }\right) \\
& \Longrightarrow(2 \operatorname{Re}(T))^{2} \geq 2|T|^{2} \\
& \Longrightarrow 2(\operatorname{Re}(T))^{2} \geq|T|^{2}
\end{aligned}
$$

Theorem 2.17. Let $T \in \mathcal{B}(\mathcal{H})$. Then the following properties hold:
(1) For $n=2,3, \ldots$, if T^{n} is unitary equivalent to $T^{* n-1}$ then

$$
T \in[n \mathcal{R P}] \Longleftrightarrow T \in[(n-1) \mathcal{R P}] .
$$

(2) For $n=2,3, \ldots$, if T^{k} is unitary equivalent to $T^{* k-1}$ for all $k \in\{1,2 \ldots ., n\}$, then

$$
T \in[n \mathcal{R P}] \Longleftrightarrow T \in[\mathcal{R P}]
$$

Proof. (1) From the hypothesis there exists an operator $U \in \mathcal{B}(\mathcal{H}): \quad U^{*} U=U U^{*}=I$ such that $T^{n}=$ $U^{*} T^{* n-1} U$.
Firstly, assume that $T \in[n \mathcal{R} \mathcal{P}]$, it follows that

$$
T^{n}+T^{* n} \geq 0 \Longrightarrow U^{*} T^{* n-1} U+U^{*} T^{n-1} U \geq 0 \Longrightarrow U^{*}\left(T^{n-1}+T^{* n-1}\right) U \geq 0
$$

By Lemma 2.1, we deduce that $T^{n-1}+T^{* n-1} \geq 0$ and hence $T \in[(n-1) \mathcal{R P}]$.

Conversely, assume that $T \in[(n-1) \mathcal{R P}]$. We have by Lemma 2.1

$$
T^{n-1}+T^{* n-1} \geq 0 \Longrightarrow U^{*}\left(T^{n-1}+T^{* n-1}\right) U \geq 0 \Longrightarrow T^{n}+T^{* n} \geq 0
$$

Hence $T \in[n \mathcal{R P}]$.
(2) From the hypothesis there exists a unitary operator U_{k} such that

$$
T^{k}=U_{k}^{*} T^{* k-1} U_{k} \text { for } k=1,2, \ldots, n
$$

If we assume that $T \in[n \mathcal{R} \mathcal{P}]$ we have from (1) that $T \in[(n-1) \mathcal{R P}]$. Repeating the process with $T \in[(n-1) \mathcal{R P}]$ we obtain that $T \in[(n-2) \mathcal{R} \mathcal{P}]$. Hence the following implications hold

$$
T \in[n \mathcal{R P}] \Longrightarrow T \in[(n-1) \mathcal{R P}] \Longrightarrow T \in[(n-2) \mathcal{R P}] \Longrightarrow \ldots . T \in[2 \mathcal{R P}] \Longrightarrow T \in[\mathcal{R P}]
$$

Conversely, assume that $T \in[\mathcal{R P}]$. By Lemma 2.1 we obtain

$$
T^{2}+T^{* 2}=U_{2}^{*}\left(T+T^{*}\right) U_{2} \geq 0 \Longrightarrow T \in[2 \mathcal{R P}]
$$

Also

$$
T^{3}+T^{* 3}=U_{3}^{*}\left(T^{2}+T^{* 2}\right) U_{3} \geq 0 \Longrightarrow T \in[3 \mathcal{R} \mathcal{P}]
$$

Repeating the process we obtain

$$
T^{n}+T^{* n}=U_{n}^{*}\left(T^{n-1}+T^{* n-1}\right) U_{n} \geq 0 \Longrightarrow T \in[n \mathcal{R} \mathcal{P}]
$$

This completes the proof.
Proposition 2.18. Let $T \in \mathcal{B}(\mathcal{H})$. Consider $F=T^{n-1}+T^{*}$ and $G=T^{n-1}-T^{*}$ for some $n \in \mathbb{N}$. If T is normal then the following equivalence holds

$$
T \in[n \mathcal{R P}] \text { if and only if } F F^{*} \geq G G^{*} .
$$

Proof. Since T is normal we have

$$
\begin{aligned}
F F^{*}-G G^{*} & =\left(T^{n-1}+T^{*}\right)\left(T^{* n-1}+T\right)-\left(T^{n-1}-T^{*}\right)\left(T^{* n-1}-T\right) \\
& =2\left(T^{n}+T^{* n}\right)
\end{aligned}
$$

From which it follows that

$$
T \in[n \mathcal{R P}] \Longleftrightarrow T^{n}+T^{* n} \geq 0 \Longleftrightarrow F F^{*}-G G^{*} \geq 0
$$

Proposition 2.19. Let $T \in \mathcal{B}(\mathcal{H})$.
(1) If T is almost subprojection, then

$$
T \in[2 \mathcal{R P}] \text { if and only if } T \in[4 \mathcal{R} \mathcal{P}] .
$$

(2) If T is idempotent, then

$$
T \in[\mathcal{R P}] \text { if and only if } T \in[n \mathcal{R P}] \text { for } n=2,3 \ldots
$$

Proof. (1) Since T is almost subprojection, $T^{4}=T^{* 2}$ (see [4]) we have for all $x \in \mathcal{H}$

$$
\operatorname{Re}\left\langle T^{2} x \mid x\right\rangle=\operatorname{Re}\left\langle T^{* 4} x \mid x\right\rangle=\operatorname{Re}\left\langle x \mid T^{4} x\right\rangle=\operatorname{Re} \overline{\left\langle T^{4} x \mid x\right\rangle}=\operatorname{Re}\left\langle T^{4} x \mid x\right\rangle
$$

So

$$
T \in[2 \mathcal{R P}] \Longleftrightarrow T \in[4 \mathcal{R} \mathcal{P}] .
$$

(2) Since T is idempotent we have $T=T^{2}=\ldots=T^{n}$ and so that

$$
T^{n}+T^{* n}=T+T^{*}
$$

Hence the desired result.

The following examples show that a operator $T \in[n \mathcal{R P}]$ need not be almost subprojection and vice versa.
Example 2.20. Let $T=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ be an operator acting in two-dimensional complex Hilbert space. then $T \in[n \mathcal{R} \mathcal{P}]$ for all $n \in \mathbb{N}$. Now, by direct calculation $T^{4}=\left(\begin{array}{cc}1 & 0 \\ 0 & 16\end{array}\right) \neq\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right)=T^{* 2}$

Theorem 2.21. Let $T, S \in \mathcal{B}(\mathcal{H})$. Assume that $T, S \in \bigcap_{1 \leq k \leq n}[k \mathcal{R P}]$ for some integer $n=1,2, \ldots$. If $T S=S T=T+S$, then $T S \in[n \mathcal{R P}]$.

Proof. For $n=1$. Assume that T and S are in $[\mathcal{R} \mathcal{P}]$. We have

$$
T S+(T S)^{*}=T+T^{*}+S+S^{*} \geq 0
$$

and so $T S \in[\mathcal{R P}]$.
For $n=2$. Assume that T and S are in $[k \mathcal{R} \mathcal{P}]$ for $k=1,2$. We have

$$
\begin{aligned}
(T S)^{2}+(T S)^{* 2} & =(T+S)^{2}+\left(T^{*}+S^{*}\right)^{2} \\
& =T^{2}+2 T S+S^{2}+T^{* 2}+2 T^{*} S^{*}+S^{* 2} \\
& =\underbrace{T^{2}+T^{* 2}}_{\geq 0}+2 \underbrace{\left(T S+(T S)^{*}\right)}_{\geq 0}+\underbrace{S^{2}+S^{* 2}}_{\geq 0}
\end{aligned}
$$

and so $T S \in[2 \mathcal{R P}]$. Assume that this result is true for $n-1$ and we prove it for n. Let T and S are in $[k \mathcal{R P}]$ for $k=1,2, \ldots, n$.
Since $T S=S T=T+S$ we have

$$
\begin{aligned}
(T S)^{n}+(T S)^{* n} & =(T+S)^{n}+\left(T^{*}+S^{*}\right)^{n} \\
& =T^{n}+T^{* n}+\sum_{1 \leq p \leq n-1}\binom{n}{p}\left(T^{p} S^{n-p}+T^{* p} S^{* n-p}\right)+S^{n}+S^{* n}
\end{aligned}
$$

It suffice to prove under the assumptions that $T^{p} S^{n-p}+T^{* p} S^{* n-p} \geq 0$ for $p=1,2, \ldots, n-1$.

For $p=1$ we have

$$
\begin{aligned}
T S^{n-1}+T^{*} S^{* n-1} & =T S S^{n-2}+T^{*} S^{*} S^{* n-2} \\
& =(T+S) S^{n-2}+\left(T^{*}+S^{*}\right) S^{* n-2} \\
& =T S^{n-2}+T^{*} S^{* n-2}+\underbrace{S^{n-1}+S^{* n-1}}_{\geq 0} \\
& =T S S^{n-3}+T^{*} S^{*} S^{* n-3}+\underbrace{S^{n-1}+S^{* n-1}}_{\geq 0} \\
& =T S^{n-3}+T^{*} S^{* n-3}+\underbrace{S^{n-2}+S^{* n-2}}_{\geq 0}+\underbrace{S^{n-1}+S^{* n-1}}_{\geq 0} \\
& =\ldots \quad \ldots \\
& =\underbrace{T+T^{*}}_{\geq 0}+\sum_{1 \leq k \leq n-1}(\underbrace{S^{k}+S^{* k}}_{\geq 0}) .
\end{aligned}
$$

For $p=2$ we have

$$
\begin{aligned}
T^{2} S^{n-2}+T^{* 2} S^{* n-2}= & T S T S^{n-3}+T^{*} S^{*} T^{*} S^{* n-3} \\
= & T^{2} S^{n-3}+T S^{n-2}+T^{* 2} S^{* n-3}+T^{*} S^{* n-2} \\
= & T^{2} S^{n-4}+T S^{n-3}+T S^{n-2}+T^{* 2} S^{* n-4}+T^{*} S^{* n-3}+T^{*} S^{* n-2} \\
= & T^{2} S^{n-5}+T S^{n-4}+T S^{n-3}+T S^{n-2} \\
& +T^{* 2} S^{* n-5}+T^{*} S^{* n-4}+T^{*} S^{* n-3}+T^{*} S^{* n-2} \\
= & \ldots \quad \cdots \quad \ldots \quad \cdots \\
= & T^{2}+T^{* 2}+\sum_{1 \leq k \leq n-2}\left(T S^{k}+T^{*} S^{* k}\right) .
\end{aligned}
$$

A simple calculation shows that

$$
T S^{k}+T^{*} S^{* k}=T+T^{*}+\sum_{1 \leq j \leq k}\left(S^{j}+S^{* j}\right)
$$

We deduce that

$$
=\begin{aligned}
& T^{2} S^{n-2}+T^{* 2} S^{* n-2} \\
& T^{2}+T^{* 2}+\sum_{1 \leq k \leq n-2}\left(T+T^{*}+\sum_{1 \leq j \leq k}\left(S^{j}+S^{* j}\right)\right) \geq 0 ~ . ~
\end{aligned}
$$

Same way for $p=3, \ldots ., n-1$. Hence $(T S)^{n}+(T S)^{* n} \geq 0$ as required.
Example 2.22. Let $S=T=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$. It is easy to see that $T \in[k \mathcal{R P}]$ for $k=1,2, \ldots, n$ and $T S \in[n \mathcal{R P}]$.
The following example shows that Theorem 2.3 is not necessarily true if $T S \neq S+T$.
Example 2.23. Let $T=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$. We have T and S are in $[\mathcal{R P}], T S \neq T+S$ and $T S \notin[2 \mathcal{R P}]$.

ACKNOWLEDGMENT

The author would like to express his cordial gratitude to the referee for valuable advice and suggestions. I Would like also to thank Prof. O. A. Mahmoud Sid Ahmed for his helpful discussions and remarks.

References

[1] A. Brown, On a class of operators, Proc. Amer. Math. Soc, 4 (1953), 723-728.
[2] A. A. S. Jibril.On n-Power Normal Operators.The Journal for Science and Engenering . Volume 33, Number 2A.(2008) 247-251.
[3] A. A. S. Jibril, On 2-Normal Operators, Dirasat, Vol.(23) No. 2.
[4] A. A. S, Jibril, On subprojection sperators, International Mathematical Journal, 4(3), (2003), pp. 229-238.
[5] M. Guesba and M. Nadir, On operators for wich $T^{2} \geq-T^{* 2}$. The Australian Journal of Mathematical Analysis and Applications. Volume 13, Issue 1, Article 6 (2016), pp. 1-5.
[6] O. A. M. Sid Ahmed, On the class of n-power quasi-normal operators on Hilbert spaces, Bull. Math. Anal. Appl., 3(2), (2011), $213-228$.
[7] O. A. M. Sid Ahmed, On Some Normality-Like properties and Bishops property (β) for a class of operators on Hilbert spaces, International Journal of Mathematics and Mathematical Sciences, (2012),(20 pages).

[^0]: 2010 Mathematics Subject Classification. Primary 47B20; Secondary 47B99.
 Keywords. Operator; Normal, Quasi-normal; Hilbert space.
 Received: 210 April 2017; Accepted: 14 May 2017
 Communicated by Dijana Mosić
 Email address: benali4848@gmail.com , a.benali@univhb-chlef.dz (Abdelkader Benali)

