A Cline's formula for the generalized Drazin-Riesz inverses

Mohammed Karmouni ${ }^{\text {a }}$, Abdelaziz Tajmouati ${ }^{\text {b }}$
${ }^{a}$ Cadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco.
${ }^{b}$ Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco.

Abstract

Let X be Banach space, A, B, C be bounded linear operators on X satisfying operator equation $A B A=A C A$. In this note, we show that $A C$ is generalized Drazin-Riesz invertible if and only if $B A$ is generalized Drazin-Riesz invertible. So, we generalize Cline's formula to the case of the generalized Drazin-Riesz invertibility.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. An operator $T \in \mathcal{B}(X)$ is Riesz, if $T-\lambda I$ is Fredholm in the usual sense for every $\lambda \in \mathbb{C} \backslash\{0\}$ [1]. Recall that a bounded operator $T \in \mathcal{B}(X)$ is said to be a Drazin invertible if there exists a positive integer k and an operator $S \in \mathcal{B}(X)$ such that

$$
S T=T S, S^{2} T=S \text { and } T^{k+1} S=T^{k} .
$$

The concept of Drazin invertible operators has been generalized by Koliha [6] by replacing the third condition in this definition with the condition that $T S T-T$ is quasi-nilpotent. Recently, Živković-Zlatanović SČ and M D. Cvetković [10] introduced and studied a new concept of pseudo-inverse to extend the Koliha concept to "generalized Drazin-Riesz invertible". In fact, an operator $T \in \mathcal{B}(X)$ is said to be generalized Drazin-Riesz invertible, if there exists $S \in \mathcal{B}(X)$ such that

$$
T S=S T, \quad S T S=S \quad \text { and } T S T-T \text { is Riesz }
$$

In this case S is called a generalized Drazin-Riesz inverse of T. Until now we will be considered that the generalized Drazin-Riesz inverse is not unique. Živković-Zlatanović SČ and M D. Cvetković also showed that T is generalized Drazin-Riesz invertible iff it has a direct sum decomposition $T=T_{1} \oplus T_{0}$ with T_{1} is invertible and T_{0} is Riesz. The generalized Drazin-Riesz spectrum of $T \in \mathcal{B}(X)$ is defined by

$$
\sigma_{g \mathrm{DR}}(T)=\{\lambda \in \mathbb{C}, \quad T-\lambda I \text { is not generalized Drazin-Riesz invertible }\}
$$

[^0]Jacobson's Lemma [2] asserts that if $A, B \in \mathcal{B}(X)$, then

$$
\begin{equation*}
A B-I \text { is invertible } \Longleftrightarrow B A-I \text { is invertible. } \tag{1}
\end{equation*}
$$

As extensions of Jacobson's lemma, Corach et al. [4] investigated (1) under the assumption $A B A=A C A$. They studied common properties of $A C$ and $B A$ in algebraic viewpoint and also obtained some nice topological analogues. For an associative ring R with unit, R.E Cline [3] showed that if $a, b \in R$ such that $a b$ is Drazin invertible then so is $b a$ and in this case the Drazin inverse of $b a$ is $(b a)^{D}=b\left((a b)^{D}\right)^{2} a$. This formula is so-called Cline's formula. Recently, Cline's formula for Drazin and generalized Drazin in a ring under the condition $a b a=a c a$ was extended respectively by Zeng and Zhong [9] and Lian and Zeng [7]. In this note, we establish Cline's formula for the generalized Drazin-Riesz inverse for bounded linear operators under the condition $A B A=A C A$.

2. Main Results

The following lemma will be needed in the sequel.
Lemma 2.1. Suppose that $A, B, C \in \mathcal{B}(X)$ satisfy $A B A=A C A$. Then
$A C$ is Riesz $\Longleftrightarrow B A$ is Riesz.
Proof.
$A C$ is Riesz $\Longleftrightarrow \lambda I-A C$ is Fredholm for all $\lambda \in \mathbb{C} \backslash\{0\}$
$\Longleftrightarrow \lambda I-B A$ is Fredholm for all $\lambda \in \mathbb{C} \backslash\{0\}$
$\Longleftrightarrow B A$ is Riesz
see [8, Theorem 2.8].
Theorem 2.2. If $A, B, C \in \mathcal{B}(X)$ satisfy $A B A=A C A$. Then

$$
A C \text { is generalized Drazin-Riesz invertible } \Longleftrightarrow B A \text { is generalized Drazin-Riesz invertible. }
$$

In this case if S is a generalized Drazin-Riesz inverse of $A C$ then $T=B S^{2} A$ is a generalized Drazin-Riesz inverse of $B A$.

Proof. Suppose that $A C$ is generalized Drazin-Riesz invertible, then there exists $S \in \mathcal{B}(X)$ such that

$$
S(A C)=(A C) S, \quad S(A C) S=S \quad \text { and } \quad(A C) S(A C)-(A C) \text { is Riesz }
$$

Let $T=B S^{2} A$. We have

$$
T(B A)=B S^{2} A B A=B S^{2} A C A=B S A
$$

and

$$
\begin{aligned}
(B A) T & =(B A) B S^{2} A \\
& =B A B A C S^{2} S A \\
& =B A C A C S^{3} A \\
& =B A C S^{2} A=B S A .
\end{aligned}
$$

Then $T(B A)=(B A) T$.

$$
\begin{aligned}
T(B A) T & =B S^{2} A(B A) B S^{2} A \\
& =B S^{2} A B A B A C S^{3} A \\
& =B S^{2} A C A C A C S^{3} A \\
& =B S^{2} A C S A \\
& =B S S A=B S^{2} A=T
\end{aligned}
$$

Hence $T(B A) T=T$.
Now, let $Q=I-A C S$.

$$
Q A C=(I-A C S) A C=A C-A C S A C \text { is Riesz. }
$$

We have

$$
\begin{aligned}
B A-(B A)^{2} T & =B A-B A B A B S^{2} A \\
& =B A-B A B A B A C S^{2} S A \\
& =B A-B A C A C A C S^{2} S A \\
& =B A-B A C S A \\
& =B(I-A C S) A \\
& =B Q A
\end{aligned}
$$

and

$$
\begin{aligned}
A B Q A & =A B(I-A C S) A \\
& =A B A-A B A C S A \\
& =A C A-A C A C S A \\
& =A C(I-A C S) A=A C Q A
\end{aligned}
$$

Then $(Q A) B(Q A)=Q A C Q A=(Q A) C(Q A)$, and since $Q A C$ is Riesz by lemma $2.1 B A-(B A)^{2} T=B Q A$ is Riesz. Consequently, $B A$ is generalized Drazin-Riesz invertible with $T=B S^{2} A$ is a generalized Drazin-Riesz inverse of $B A$.

Conversely, if $B A$ is generalized Drazin-Riesz invertible with a generalized Drazin-Riesz inverse $T, A C$ is generalized Drazin-Riesz invertible with $A T^{2} C$ is a generalized Drazin-Riesz inverse of $A C$. Indeed:

$$
(A C) A T^{2} C=A C A T^{2} C=A B A T^{2} C=A T C
$$

$$
\begin{aligned}
\left(A T^{2} C\right)(A C)=A T^{2} C A C & =A\left(B A T^{2}\right) T C A C \\
& =A T^{3} B A C A C \\
& =A T^{3} B A B A C \\
& =A T C .
\end{aligned}
$$

Hence $(A C)\left(A T^{2} C\right)=\left(A T^{2} C\right)(A C)$.

$$
\begin{aligned}
\left(A T^{2} C\right)(A C)\left(A T^{2} C\right) & =A T^{2} C A C A T^{2} C \\
& =A T^{3} B A C A C A T^{2} C \\
& =A T^{3} B A B A C A T^{2} C \\
& =A T^{3} B A B A B A T^{2} C \\
& =A T^{2} B A B A T^{2} C \\
& =A T^{2} C .
\end{aligned}
$$

Let $Q=I-B A T$
$B A Q=(I-B A T) B A=B A-B A T B A$ is a Riesz operator.
And

$$
\begin{aligned}
A C-(A C)^{2}\left(A T^{2} C\right) & =A C-A C A C A T^{2} C \\
& =A C-A C A C A\left(B A T^{2}\right) T C \\
& =A C-A C A C A B A T^{3} C \\
& =A C-A B A C A B A T^{3} C \\
& =A C-A B A B A B A T^{3} C \\
& =A C-A B A B A T^{2} C=A C-A B A T C=A(I-B A T) C=A Q C .
\end{aligned}
$$

$$
\begin{aligned}
A Q C A & =A(I-B A T) C A \\
& =A C A-A B A T C A \\
& =A B A-A T B A C A \\
& =A B A-A T B A B A \\
& =A B A-A B A T B A \\
& =A(I-B A T) B A=A Q B A .
\end{aligned}
$$

Now, we have $(A Q) B(A Q)=(A Q) C(A Q)$. Since $B A Q$ is a Riesz operator, by lemma 2.1 $A C-(A C)^{2}\left(A T^{2} C\right)=$ $A Q C$ is Riesz.

In the case $B=C$, we have the following theorem.
Theorem 2.3. If $A, B \in \mathcal{B}(X)$. Then
$A B$ is generalized Drazin-Riesz invertible $\Longleftrightarrow B A$ is generalized Drazin-Riesz invertible
Then from Theorem 2.2 we have
Theorem 2.4. If $A, B, C \in \mathcal{B}(X)$ satisfy $A B A=A C A$. Then

$$
\sigma_{g D R}(A C)=\sigma_{g D R}(B A)
$$

Corollary 2.5. If $A, B \in \mathcal{B}(X)$. Then

$$
\sigma_{g D R}(A B)=\sigma_{g D R}(B A)
$$

Let H be complex Hilbert space. For $T \in \mathcal{B}(H)$, let $T=U|T|$ be the polar decomposition of T, where $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. The Aluthge transform of T is given by $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$. Set $B=|T|^{\frac{1}{2}}$ and $A=U|T|^{\frac{1}{2}}$. Then $A B=T$ and $B A=\tilde{T}$. From corollary 2.5 , we have the following corollary.

Corollary 2.6. Let $T \in \mathcal{B}(H)$, then

$$
\sigma_{g D R}(T)=\sigma_{g D R}(\tilde{T})
$$

Remark 2.7. 1) Generalized inverses are not unique in general. For example, consider a regular operator A and suppose that B is a generalized inverse of A. One can then easily verify that the operator $B A B$ is also a generalized inverse of A. It is well known that if a generalized Drazin inverse (Drazin inverse) exists then it is unique. A logical question to ask is whether generalized Drazin-Riesz inverses are unique provided they exist.
2) Živković-Zlatanović SČ and M D. Cvetković [10] showed that T is generalized Drazin-Riesz invertible iff there exists a bounded projection P on X which commutes with T such that T + P is Browder in the usual sense [1] and TP is Riesz. Does it exist a unique projection satisfy previous conditions?

Now, we present an additive result concerning generalized Drazin-Riesz invertible operators.
Proposition 2.8. Let $A, B \in \mathcal{B}(X)$ be generalized Drazin-Riesz invertible operators such that $A B=B A=0$. Then $A+B$ is generalized Drazin-Riesz invertible.

Proof. Suppose that A and B are generalized Drazin-Riesz invertible operators, then there exist $S \in \mathcal{B}(X)$ and $R \in \mathcal{B}(X)$ such that

$$
A S=S A \quad S^{2} A=S \quad \text { and } \quad A-A S A \quad \text { is Riesz }
$$

and

$$
B R=R B \quad R^{2} B=R \quad \text { and } \quad B-B R B \quad \text { is Riesz. }
$$

We will prove that $S+R$ is a generalized Drazin-Riesz inverse of $A+B$.
Since $A B=B A=0$, we have $A R=R A=0, B S=S B=0$ and $R S=S R=0$. Then

$$
(A+B)(S+R)=(S+R)(A+B)
$$

and

$$
(A+B)(R+S)(R+S)=(A+B)\left(R^{2}+R S+R S+S^{2}\right)=A S^{2}+B R^{2}=S+R
$$

Now, we have

$$
\begin{aligned}
(A+B)-(A+B)(A+B)(S+R) & =(A+B)-\left(A^{2}+A B+A B+B^{2}\right)(S+R) \\
& =(A+B)-\left(A^{2}+B^{2}\right)(S+R) \\
& =(A+B)-\left(A^{2} S+B^{2} R\right) \\
& =A-A^{2} S+B-B^{2} R
\end{aligned}
$$

Since $A-A^{2} S$ and $B-B^{2} R$ are Riesz and commute, by [1, Theorem 3.112] $(A+B)-(A+B)(A+B)(S+R)$ is Riesz.

Acknowledgements:

We wish to thank the referee for his valuable comments and suggestions.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
[2] B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Am. Math. Soc. 126(1998), 1055-1061.
[3] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
[4] G. Corach, B. Duggal, R. Harte, Extensions of Jacobsons lemma, Commun. Algebra 41(2013), 520-531.
[5] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly, 65(1958), 506-514.
[6] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38(1996), 367-81.
[7] H. Lian, Q. Zeng, An extension of Cline's formula for generalized Drazin inverse, Turk. Math. J. 40(2016), 161-165.
[8] Q. P. Zeng, H. J. Zhong, Common properties of bounded linear operators AC and BA: spectral theory, Math. Nachr. 287(2014) 717-725.
[9] Q. P. Zeng, H. J. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl. 427 (2015), 830-840.
[10] S. Č. Živković-Zlatanović and M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear Multilinear Algebra, 65(2017), 1171-1193.

[^0]: 2010 Mathematics Subject Classification. Primary 15A09, 47A53, 47A10.
 Keywords. Cline's formula; generalized Drazin-Riesz inverse.
 Received: 7 April 2017; Accepted: 4 March 2018
 Communicated by Dijana Mosić
 Email addresses: med89karmouni@gmail.com (Mohammed Karmouni), abdelaziz.tajmouati@usmba.ac.ma (Abdelaziz Tajmouati)

