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Abstract. Let X be Banach space, A,B,C be bounded linear operators on X satisfying operator equation
ABA = ACA. In this note, we show that AC is generalized Drazin-Riesz invertible if and only if BA
is generalized Drazin-Riesz invertible. So, we generalize Cline’s formula to the case of the generalized
Drazin-Riesz invertibility.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space and B(X) denotes the Banach algebra of all bounded
linear operators on X. An operator T ∈ B(X) is Riesz, if T − λI is Fredholm in the usual sense for every
λ ∈ C\{0} [1]. Recall that a bounded operator T ∈ B(X) is said to be a Drazin invertible if there exists a
positive integer k and an operator S ∈ B(X) such that

ST = TS, S2T = S and Tk+1S = Tk.

The concept of Drazin invertible operators has been generalized by Koliha [6] by replacing the third
condition in this definition with the condition that TST−T is quasi-nilpotent. Recently, Živković-Zlatanović
SČ and M D. Cvetković [10] introduced and studied a new concept of pseudo-inverse to extend the Koliha
concept to ”generalized Drazin-Riesz invertible”. In fact, an operator T ∈ B(X) is said to be generalized
Drazin-Riesz invertible, if there exists S ∈ B(X) such that

TS = ST, STS = S and TST − T is Riesz

In this case S is called a generalized Drazin-Riesz inverse of T. Until now we will be considered that the
generalized Drazin-Riesz inverse is not unique. Živković-Zlatanović SČ and M D. Cvetković also showed
that T is generalized Drazin-Riesz invertible iff it has a direct sum decomposition T = T1 ⊕ T0 with T1 is
invertible and T0 is Riesz. The generalized Drazin-Riesz spectrum of T ∈ B(X) is defined by

σ1DR(T) = {λ ∈ C, T − λI is not generalized Drazin-Riesz invertible}
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Jacobson’s Lemma [2] asserts that if A,B ∈ B(X), then

AB − I is invertible ⇐⇒ BA − I is invertible. (1)

As extensions of Jacobson’s lemma, Corach et al. [4] investigated (1) under the assumption ABA = ACA.
They studied common properties of AC and BA in algebraic viewpoint and also obtained some nice
topological analogues. For an associative ring R with unit, R.E Cline [3] showed that if a, b ∈ R such that ab
is Drazin invertible then so is ba and in this case the Drazin inverse of ba is (ba)D = b((ab)D)2a. This formula
is so-called Cline’s formula. Recently, Cline’s formula for Drazin and generalized Drazin in a ring under
the condition aba = aca was extended respectively by Zeng and Zhong [9] and Lian and Zeng [7]. In this
note, we establish Cline’s formula for the generalized Drazin-Riesz inverse for bounded linear operators
under the condition ABA = ACA.

2. Main Results

The following lemma will be needed in the sequel.

Lemma 2.1. Suppose that A,B,C ∈ B(X) satisfy ABA = ACA. Then

AC is Riesz ⇐⇒ BA is Riesz.

Proof.

AC is Riesz ⇐⇒ λI − AC is Fredholm for all λ ∈ C \ {0}
⇐⇒ λI − BA is Fredholm for all λ ∈ C \ {0}
⇐⇒ BA is Riesz

see [8, Theorem 2.8].

Theorem 2.2. If A,B,C ∈ B(X) satisfy ABA = ACA. Then

AC is generalized Drazin-Riesz invertible⇐⇒ BA is generalized Drazin-Riesz invertible.

In this case if S is a generalized Drazin-Riesz inverse of AC then T = BS2A is a generalized Drazin-Riesz inverse of
BA.

Proof. Suppose that AC is generalized Drazin-Riesz invertible, then there exists S ∈ B(X) such that

S(AC) = (AC)S, S(AC)S = S and (AC)S(AC) − (AC) is Riesz

Let T = BS2A. We have
T(BA) = BS2ABA = BS2ACA = BSA

and

(BA)T = (BA)BS2A
= BABACS2SA
= BACACS3A
= BACS2A = BSA.

Then T(BA) = (BA)T.
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T(BA)T = BS2A(BA)BS2A
= BS2ABABACS3A
= BS2ACACACS3A
= BS2ACSA
= BSSA = BS2A = T.

Hence T(BA)T = T.
Now, let Q = I − ACS.

QAC = (I − ACS)AC = AC − ACSAC is Riesz.

We have

BA − (BA)2T = BA − BABABS2A
= BA − BABABACS2SA
= BA − BACACACS2SA
= BA − BACSA
= B(I − ACS)A
= BQA

and

ABQA = AB(I − ACS)A
= ABA − ABACSA
= ACA − ACACSA
= AC(I − ACS)A = ACQA

Then (QA)B(QA) = QACQA = (QA)C(QA), and since QAC is Riesz by lemma 2.1 BA − (BA)2T = BQA is
Riesz. Consequently, BA is generalized Drazin-Riesz invertible with T = BS2A is a generalized Drazin-Riesz
inverse of BA.

Conversely, if BA is generalized Drazin-Riesz invertible with a generalized Drazin-Riesz inverse T, AC
is generalized Drazin-Riesz invertible with AT2C is a generalized Drazin-Riesz inverse of AC. Indeed:

(AC)AT2C = ACAT2C = ABAT2C = ATC.

(AT2C)(AC) = AT2CAC = A(BAT2)TCAC
= AT3BACAC
= AT3BABAC
= ATC.

Hence (AC)(AT2C) = (AT2C)(AC).

(AT2C)(AC)(AT2C) = AT2CACAT2C
= AT3BACACAT2C
= AT3BABACAT2C
= AT3BABABAT2C
= AT2BABAT2C
= AT2C.
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Let Q = I − BAT
BAQ = (I − BAT)BA = BA − BATBA is a Riesz operator.
And

AC − (AC)2(AT2C) = AC − ACACAT2C
= AC − ACACA(BAT2)TC
= AC − ACACABAT3C
= AC − ABACABAT3C
= AC − ABABABAT3C
= AC − ABABAT2C = AC − ABATC = A(I − BAT)C = AQC.

AQCA = A(I − BAT)CA
= ACA − ABATCA
= ABA − ATBACA
= ABA − ATBABA
= ABA − ABATBA
= A(I − BAT)BA = AQBA.

Now, we have (AQ)B(AQ) = (AQ)C(AQ). Since BAQ is a Riesz operator, by lemma 2.1 AC−(AC)2(AT2C) =
AQC is Riesz.

In the case B = C, we have the following theorem.

Theorem 2.3. If A,B ∈ B(X). Then

AB is generalized Drazin-Riesz invertible⇐⇒ BA is generalized Drazin-Riesz invertible

Then from Theorem 2.2 we have

Theorem 2.4. If A,B,C ∈ B(X) satisfy ABA = ACA. Then

σ1DR(AC) = σ1DR(BA)

Corollary 2.5. If A,B ∈ B(X). Then

σ1DR(AB) = σ1DR(BA)

Let H be complex Hilbert space. For T ∈ B(H), let T = U|T| be the polar decomposition of T, where
|T| = (T∗T)

1
2 . The Aluthge transform of T is given by T̃ = |T| 12 U|T| 12 . Set B = |T| 12 and A = U|T| 12 . Then

AB = T and BA = T̃. From corollary 2.5, we have the following corollary.

Corollary 2.6. Let T ∈ B(H), then
σ1DR(T) = σ1DR(T̃)

Remark 2.7. 1) Generalized inverses are not unique in general. For example, consider a regular operator A and
suppose that B is a generalized inverse of A. One can then easily verify that the operator BAB is also a generalized
inverse of A. It is well known that if a generalized Drazin inverse ( Drazin inverse) exists then it is unique. A logical
question to ask is whether generalized Drazin-Riesz inverses are unique provided they exist.

2) Živković-Zlatanović SČ and M D. Cvetković [10] showed that T is generalized Drazin-Riesz invertible iff there
exists a bounded projection P on X which commutes with T such that T + P is Browder in the usual sense [1] and TP
is Riesz. Does it exist a unique projection satisfy previous conditions?
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Now, we present an additive result concerning generalized Drazin-Riesz invertible operators.

Proposition 2.8. Let A,B ∈ B(X) be generalized Drazin-Riesz invertible operators such that AB = BA = 0. Then
A + B is generalized Drazin-Riesz invertible.

Proof. Suppose that A and B are generalized Drazin-Riesz invertible operators, then there exist S ∈ B(X)
and R ∈ B(X) such that

AS = SA S2A = S and A − ASA is Riesz,

and
BR = RB R2B = R and B − BRB is Riesz.

We will prove that S + R is a generalized Drazin-Riesz inverse of A + B.
Since AB = BA = 0, we have AR = RA = 0, BS = SB = 0 and RS = SR = 0. Then

(A + B)(S + R) = (S + R)(A + B)

and
(A + B)(R + S)(R + S) = (A + B)(R2 + RS + RS + S2) = AS2 + BR2 = S + R

Now, we have

(A + B) − (A + B)(A + B)(S + R) = (A + B) − (A2 + AB + AB + B2)(S + R)
= (A + B) − (A2 + B2)(S + R)
= (A + B) − (A2S + B2R)
= A − A2S + B − B2R

Since A − A2S and B − B2R are Riesz and commute, by [1, Theorem 3.112] (A + B) − (A + B)(A + B)(S + R) is
Riesz.

Acknowledgements:

We wish to thank the referee for his valuable comments and suggestions.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, 2004.
[2] B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Am. Math. Soc. 126(1998), 1055-1061.
[3] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
[4] G. Corach, B. Duggal, R. Harte, Extensions of Jacobsons lemma, Commun. Algebra 41(2013), 520-531.
[5] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly, 65(1958), 506-514.
[6] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38(1996), 367-81.
[7] H. Lian, Q. Zeng, An extension of Cline’s formula for generalized Drazin inverse, Turk. Math. J. 40(2016), 161-165.
[8] Q. P. Zeng, H. J. Zhong, Common properties of bounded linear operators AC and BA: spectral theory, Math. Nachr. 287(2014) 717-725.
[9] Q. P. Zeng, H. J. Zhong, New results on common properties of the products AC and BA, J. Math. Anal. Appl. 427 (2015), 830-840.
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