Functional Analysis, Approximation and Computation 10 (1) (2018), 1–7

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Property (Z_{E_a}) for direct sums

Hassan Zariouh^{a,b}

^a Département Math, Centre régional des métiers de l'éducation et de la formation de l'oriental, Oujda, Maroc
^b Départ Math-Info, Labo LANO, Faculté des Sciences, Université Mohammed I, Oujda, Maroc

Abstract. We show that generally the properties (Z_{E_a}) and (Z_{Π_a}) introduced by the author are not preserved under direct sum of operators. Moreover, If *S* and *T* are Banach spaces operators satisfying property (Z_{E_a}) or (Z_{Π_a}) , we give conditions on *S* and *T* to ensure the preservation of these properties by the direct sum $S \oplus T$. Some crucial applications are also given.

1. Introduction

For *T* in the Banach algebra L(X) of bounded linear operators acting on an infinite dimensional complex Banach space *X*, we will denote by $\sigma(T)$ the spectrum of *T*, by $\sigma_a(T)$ the approximate point spectrum of *T*, by $\mathcal{N}(T)$ the null space of *T*, by $\alpha(T)$ the nullity of *T*, by $\mathcal{R}(T)$ the range of *T* and by $\beta(T)$ its defect. If $\alpha(T) < \infty$ and $\beta(T) < \infty$, then *T* is called a *Fredholm* operator and its index is defined by $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. A *Weyl* operator is a Fredholm operator of index 0 and the Weyl spectrum is defined by $\sigma_w(T) = \{\lambda \in \mathbb{C} | T - \lambda I \text{ is not a Weyl operator}\}$. $T \in L(X)$ is called a *semi-Fredholm* if $\mathcal{R}(T)$ is closed and $\alpha(T) < \infty$ (resp., $\beta(T) < \infty$).

For a bounded linear operator T and $n \in \mathbb{N}$, let $T_{[n]} : \mathcal{R}(T^n) \to \mathcal{R}(T^n)$ be the restriction of T to $\mathcal{R}(T^n)$. $T \in L(X)$ is said to be *b*-Weyl if for some integer $n \ge 0$, the range $\mathcal{R}(T^n)$ is closed and $T_{[n]}$ is Weyl; its index is defined as the index of the Weyl operator $T_{[n]}$. The respective *b*-Weyl spectrum is defined by $\sigma_{bw}(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not a b-Weyl operator}\}$. $T \in L(X)$ is called a *semi-b*-Fredholm if for some integer $n \ge 0$, the range $\mathcal{R}(T^n)$ is closed and $T_{[n]}$ is semi-Fredholm; and the *semi-b*-Fredholm spectrum is defined by $\sigma_{sbf}(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not a semi-b-Fredholm operator}\}$, see [4].

The *ascent* of an operator *T* is defined by $a(T) = \inf\{n \in \mathbb{N} \mid \mathcal{N}(T^n) = \mathcal{N}(T^{n+1})\}$, and the *descent* of *T* is defined by $\delta(T) = \inf\{n \in \mathbb{N} \mid \mathcal{R}(T^n) = \mathcal{R}(T^{n+1})\}$, with $\inf \emptyset = \infty$. According to [10], a complex number $\lambda \in \sigma(T)$ is a *pole* of the resolvent of *T* if $T - \lambda I$ has finite ascent and finite descent, and in this case they are equal. We recall that $T \in L(X)$ is said to be *left Drazin invertible* if $a(T) < \infty$ and $\mathcal{R}(T^{a(T)+1})$ is closed; and the *left-Drazin spectrum* of *T* is defined by $\sigma_{ld}(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not left Drazin invertible}\}$. A complex number $\lambda \in \sigma_a(T)$ is a *left pole* of *T* if $T - \lambda I$ is left Drazin invertible.

In the following, we recall the definition of a property which has a relevant role in local spectral theory.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A53, 47A10, 47A11

Keywords. Property (Z_{Π_a}) ; property (Z_{E_a}) ; Weyl spectrum; direct sum.

Received: 23 January 2017; Accepted: 20 June 2017

Communicated by Dragan S. Djordjević

Email address: h.zariouh@yahoo.fr (Hassan Zariouh)

Definition 1.1. [11] An operator $T \in L(X)$ is said to have the single valued extension property (SVEP) at $\lambda_0 \in \mathbb{C}$, if for every open neighborhood \mathcal{U} of λ_0 , the only analytic function $f : \mathcal{U} \longrightarrow X$ which satisfies the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in \mathcal{U}$ is the function $f \equiv 0$. An operator $T \in L(X)$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$.

It follows easily that $T \in L(X)$ has the SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$. In particular, *T* has the SVEP at every point of iso $\sigma(T)$.

Evidently, $T \in L(X)$ has SVEP at every isolated point of the spectrum. We summarize in the following list the usual notations and symbols needed later.

Notations and symbols:

iso *A*: isolated points of a subset $A \subset \mathbb{C}$, acc *A*: accumulations points of a subset $A \subset \mathbb{C}$, D(0,1): the closed unit disc in \mathbb{C} , C(0, 1): the unit circle of \mathbb{C} , $\Pi(T)$: poles of *T*, $\Pi^0(T)$: poles of *T* of finite rank, $\Pi_a(T)$: left poles of *T*, $\Pi_a^0(T)$: left poles of *T* of finite rank, $\sigma_p(T)$: eigenvalues of T, $\sigma_{v}^{0}(T)$: eigenvalues of T of finite multiplicity, $E^0(T) := \operatorname{iso} \sigma(T) \cap \sigma_p^0(T),$ $E(T) := \operatorname{iso} \sigma(T) \cap \sigma_p(T),$ $E_a^0(T) := \operatorname{iso} \sigma_a(T) \cap \sigma_p^0(T),$ $E_a(T) := \operatorname{iso} \sigma_a(T) \cap \sigma_p(T),$ $\sigma_b(T) = \sigma(T) \setminus \Pi^0(T)$: Browder spectrum of *T*, $\sigma_{ub}(T) = \sigma_a(T) \setminus \prod_a^0(T)$: upper-Browder spectrum of *T*, $\sigma_w(T)$: Weyl spectrum of T, $\sigma_{bw}(T)$: b-Weyl spectrum of *T*; the symbol \sqcup stands for the disjoint union.

Definition 1.2. [3], [5], [13], [14] Let $T \in L(X)$. We say that T satisfies: i) Property (ab) if $\sigma(T) \setminus \sigma_w(T) = \Pi_a^0(T)$. ii) Property (gab) if $\sigma(T) \setminus \sigma_{bw}(T) = \Pi_a(T)$.

iii) Property (Bab) if $\sigma(T) \setminus \sigma_{bw}(T) = \Pi_a^0(T)$.

iv) Browder's theorem if $\sigma(T) \setminus \sigma_w(T) = \Pi^0(T)$.

v) Property (Z_{E_a}) if $\sigma(T) \setminus \sigma_w(T) = E_a(T)$.

vi) Property
$$(Z_{\Pi_a})$$
 if $\sigma(T) \setminus \sigma_w(T) = \Pi_a(T)$.

Definition 1.3. Let $T \in L(X)$ and $S \in L(X)$. We will say that T and S have a shared stable sign index if for each $\lambda \notin \sigma_{sbf}(T)$ and $\mu \notin \sigma_{sbf}(S)$, $ind(T - \lambda I)$ and $ind(S - \mu I)$ have the same sign.

For examples we have:

- 1. Here and elsewhere, \mathcal{H} denotes a Hilbert space. Two hyponormal operators T and S acting on \mathcal{H} have a shared stable sign index, since $\operatorname{ind}(S \lambda I) \leq 0$ and $\operatorname{ind}(T \mu I) \leq 0$ for every $\lambda \notin \sigma_{sbf}(S)$ and $\mu \notin \sigma_{sbf}(T)$. Recall that $T \in L(\mathcal{H})$, is said to be *hyponormal* if $T^*T TT^* \geq 0$ (or equivalently $||T^*x|| \leq ||Tx||$ for all $x \in \mathcal{H}$). The class of hyponormal operators includes also *subnormal* operators and *quasinormal* operators, see [7].
- 2. It is easily verified that if $T \in L(X)$ has SVEP then $ind(T \mu I) \le 0$ for every $\mu \notin \sigma_{sbf}(T)$. So if *S* and *T* have SVEP, then they have a shared stable sign index.

In this paper, we focus on the problem of giving conditions on the direct summands to ensure that the Fredholm-type spectral properties introduced very recently by the author in [13], hold for the direct sum. More recently, several authors have worked in this direction, see for examples [6], [8], [9], [12]. The paper

is organized as follows: after giving an introduction and some definitions in the first section, we prove in the second section that property (Z_{Π_a}) is not preserved under direct sum of operators and we prove that if *S* and *T* satisfy property (Z_{Π_a}) with the supplementary condition $\Pi_a(S) \cap \rho_a(T) = \Pi_a(T) \cap \rho_a(S) = \emptyset$, then $S \oplus T$ satisfies property (Z_{Π_a}) if and only if $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. We obtain an analogous preservation result for property (Z_{E_a}) . Some applications to quasisimilar hyponormal operators are given.

2. Properties (Z_{E_a}) and (Z_{Π_a}) for direct sum of operators

We start this section by citing the following two results (see also [13]) which will be used in the proof of the main results of this paper. And in order to give a global overview of the subject, we also include their proofs.

Lemma 2.1. Let $T \in L(X)$. The following assertions hold: i) If T satisfies property (Z_{E_a}) , then $E_a(T) = E_a^0(T) = \Pi_a^0(T) = \Pi_a(T) = \Pi^0(T) = \Pi(T) = E^0(T) = E(T)$. ii) If T satisfies property (Z_{Π_a}) , then $\Pi_a^0(T) = \Pi_a(T) = \Pi^0(T) = \Pi(T)$.

Proof. i) Suppose that *T* satisfies property (Z_{E_a}) , then $\sigma(T) = \sigma_w(T) \sqcup E_a(T)$. Thus $\mu \in E_a(T) \iff \mu \in iso \sigma_a(T) \cap \sigma_w(T)^C \implies \mu \in \Pi_a^0(T)$, where $\sigma_w(T)^C$ is the complement of the Weyl spectrum of *T*. Hence $E_a(T) = E_a^0(T) = \Pi_a^0(T) = \Pi_a(T)$, $\Pi(T) = \Pi^0(T)$ and $E(T) = E^0(T)$. Consequently, $\sigma(T) = \sigma_w(T) \sqcup E_a^0(T)$. This implies that $E^0(T) = \Pi^0(T)$. Hence $E_a(T) = E_a^0(T) = \Pi_a^0(T) = \Pi_a(T)$ and $\Pi^0(T) = \Pi(T) = E^0(T)$. Since the inclusion $\Pi(T) \subset \Pi_a(T)$ is always true, it suffices to show its opposite. If $\mu \in \Pi_a(T)$, then $a(T - \mu I)$ is finite and since *T* satisfies property (Z_{E_a}) , it follows that $\mu \in \Pi(T)$ and hence the equality desired.. ii) Goes similarly with the proof of the first assertion. \Box

Theorem 2.2. Let $T \in L(X)$. The following statements are equivalent: i) T satisfies property (Z_{Π_a}) ; ii) T satisfies property (gab) and $\sigma_{bw}(T) = \sigma_w(T)$; iii) T satisfies property (ab) and $\Pi_a(T) = \Pi_a^0(T)$; iv) T satisfies property (Bab) and $\Pi_a(T) = \Pi_a^0(T)$. v) T satisfies Browder's theorem and $\Pi_a(T) = \Pi^0(T)$.

Proof. (i) \iff (ii) Suppose that *T* satisfies property (Z_{Π_a}), that's $\sigma(T) = \sigma_w(T) \sqcup \Pi_a(T)$. From Lemma 2.1, $\sigma(T) = \sigma_w(T) \sqcup \Pi_a^0(T)$. So *T* satisfies property (*ab*). As $\Pi(T) = \Pi_a(T)$, then from [5, Theorem 2.8], *T* satisfies property (*gab*). Moreover, $\sigma_{bw}(T) = \sigma(T) \setminus \Pi_a(T) = \sigma_w(T)$. The reverse implication is obvious. (i) \iff (iii) Follows directly from Lemma 2.1.

(i) \iff (iv) If *T* satisfies property (Z_{Π_a}) , then $\sigma(T) \setminus \sigma_{bw}(T) = \sigma(T) \setminus \sigma_w(T) = \Pi_a^0(T) = \Pi_a(T)$. So *T* satisfies property (*Bab*). Conversely, the property (*Bab*) for *T* implies from [14, Theorem 3.6] that $\sigma_{bw}(T) = \sigma_w(T)$. So $\sigma_w(T) = \sigma(T) \setminus \Pi_a^0(T) = \sigma(T) \setminus \Pi_a(T)$ and this means that *T* satisfies property (Z_{Π_a}) . The equivalence between assertions (i) and (v) is clear. \Box

Now, we give the following proposition which will play an important role in this paper. Hereafter, *Y* denotes an infinite dimensional complex Banach space.

Proposition 2.3. (See also [12, Lemma 3]) Let $S \in L(X)$ and $T \in L(Y)$. Then

$$\sigma_w(S \oplus T) \subseteq \sigma_w(S) \cup \sigma_w(T).$$

Proof. If $\lambda \notin \sigma_w(S) \cup \sigma_w(T)$ be arbitrary, then $S - \lambda I$ and $T - \lambda I$ are Fredholm operators of index zero. Hence $(S \oplus T) - \lambda I$ is a Fredholm operator and $\operatorname{ind}((S \oplus T) - \lambda I) = \operatorname{ind}(S - \lambda I) + \operatorname{ind}(T - \lambda I) = 0$. So $\lambda \notin \sigma_w(S \oplus T)$ and then $\sigma_w(S \oplus T) \subseteq \sigma_w(S) \cup \sigma_w(T)$. \Box

Generally, the inclusion showed in Proposition 2.3 is proper. To see this, here and elsewhere the operators *R* and *U* are defined on the Hilbert space $\ell^2(\mathbb{N})$ by

 $R(x_1, x_2, \ldots) = (0, x_1, x_2, x_3, \ldots)$ and $U(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots)$.

Then $\sigma_w(R) = \sigma_w(U) = D(0, 1)$. Since $\alpha(R \oplus U) = \beta(R \oplus U) = 1$, then $0 \notin \sigma_w(R \oplus U)$ and hence $\sigma_w(R \oplus U) \neq \sigma_w(R) \cup \sigma_w(U)$. Observe that this example shows also that $\sigma_{bw}(R \oplus U) \neq \sigma_{bw}(R) \cup \sigma_{bw}(U)$.

However, we have the following corollary:

Corollary 2.4. Let $S \in L(X)$ and $T \in L(Y)$. The following assertions hold: *i*) If $\sigma_{bw}(S \oplus T) = \sigma_{bw}(S) \cup \sigma_{bw}(T)$, then $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. *ii*) If S and T have a shared stable sign index, then $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. *iii*) If $S \oplus T$ satisfies Browder's theorem, then $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$.

Proof. i) Let $\lambda \notin \sigma_w(S \oplus T)$ be arbitrary and without loss of generality we can assume that $\lambda = 0$. Then $S \oplus T$ is a Weyl operator and so is B-Weyl operator. Thus *S* and *T* are B-Weyl operators. Since $\alpha(S) \le \alpha(S \oplus T) < \infty$ and $\alpha(T) \le \alpha(S \oplus T) < \infty$, then *S* and *T* are Weyl operators. Hence $\sigma_w(S \oplus T) \subset \sigma_w(S) \cup \sigma_w(T)$, and by Proposition 2.3, we conclude that $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$.

ii) If *S* and *T* have a shared stable sign index, then from [6, Lemma 2.2] we have $\sigma_{bw}(S \oplus T) = \sigma_{bw}(S) \cup \sigma_{bw}(T)$. So $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$.

iii) If $S \oplus T$ satisfies Browder's theorem, then $\sigma_w(S \oplus T) = \sigma_b(S \oplus T)$. As $\sigma_b(S \oplus T) = \sigma_b(S) \cup \sigma_b(T)$, then $\sigma_w(S \oplus T) = \sigma_b(S) \cup \sigma_b(T)$. Since the inclusion $\sigma_w(S) \cup \sigma_w(T) \subset \sigma_b(S) \cup \sigma_b(T)$ is always true, we then have $\sigma_w(S) \cup \sigma_w(T) \subset \sigma_w(S \oplus T)$. Hence $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. \Box

The following example shows that, in general the property (Z_{Π_a}) is not preserved under direct sum of operators.

Example 2.5. Let $T \in L(\mathbb{C}^n)$ be a nilpotent operator and let $R \in L(\ell^2(\mathbb{N})$ be the operator defined above. Then $\sigma(T) = \{0\}, \sigma_w(T) = \emptyset, \Pi_a(T) = \{0\}$. Thus $\sigma(T) \setminus \sigma_w(T) = \Pi_a(T)$ and the property (Z_{π_a}) is satisfied by T. Moreover, $\sigma(R) = D(0, 1), \sigma_w(R) = D(0, 1), \Pi_a(R) = \emptyset$. So $\sigma(R) \setminus \sigma_w(R) = \Pi_a(R)$ and R satisfies property (Z_{Π_a}) . But their direct sum $T \oplus R$ defined on the Banach space $\mathbb{C}^n \oplus \ell^2(\mathbb{N})$ does not satisfy property (Z_{Π_a}) , because $\sigma(T \oplus R) = D(0, 1)$, $\sigma_w(T \oplus R) = D(0, 1)$ and $\Pi_a(T \oplus R) = \{0\}$. Here $\Pi_a(T) \cap \rho_a(R) = \{0\}$ and $\sigma_w(T \oplus R) = \sigma_w(T) \cup \sigma_w(R)$; where $\rho_a(.) = \mathbb{C} \setminus \sigma_a(.)$.

Nonetheless, in the next theorem we explore certain sufficient conditions which ensure the preservation of property (Z_{Π_a}) under direct sum of operators.

Theorem 2.6. Suppose that $S \in L(X)$ and $T \in L(Y)$ are such that $\Pi_a(S) \cap \rho_a(T) = \Pi_a(T) \cap \rho_a(S) = \emptyset$. If S and T satisfy property (Z_{Π_a}) , then the following assertions are equivalent: (i) $S \oplus T$ satisfies property (Z_{Π_a}) ; (ii) $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$.

Proof. (ii) \implies (i) Since *S* and *T* satisfy property (Z_{Π_a}), we then have

 $[\sigma(S) \cup \sigma(T)] \setminus [\sigma_w(S) \cup \sigma_w(T)] = [(\sigma(S) \setminus \sigma_w(S)) \cap \rho(T)] \cup [(\sigma(T) \setminus \sigma_w(T)) \cap \rho(S)]$ $\cup [(\sigma(S) \setminus \sigma_w(S)) \cap (\sigma(T) \setminus \sigma_w(T))]$ $= [\Pi_a(S) \cap \rho(T)] \cup [\Pi_a(T) \cap \rho(S)] \cup [\Pi_a(S) \cap \Pi_a(T)]$

The assumption $\Pi_a(S) \cap \rho_a(T) = \Pi_a(T) \cap \rho_a(S) = \emptyset$ implies that $\Pi_a(S) \cap \rho(T) = \Pi_a(T) \cap \rho(S) = \emptyset$; where $\rho(.) = \mathbb{C} \setminus \sigma(.)$. Thus

 $[\sigma(S) \cup \sigma(T)] \setminus [\sigma_w(S) \cup \sigma_w(T)] = \prod_a(S) \cap \prod_a(T).$

On the other hand, as we know that $\sigma_{ld}(S \oplus T) = \sigma_{ld}(S) \cup \sigma_{ld}(T)$, we then have

$$\begin{aligned} \Pi_{a}(S \oplus T) &= \sigma_{a}(S \oplus T) \setminus \sigma_{ld}(S \oplus T) \\ &= [\sigma_{a}(S) \cup \sigma_{a}(T)] \setminus [\sigma_{ld}(S) \cup \sigma_{ld}(T)] \\ &= [(\sigma_{a}(S) \setminus \sigma_{ld}(S)) \cap \rho_{a}(T)] \cup [(\sigma_{a}(T) \setminus \sigma_{ld}(T)) \cap \rho_{a}(S)] \\ &\cup [(\sigma_{a}(S) \setminus \sigma_{ld}(S)) \cap (\sigma_{a}(T) \setminus \sigma_{ld}(T))] \\ &= [\Pi_{a}(S) \cap \rho_{a}(T)] \cup [\Pi_{a}(T) \cap \rho_{a}(S)] \cup [\Pi_{a}(S) \cap \Pi_{a}(T)] \\ &= \Pi_{a}(S) \cap \Pi_{a}(T). \end{aligned}$$

Hence $\Pi_a(S \oplus T) = [\sigma(S) \cup \sigma(T)] \setminus [\sigma_w(S) \cup \sigma_w(T)]$. As by hypothesis $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$, then $\Pi_a(S \oplus T) = \sigma(S \oplus T) \setminus \sigma_w(S \oplus T)$ and this shows that $S \oplus T$ satisfies property (Z_{Π_a}) . (i) \Longrightarrow (ii) If $S \oplus T$ satisfies property (Z_{Π_a}) then from Theorem 2.2, $S \oplus T$ satisfies Browder's theorem. Thus by Corollary 2.4, $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. \Box

Remark 2.7. Generally, we cannot ensure the transmission of the property (Z_{Π_a}) from two operators S and T to their direct sum even if $\Pi_a(S) \cap \rho_a(T) = \Pi_a(T) \cap \rho_a(S) = \emptyset$. For this, the operators R and U defined above satisfy property (Z_{Π_a}) , because $\sigma(U) = \sigma_w(U) = D(0, 1)$ and $\Pi_a(U) = \emptyset$. But this property is not satisfied by their direct sum, since $\Pi_a(R \oplus U) = \emptyset$, $\sigma(R \oplus U) = D(0, 1)$ and $\sigma_w(R \oplus L) \subsetneq D(0, 1)$. Remark that $\Pi_a(R) \cap \rho_a(U) = \Pi_a(U) \cap \rho_a(R) = \emptyset$.

A bounded linear operator $A \in L(X, Y)$ is said to be *quasi-invertible* if it is injective and has dense range. Two bounded linear operators $T \in L(X)$ and $S \in L(Y)$ on complex Banach spaces X and Y are *quasisimilar* provided there exist quasi-invertible operators $A \in L(X, Y)$ and $B \in L(Y, X)$ such that AT = SA and BS = TB.

Corollary 2.8. If $S \in L(\mathcal{H})$ and $T \in L(\mathcal{H})$ are quasisimilar hyponormal operators and satisfy property (Z_{Π_a}) , then $S \oplus T$ satisfies property (Z_{Π_a}) .

Proof. As *S* and *T* are quasisimilar hyponormal, then by [6, Lemma 2.8] we have $\Pi(T) = \Pi(S)$. The property (Z_{Π_a}) for *S* and for *T* entails from Lemma 2.1, that $\Pi(T) = \Pi_a(T)$ and $\Pi(S) = \Pi_a(S)$. So $\Pi_a(S) \cap \rho_a(T) = \Pi_a(T) \cap \rho_a(S) = \emptyset$. Moreover, since *S* and *T* are hyponormal operators, then they have a shared stable sign index. This implies from Corollary 2.4 that $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. But this is equivalent from Theorem 2.6, to say that $S \oplus T$ satisfies property (Z_{Π_a}) . \Box

Similarly to theorem 2.6, we prove a preservation result for property (Z_{E_a}) under direct sum of operators. Firstly remark that in general, we cannot expect that property (Z_{E_a}) will be satisfied by the direct sum $S \oplus T$ if its components satisfy property (Z_{E_a}). For instance, we give the following example:

Example 2.9. Let *T* and *R* be the operators defined in Example 2.5, then *T* and *R* satisfy property (Z_{E_a}) , because $\sigma(T) \setminus \sigma_w(T) = E_a(T) = \{0\}, \sigma(R) \setminus \sigma_w(R) = E_a(R) = \emptyset$. But $T \oplus R$ does not satisfy property (Z_{E_a}) , because $\sigma(T \oplus R) \setminus \sigma_w(T \oplus R) = \emptyset \neq E_a(T \oplus R) = \{0\}$. Here, observe that $\sigma_p(R) = \emptyset, \sigma_p(T) = \{0\}$ and $\sigma_w(T \oplus R) = \sigma_w(T) \cup \sigma_w(R) = D(0, 1)$.

However, we characterize in the next theorem the stability of property (Z_{E_a}) under direct sum via union of Weyl spectra of its summands, which in turn are supposed to have the same eigenvalues. Before this, we recall that $\sigma_p(S \oplus T) = \sigma_p(S) \cup \sigma_p(T)$. Moreover, if *A* and *B* are bounded subsets of complex plane \mathbb{C} then $\operatorname{acc}(A \cup B) = \operatorname{acc}(A) \cup \operatorname{acc}(B)$.

Theorem 2.10. Let $S \in L(X)$ and $T \in L(Y)$ be such that $\sigma_p(S) = \sigma_p(T)$. If S and T satisfy property (Z_{E_a}) , then the following assertions are equivalent: (i) $S \oplus T$ satisfies property (Z_{E_a}) ; (ii) $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. *Proof.* (ii) \Longrightarrow (i) Suppose that $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. As *S* and *T* satisfy property (Z_{E_a}) , i.e. $\sigma(S) \setminus \sigma_w(S) = E_a(S)$ and $\sigma(T) \setminus \sigma_w(T) = E_a(T)$, we then have

$$\sigma(S \oplus T) \setminus \sigma_w(S \oplus T) = [(\sigma(S) \setminus \sigma_w(S)) \cap \rho(T)] \cup [(\sigma(T) \setminus \sigma_w(T)) \cap \rho(S)] \\ \cup [(\sigma(S) \setminus \sigma_w(S)) \cap (\sigma(T) \setminus \sigma_w(T))] \\ = [E_a(T) \cap \rho(S)] \cup [E_a(S) \cap \rho(T)] \cup [E_a(S) \cap E_a(T)].$$

Since by hypothesis $\sigma_p(T) = \sigma_p(S)$, then $E_a(T) \cap \rho_a(S) = E_a(S) \cap \rho_a(T) = \emptyset$ which implies that $E_a(T) \cap \rho(S) = E_a(S) \cap \rho(T) = \emptyset$. Thus

$$\sigma(S \oplus T) \setminus \sigma_w(S \oplus T) = E_a(S) \cap E_a(T).$$

On the other hand, $\sigma_p(S \oplus T) = \sigma_p(S) = \sigma_p(T)$. This implies that

$$\begin{split} E_a(S \oplus T) &= \{ \operatorname{iso}\sigma_a(S \oplus T) \} \cap \sigma_p(S \oplus T) \\ &= \{ \operatorname{iso}[\sigma_a(S) \cup \sigma_a(T)] \} \cap \sigma_p(S) \\ &= \{ [\sigma_a(S) \cup \sigma_a(T)] \setminus \operatorname{acc}[\sigma_a(S) \cup \sigma_a(T)] \} \cap \sigma_p(S) \\ &= \{ [\sigma_a(S) \cup \sigma_a(T)] \setminus [\operatorname{acc}\sigma_a(S) \cup \operatorname{acc}\sigma_a(T)] \} \cap \sigma_p(S) \\ &= \{ [\operatorname{iso}\sigma_a(S) \cap \rho_a(T)] \cup [\operatorname{iso}\sigma_a(T) \cap \rho_a(S)] \cup [\operatorname{iso}\sigma_a(S) \cap \operatorname{iso}\sigma_a(T)] \} \cap \sigma_p(S) \\ &= [E_a(S) \cap \rho_a(T)] \cup [E_a(T) \cap \rho_a(S)] \cup [E_a(S) \cap E_a(T)] \\ &= E_a(S) \cap E_a(T). \end{split}$$

Hence $\sigma(S \oplus T) \setminus \sigma_w(S \oplus T) = E_a(S \oplus T)$ and this shows that property (Z_{E_a}) is satisfied by $S \oplus T$. (i) \Longrightarrow (ii) If $S \oplus T$ satisfies property (Z_{E_a}) , then by Lemma 2.1, $S \oplus T$ satisfies property (Z_{Π_a}) . Therefore we have the equality $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$, as seen in the proof of Theorem 2.6. \Box

Corollary 2.11. Let $S \in L(X)$ and $T \in L(Y)$ be quasisimilar operators satisfying property (Z_{E_a}) . If S or T has SVEP, then $S \oplus T$ satisfies property (Z_{E_a}) .

Proof. The quasisimilarity of *S* and *T* implies that $\sigma_p(S) = \sigma_p(T)$. It implies also from [1, Theorem 2.15] that *S* and *T* have SVEP. So they have a shared stable sign index and hence $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$. But this is equivalent from Theorem 2.10, to say that $S \oplus T$ satisfies property (Z_{E_a}) . \Box

Examples 2.12.

- 1. A bounded linear operator $T \in L(\mathcal{H})$ is said to be p-hyponormal, with $0 , if <math>(T^*T)^p \ge (TT^*)^p$ and is said to be log-hyponormal if T is invertible and satisfies $\log(T^*T) \ge \log(TT^*)$. According to [2], if $T \in L(\mathcal{H})$ is invertible and p-hyponormal, there exists $S \in L(\mathcal{H})$ log-hyponormal quasisimilar to T. Then $\sigma_p(S) = \sigma_p(T)$. Since S has SVEP, then S and T have a shared stable sign index and so $\sigma_w(S \oplus T = \sigma_w(S) \cup \sigma_w(T)$. Moreover, if S and T satisfy property (Z_{E_a}) , then $S \oplus T$ satisfies property (Z_{E_a}) .
- 2. Let *V* denote the Volterra operator on the Banach space *C*[0, 1] defined by $V(f)(x) = \int_0^x f(t)dt$ for all $f \in C[0, 1]$. *V* is injective and quasinilpotent. $\sigma(V) = \sigma_{av}(V) = \{0\}$ and $\Pi_a(V) = \emptyset$. So *V* satisfies property (Z_{Π_a}) . It is already mentioned that *R* satisfies property (Z_{Π_a}) . As *R* and *V* have SVEP, then they have a shared stable sign index. On the other hand, $\Pi_a(R) \cap \rho_a(V) = \Pi_a(V) \cap \rho_a(R) = \emptyset$. Hence $V \oplus R$ satisfies property (Z_{Π_a}) .

We finish this paper by posing the following two questions arising from Corollary 2.4. Let $S \in L(X)$ and $T \in L(Y)$. Is it true that? 1. If $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$, then $\sigma_{bw}(S \oplus T) = \sigma_{bw}(S) \cup \sigma_{bw}(T)$. 2. If $\sigma_w(S \oplus T) = \sigma_w(S) \cup \sigma_w(T)$, then $S \oplus T$ satisfies Browder's theorem.

Acknowledgment. The author is grateful to the referee for helpful comments concerning this paper.

H. Zariouh / FAAC 10 (1) (2018), 1-7

References

- [1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic Publishers, Dordrecht, 2004.
- [2] A. Aluthge, On *p*-hyponormal operators for 0 , Integr. Equ. and Oper. Theory,**13**(1990), 307–315.
- [3] B. A. Barnes, *Riesz points and Weyls theorem*, Integral Equations Oper. Theory, **34** (1999), 187-196.
- [4] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
- [5] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik, 62 (2010), 145–154.
- [6] M. Berkani, H. Zariouh, Weyl-type theorems for direct sums, Bull. Korean. Math. Soc. 49 (2012), 1027–1040.
- [7] J. B. Conway, The theory of subnormal operators, Mathematical Surveys and mlonographs. American Mathematical Society, Springer, Providence, New York, 1992.
- [8] S. V. Djordjević and Y. M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc. 131 (2003), 2543–2547.
- [9] B. P. Duggal, C. S. Kubrusly, Weyl's theorem for direct sums, Studia Sci. Math. Hungar. 44 (2007), 275–290.
- [10] H. Heuser, Functional Analysis, John Wiley & Sons Inc, New York, 1982.
- [11] K. B. Laursen and M. M. Neumann, An introduction to Local Spectral Theory, the Clarendon Press, Oxford university Press, New York, 2000.
- [12] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), 131–138.
- [13] H. Zariouh, On the property (Z_{E_a}) , Rend. Circ. Mat. Palermo, Rend. Circ. Mat. Palermo, 65 (2016), 323–331.
- [14] H. Zariouh and H. Zguitti, Variations on Browder's theorem, Acta Math. Univ. Comenianae, 81 (2012), 255-264.