Property $\left(Z_{E_{a}}\right)$ for direct sums

Hassan Zariouh ${ }^{\text {a,b }}$
${ }^{a}$ Département Math, Centre régional des métiers de l'éducation et de la formation de l'oriental, Oujda, Maroc
${ }^{b}$ Départ Math-Info, Labo LANO, Faculté des Sciences, Université Mohammed I, Oujda, Maroc

Abstract

We show that generally the properties $\left(Z_{E_{a}}\right)$ and $\left(Z_{\Pi_{a}}\right)$ introduced by the author are not preserved under direct sum of operators. Moreover, If S and T are Banach spaces operators satisfying property $\left(Z_{E_{a}}\right)$ or $\left(Z_{\Pi_{a}}\right)$, we give conditions on S and T to ensure the preservation of these properties by the direct sum $S \oplus T$. Some crucial applications are also given.

1. Introduction

For T in the Banach algebra $L(X)$ of bounded linear operators acting on an infinite dimensional complex Banach space X, we will denote by $\sigma(T)$ the spectrum of T, by $\sigma_{a}(T)$ the approximate point spectrum of T, by $\mathcal{N}(T)$ the null space of T, by $\alpha(T)$ the nullity of T, by $\mathcal{R}(T)$ the range of T and by $\beta(T)$ its defect. If $\alpha(T)<\infty$ and $\beta(T)<\infty$, then T is called a Fredholm operator and its index is defined by ind $(T)=\alpha(T)-\beta(T)$. A Weyl operator is a Fredholm operator of index 0 and the Weyl spectrum is defined by $\sigma_{w}(T)=\{\lambda \in$ $\mathbb{C} \mid T-\lambda I$ is not a Weyl operator\}. $T \in L(X)$ is called a semi-Fredholm if $\mathcal{R}(T)$ is closed and $\alpha(T)<\infty$ (resp., $\beta(T)<\infty)$.

For a bounded linear operator T and $n \in \mathbb{N}$, let $T_{[n]}: \mathcal{R}\left(T^{n}\right) \rightarrow \mathcal{R}\left(T^{n}\right)$ be the restriction of T to $\mathcal{R}\left(T^{n}\right)$. $T \in L(X)$ is said to be b-Weyl if for some integer $n \geq 0$, the range $\mathcal{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is Weyl; its index is defined as the index of the Weyl operator $T_{[n]}$. The respective b-Weyl spectrum is defined by $\sigma_{b w}(T)=\{\lambda \in \mathbb{C} \mid T-\lambda I$ is not a b-Weyl operator $\} . T \in L(X)$ is called a semi-b-Fredholm if for some integer $n \geq 0$, the range $\mathcal{R}\left(T^{n}\right)$ is closed and $T_{[n]}$ is semi-Fredholm; and the semi-b-Fredholm spectrum is defined by $\sigma_{\text {sbf }}(T)=\{\lambda \in \mathbb{C} \mid T-\lambda I$ is not a semi-b-Fredholm operator $\}$, see [4].

The ascent of an operator T is defined by $a(T)=\inf \left\{n \in \mathbb{N} \mid \mathcal{N}\left(T^{n}\right)=\mathcal{N}\left(T^{n+1}\right)\right\}$, and the descent of T is defined by $\delta(T)=\inf \left\{n \in \mathbb{N} \mid \mathcal{R}\left(T^{n}\right)=\mathcal{R}\left(T^{n+1}\right)\right\}$, with $\inf \emptyset=\infty$. According to [10], a complex number $\lambda \in \sigma(T)$ is a pole of the resolvent of T if $T-\lambda I$ has finite ascent and finite descent, and in this case they are equal. We recall that $T \in L(X)$ is said to be left Drazin invertible if $a(T)<\infty$ and $\mathcal{R}\left(T^{a(T)+1}\right)$ is closed; and the left-Drazin spectrum of T is defined by $\sigma_{l d}(T)=\{\lambda \in \mathbb{C} \mid T-\lambda I$ is not left Drazin invertible $\}$. A complex number $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I$ is left Drazin invertible.

In the following, we recall the definition of a property which has a relevant role in local spectral theory.

[^0]Definition 1.1. [11] An operator $T \in L(X)$ is said to have the single valued extension property (SVEP) at $\lambda_{0} \in \mathbb{C}$, if for every open neighborhood \mathcal{U} of λ_{0}, the only analytic function $f: \mathcal{U} \longrightarrow X$ which satisfies the equation $(T-\lambda I) f(\lambda)=0$ for all $\lambda \in \mathcal{U}$ is the function $f \equiv 0$. An operator $T \in L(X)$ is said to have the SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$.

It follows easily that $T \in L(X)$ has the SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum $\sigma(T)$. In particular, T has the SVEP at every point of iso $\sigma(T)$.

Evidently, $T \in L(X)$ has SVEP at every isolated point of the spectrum. We summarize in the following list the usual notations and symbols needed later.

Notations and symbols:

iso A : isolated points of a subset $A \subset \mathbb{C}$,
acc A : accumulations points of a subset $A \subset \mathbb{C}$,
$D(0,1)$: the closed unit disc in \mathbb{C},
$C(0,1)$: the unit circle of \mathbb{C},
$\Pi(T)$: poles of T,
$\Pi^{0}(T)$: poles of T of finite rank,
$\Pi_{a}(T)$: left poles of T,
$\Pi_{a}^{0}(T)$: left poles of T of finite rank,
$\sigma_{p}(T)$: eigenvalues of T,
$\sigma_{p}^{0}(T)$: eigenvalues of T of finite multiplicity,
$E^{0}(T):=$ iso $\sigma(T) \cap \sigma_{p}^{0}(T)$,
$E(T):=$ iso $\sigma(T) \cap \sigma_{p}(T)$,
$E_{a}^{0}(T):=$ iso $\sigma_{a}(T) \cap \sigma_{p}^{0}(T)$,
$E_{a}(T):=$ iso $\sigma_{a}(T) \cap \sigma_{p}(T)$,
$\sigma_{b}(T)=\sigma(T) \backslash \Pi^{0}(T)$: Browder spectrum of T,
$\sigma_{u b}(T)=\sigma_{a}(T) \backslash \Pi_{a}^{0}(T)$: upper-Browder spectrum of T,
$\sigma_{w}(T)$: Weyl spectrum of T,
$\sigma_{b w}(T)$: b-Weyl spectrum of T; the symbol \sqcup stands for the disjoint union.
Definition 1.2. [3], [5], [13], [14] Let $T \in L(X)$. We say that T satisfies:
i) Property (ab) if $\sigma(T) \backslash \sigma_{w}(T)=\Pi_{a}^{0}(T)$.
ii) Property (gab) if $\sigma(T) \backslash \sigma_{b w}(T)=\Pi_{a}(T)$.
iii) Property (Bab) if $\sigma(T) \backslash \sigma_{b w}(T)=\Pi_{a}^{0}(T)$.
iv) Browder's theorem if $\sigma(T) \backslash \sigma_{w}(T)=\Pi^{0}(T)$.
v) Property $\left(Z_{E_{a}}\right)$ if $\sigma(T) \backslash \sigma_{w}(T)=E_{a}(T)$.
vi) Property $\left(Z_{\Pi_{a}}\right)$ if $\sigma(T) \backslash \sigma_{w}(T)=\Pi_{a}(T)$.

Definition 1.3. Let $T \in L(X)$ and $S \in L(X)$. We will say that T and S have a shared stable sign index if for each $\lambda \notin \sigma_{s b f}(T)$ and $\mu \notin \sigma_{\text {sbf }}(S)$, ind $(T-\lambda I)$ and ind $(S-\mu I)$ have the same sign.

For examples we have:

1. Here and elsewhere, \mathcal{H} denotes a Hilbert space. Two hyponormal operators T and S acting on \mathcal{H} have a shared stable sign index, since ind $(S-\lambda I) \leq 0$ and $\operatorname{ind}(T-\mu I) \leq 0$ for every $\lambda \notin \sigma_{s b f}(S)$ and $\mu \notin \sigma_{s b f}(T)$. Recall that $T \in L(\mathcal{H})$, is said to be hyponormal if $T^{*} T-T T^{*} \geq 0$ (or equivalently $\left\|T^{*} x\right\| \leq\|T x\|$ for all $x \in \mathcal{H}$). The class of hyponormal operators includes also subnormal operators and quasinormal operators, see [7].
2. It is easily verified that if $T \in L(X)$ has SVEP then $\operatorname{ind}(T-\mu I) \leq 0$ for every $\mu \notin \sigma_{\text {sbf }}(T)$. So if S and T have SVEP, then they have a shared stable sign index.

In this paper, we focus on the problem of giving conditions on the direct summands to ensure that the Fredholm-type spectral properties introduced very recently by the author in [13], hold for the direct sum. More recently, several authors have worked in this direction, see for examples [6], [8], [9], [12]. The paper
is organized as follows: after giving an introduction and some definitions in the first section, we prove in the second section that property $\left(Z_{\Pi_{a}}\right)$ is not preserved under direct sum of operators and we prove that if S and T satisfy property $\left(Z_{\Pi_{a}}\right)$ with the supplementary condition $\Pi_{a}(S) \cap \rho_{a}(T)=\Pi_{a}(T) \cap \rho_{a}(S)=\emptyset$, then $S \oplus T$ satisfies property $\left(\mathrm{Z}_{\Pi_{a}}\right)$ if and only if $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$. We obtain an analogous preservation result for property $\left(Z_{E_{a}}\right)$. Some applications to quasisimilar hyponormal operators are given.

2. Properties $\left(Z_{E_{a}}\right)$ and $\left(Z_{\Pi_{a}}\right)$ for direct sum of operators

We start this section by citing the following two results (see also [13]) which will be used in the proof of the main results of this paper. And in order to give a global overview of the subject, we also include their proofs.

Lemma 2.1. Let $T \in L(X)$. The following assertions hold:
i) If T satisfies property $\left(Z_{E_{a}}\right)$, then
$E_{a}(T)=E_{a}^{0}(T)=\Pi_{a}^{0}(T)=\Pi_{a}(T)=\Pi^{0}(T)=\Pi(T)=E^{0}(T)=E(T)$.
ii) If T satisfies property $\left(Z_{\Pi_{a}}\right)$, then $\Pi_{a}^{0}(T)=\Pi_{a}(T)=\Pi^{0}(T)=\Pi(T)$.

Proof. i) Suppose that T satisfies property $\left(Z_{E_{a}}\right)$, then $\sigma(T)=\sigma_{w}(T) \sqcup E_{a}(T)$. Thus $\mu \in E_{a}(T) \Longleftrightarrow \mu \in$ iso $\sigma_{a}(T) \cap \sigma_{w}(T)^{C} \Longrightarrow \mu \in \Pi_{a}^{0}(T)$, where $\sigma_{w}(T)^{C}$ is the complement of the Weyl spectrum of T. Hence $E_{a}(T)=E_{a}^{0}(T)=\Pi_{a}^{0}(T)=\Pi_{a}(T), \Pi(T)=\Pi^{0}(T)$ and $E(T)=E^{0}(T)$. Consequently, $\sigma(T)=\sigma_{w}(T) \sqcup E_{a}^{0}(T)$. This implies that $E^{0}(T)=\Pi^{0}(T)$. Hence $E_{a}(T)=E_{a}^{0}(T)=\Pi_{a}^{0}(T)=\Pi_{a}(T)$ and $\Pi^{0}(T)=\Pi(T)=E^{0}(T)=E(T)$. Since the inclusion $\Pi(T) \subset \Pi_{a}(T)$ is always true, it suffices to show its opposite. If $\mu \in \Pi_{a}(T)$, then $a(T-\mu I)$ is finite and since T satisfies property $\left(Z_{E_{a}}\right)$, it follows that $\mu \in \Pi(T)$ and hence the equality desired..
ii) Goes similarly with the proof of the first assertion.

Theorem 2.2. Let $T \in L(X)$. The following statements are equivalent:
i) T satisfies property $\left(Z_{\Pi_{a}}\right)$;
ii) T satisfies property (gab) and $\sigma_{b w}(T)=\sigma_{z}(T)$;
iii) T satisfies property $(a b)$ and $\Pi_{a}(T)=\Pi_{a}^{0}(T)$;
iv) T satisfies property (Bab) and $\Pi_{a}(T)=\Pi_{a}^{0}(T)$.
v) T satisfies Browder's theorem and $\Pi_{a}(T)=\Pi^{0}(T)$.

Proof. (i) \Longleftrightarrow (ii) Suppose that T satisfies property $\left(Z_{\Pi_{a}}\right)$, that's $\sigma(T)=\sigma_{z}(T) \sqcup \Pi_{a}(T)$. From Lemma 2.1, $\sigma(T)=\sigma_{w}(T) \sqcup \Pi_{a}^{0}(T)$. So T satisfies property $(a b)$. As $\Pi(T)=\Pi_{a}(T)$, then from [5, Theorem 2.8], T satisfies property ($g a b$). Moreover, $\sigma_{b w}(T)=\sigma(T) \backslash \Pi_{a}(T)=\sigma_{w}(T)$. The reverse implication is obvious.
(i) \Longleftrightarrow (iii) Follows directly from Lemma 2.1.
(i) \Longleftrightarrow (iv) If T satisfies property $\left(Z_{\Pi_{a}}\right)$, then $\sigma(T) \backslash \sigma_{b w}(T)=\sigma(T) \backslash \sigma_{w}(T)=\Pi_{a}^{0}(T)=\Pi_{a}(T)$. So T satisfies property ($B a b$). Conversely, the property (Bab) for T implies from [14, Theorem 3.6] that $\sigma_{b w}(T)=\sigma_{w}(T)$. So $\sigma_{w}(T)=\sigma(T) \backslash \Pi_{a}^{0}(T)=\sigma(T) \backslash \Pi_{a}(T)$ and this means that T satisfies property $\left(Z_{\Pi_{a}}\right)$. The equivalence between assertions (i) and (v) is clear.

Now, we give the following proposition which will play an important role in this paper. Hereafter, Y denotes an infinite dimensional complex Banach space.

Proposition 2.3. (See also [12, Lemma 3]) Let $S \in L(X)$ and $T \in L(Y)$. Then

$$
\sigma_{w}(S \oplus T) \subseteq \sigma_{w}(S) \cup \sigma_{w}(T)
$$

Proof. If $\lambda \notin \sigma_{w}(S) \cup \sigma_{w}(T)$ be arbitrary, then $S-\lambda I$ and $T-\lambda I$ are Fredholm operators of index zero. Hence $(S \oplus T)-\lambda I$ is a Fredholm operator and ind $((S \oplus T)-\lambda I)=\operatorname{ind}(S-\lambda I)+\operatorname{ind}(T-\lambda I)=0$. So $\lambda \notin \sigma_{w}(S \oplus T)$ and then $\sigma_{w}(S \oplus T) \subseteq \sigma_{w}(S) \cup \sigma_{w}(T)$.

Generally, the inclusion showed in Proposition 2.3 is proper.To see this, here and elsewhere the operators R and U are defined on the Hilbert space $\ell^{2}(\mathbb{N})$ by

$$
R\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \text { and } U\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
$$

Then $\sigma_{w}(R)=\sigma_{w}(U)=D(0,1)$. Since $\alpha(R \oplus U)=\beta(R \oplus U)=1$, then $0 \notin \sigma_{w}(R \oplus U)$ and hence $\sigma_{w}(R \oplus U) \neq$ $\sigma_{w}(R) \cup \sigma_{w}(U)$. Observe that this example shows also that $\sigma_{b w}(R \oplus U) \neq \sigma_{b w}(R) \cup \sigma_{b w}(U)$.

However, we have the following corollary:
Corollary 2.4. Let $S \in L(X)$ and $T \in L(Y)$. The following assertions hold:
i) If $\sigma_{b w}(S \oplus T)=\sigma_{b w}(S) \cup \sigma_{b w}(T)$, then $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.
ii) If S and T have a shared stable sign index, then $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.
iii) If $S \oplus T$ satisfies Browder's theorem, then $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.

Proof. i) Let $\lambda \notin \sigma_{w}(S \oplus T)$ be arbitrary and without loss of generality we can assume that $\lambda=0$. Then $S \oplus T$ is a Weyl operator and so is B-Weyl operator. Thus S and T are B-Weyl operators. Since $\alpha(S) \leq \alpha(S \oplus T)<\infty$ and $\alpha(T) \leq \alpha(S \oplus T)<\infty$, then S and T are Weyl operators. Hence $\sigma_{w}(S \oplus T) \subset \sigma_{w}(S) \cup \sigma_{w}(T)$, and by Proposition 2.3, we conclude that $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.
ii) If S and T have a shared stable sign index, then from [6, Lemma 2.2] we have $\sigma_{b w}(S \oplus T)=\sigma_{b w}(S) \cup \sigma_{b w}(T)$. So $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.
iii) If $S \oplus T$ satisfies Browder's theorem, then $\sigma_{w}(S \oplus T)=\sigma_{b}(S \oplus T)$. As $\sigma_{b}(S \oplus T)=\sigma_{b}(S) \cup \sigma_{b}(T)$, then $\sigma_{w}(S \oplus T)=\sigma_{b}(S) \cup \sigma_{b}(T)$. Since the inclusion $\sigma_{w}(S) \cup \sigma_{w}(T) \subset \sigma_{b}(S) \cup \sigma_{b}(T)$ is always true, we then have $\sigma_{w}(S) \cup \sigma_{w}(T) \subset \sigma_{w}(S \oplus T)$. Hence $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.

The following example shows that, in general the property $\left(Z_{\Pi_{a}}\right)$ is not preserved under direct sum of operators.

Example 2.5. Let $T \in L\left(\mathbb{C}^{n}\right)$ be a nilpotent operator and let $R \in L\left(\ell^{2}(\mathbb{N})\right.$ be the operator defined above. Then $\sigma(T)=\{0\}, \sigma_{w}(T)=\emptyset, \Pi_{a}(T)=\{0\}$. Thus $\sigma(T) \backslash \sigma_{w}(T)=\Pi_{a}(T)$ and the property $\left(Z_{\pi_{a}}\right)$ is satisfied by T. Moreover, $\sigma(R)=D(0,1), \sigma_{w}(R)=D(0,1), \Pi_{a}(R)=\emptyset$. So $\sigma(R) \backslash \sigma_{w}(R)=\Pi_{a}(R)$ and R satisfies property $\left(Z_{\Pi_{a}}\right)$. But their direct sum $T \oplus R$ defined on the Banach space $\mathbb{C}^{n} \oplus \ell^{2}(\mathbb{N})$ does not satisfy property $\left(Z_{\Pi_{a}}\right)$, because $\sigma(T \oplus R)=D(0,1)$, $\sigma_{w}(T \oplus R)=D(0,1)$ and $\Pi_{a}(T \oplus R)=\{0\}$. Here $\Pi_{a}(T) \cap \rho_{a}(R)=\{0\}$ and $\sigma_{w}(T \oplus R)=\sigma_{w}(T) \cup \sigma_{w}(R)$; where $\rho_{a}()=.\mathbb{C} \backslash \sigma_{a}().$.

Nonetheless, in the next theorem we explore certain sufficient conditions which ensure the preservation of property $\left(Z_{\Pi_{a}}\right)$ under direct sum of operators.

Theorem 2.6. Suppose that $S \in L(X)$ and $T \in L(Y)$ are such that $\Pi_{a}(S) \cap \rho_{a}(T)=\Pi_{a}(T) \cap \rho_{a}(S)=\emptyset$. If S and T satisfy property $\left(Z_{\Pi_{a}}\right)$, then the following assertions are equivalent:
(i) $S \oplus T$ satisfies property $\left(Z_{\Pi_{a}}\right)$;
(ii) $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.

Proof. (ii) \Longrightarrow (i) Since S and T satisfy property $\left(Z_{\Pi_{a}}\right)$, we then have

$$
\begin{aligned}
{[\sigma(S) \cup \sigma(T)] \backslash\left[\sigma_{w}(S) \cup \sigma_{w}(T)\right]=} & {\left[\left(\sigma(S) \backslash \sigma_{w}(S)\right) \cap \rho(T)\right] \cup\left[\left(\sigma(T) \backslash \sigma_{w}(T)\right) \cap \rho(S)\right] } \\
& \cup\left[\left(\sigma(S) \backslash \sigma_{w}(S)\right) \cap\left(\sigma(T) \backslash \sigma_{w}(T)\right)\right] \\
= & {\left[\Pi_{a}(S) \cap \rho(T)\right] \cup\left[\Pi_{a}(T) \cap \rho(S)\right] \cup\left[\Pi_{a}(S) \cap \Pi_{a}(T)\right] }
\end{aligned}
$$

The assumption $\Pi_{a}(S) \cap \rho_{a}(T)=\Pi_{a}(T) \cap \rho_{a}(S)=\emptyset$ implies that $\Pi_{a}(S) \cap \rho(T)=\Pi_{a}(T) \cap \rho(S)=\emptyset$; where $\rho()=.\mathbb{C} \backslash \sigma($.$) . Thus$

$$
[\sigma(S) \cup \sigma(T)] \backslash\left[\sigma_{w}(S) \cup \sigma_{w}(T)\right]=\Pi_{a}(S) \cap \Pi_{a}(T)
$$

On the other hand, as we know that $\sigma_{l d}(S \oplus T)=\sigma_{l d}(S) \cup \sigma_{l d}(T)$, we then have

$$
\begin{aligned}
\Pi_{a}(S \oplus T)= & \sigma_{a}(S \oplus T) \backslash \sigma_{l d}(S \oplus T) \\
= & {\left[\sigma_{a}(S) \cup \sigma_{a}(T)\right] \backslash\left[\sigma_{l d}(S) \cup \sigma_{l d}(T)\right] } \\
= & {\left[\left(\sigma_{a}(S) \backslash \sigma_{l d}(S)\right) \cap \rho_{a}(T)\right] \cup\left[\left(\sigma_{a}(T) \backslash \sigma_{l d}(T)\right) \cap \rho_{a}(S)\right] } \\
& \cup\left[\left(\sigma_{a}(S) \backslash \sigma_{l d}(S)\right) \cap\left(\sigma_{a}(T) \backslash \sigma_{l d}(T)\right)\right] \\
= & {\left[\Pi_{a}(S) \cap \rho_{a}(T)\right] \cup\left[\Pi_{a}(T) \cap \rho_{a}(S)\right] \cup\left[\Pi_{a}(S) \cap \Pi_{a}(T)\right] } \\
= & \Pi_{a}(S) \cap \Pi_{a}(T) .
\end{aligned}
$$

Hence $\Pi_{a}(S \oplus T)=[\sigma(S) \cup \sigma(T)] \backslash\left[\sigma_{w}(S) \cup \sigma_{w}(T)\right]$. As by hypothesis $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$, then $\Pi_{a}(S \oplus T)=\sigma(S \oplus T) \backslash \sigma_{w}(S \oplus T)$ and this shows that $S \oplus T$ satisfies property $\left(Z_{\Pi_{a}}\right)$.
(i) \Longrightarrow (ii) If $S \oplus T$ satisfies property $\left(\mathrm{Z}_{\Pi_{a}}\right)$ then from Theorem 2.2, $S \oplus T$ satisfies Browder's theorem. Thus by Corollary 2.4, $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.

Remark 2.7. Generally, we cannot ensure the transmission of the property $\left(Z_{\Pi_{a}}\right)$ from two operators S and T to their direct sum even if $\Pi_{a}(S) \cap \rho_{a}(T)=\Pi_{a}(T) \cap \rho_{a}(S)=\emptyset$. For this, the operators R and U defined above satisfy property $\left(Z_{\Pi_{a}}\right)$, because $\sigma(U)=\sigma_{w}(U)=D(0,1)$ and $\Pi_{a}(U)=\emptyset$. But this property is not satisfied by their direct sum, since $\Pi_{a}(R \oplus U)=\emptyset, \sigma(R \oplus U)=D(0,1)$ and $\sigma_{w}(R \oplus L) \subsetneq D(0,1)$. Remark that $\Pi_{a}(R) \cap \rho_{a}(U)=\Pi_{a}(U) \cap \rho_{a}(R)=\emptyset$.

A bounded linear operator $A \in L(X, Y)$ is said to be quasi-invertible if it is injective and has dense range. Two bounded linear operators $T \in L(X)$ and $S \in L(Y)$ on complex Banach spaces X and Y are quasisimilar provided there exist quasi-invertible operators $A \in L(X, Y)$ and $B \in L(Y, X)$ such that $A T=S A$ and $B S=T B$.

Corollary 2.8. If $S \in L(\mathcal{H})$ and $T \in L(\mathcal{H})$ are quasisimilar hyponormal operators and satisfy property $\left(Z_{\Pi_{a}}\right)$, then $S \oplus T$ satisfies property $\left(Z_{\Pi_{a}}\right)$.

Proof. As S and T are quasisimilar hyponormal, then by [6, Lemma 2.8] we have $\Pi(T)=\Pi(S)$. The property $\left(Z_{\Pi_{a}}\right)$ for S and for T entails from Lemma 2.1, that $\Pi(T)=\Pi_{a}(T)$ and $\Pi(S)=\Pi_{a}(S)$. So $\Pi_{a}(S) \cap \rho_{a}(T)=$ $\Pi_{a}(T) \cap \rho_{a}(S)=\emptyset$. Moreover, since S and T are hyponormal operators, then they have a shared stable sign index. This implies from Corollary 2.4 that $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$. But this is equivalent from Theorem 2.6 , to say that $S \oplus T$ satisfies property $\left(Z_{\Pi_{a}}\right)$.

Similarly to theorem 2.6 , we prove a preservation result for property $\left(Z_{E_{a}}\right)$ under direct sum of operators. Firstly remark that in general, we cannot expect that property $\left(Z_{E_{a}}\right)$ will be satisfied by the direct sum $S \oplus T$ if its components satisfy property $\left(Z_{E_{a}}\right)$. For instance, we give the following example:

Example 2.9. Let T and R be the operators defined in Example 2.5, then T and R satisfy property $\left(Z_{E_{a}}\right)$, because $\sigma(T) \backslash \sigma_{w}(T)=E_{a}(T)=\{0\}, \sigma(R) \backslash \sigma_{w}(R)=E_{a}(R)=\emptyset$. But $T \oplus R$ does not satisfy property $\left(Z_{E_{a}}\right)$, because $\sigma(T \oplus R) \backslash \sigma_{w}(T \oplus R)=\emptyset \neq E_{a}(T \oplus R)=\{0\}$. Here, observe that $\sigma_{p}(R)=\emptyset, \sigma_{p}(T)=\{0\}$ and $\sigma_{w}(T \oplus R)=$ $\sigma_{w}(T) \cup \sigma_{w}(R)=D(0,1)$.

However, we characterize in the next theorem the stability of property $\left(Z_{E_{a}}\right)$ under direct sum via union of Weyl spectra of its summands, which in turn are supposed to have the same eigenvalues. Before this, we recall that $\sigma_{p}(S \oplus T)=\sigma_{p}(S) \cup \sigma_{p}(T)$. Moreover, if A and B are bounded subsets of complex plane \mathbb{C} then $\operatorname{acc}(A \cup B)=\operatorname{acc}(A) \cup \operatorname{acc}(B)$.

Theorem 2.10. Let $S \in L(X)$ and $T \in L(Y)$ be such that $\sigma_{p}(S)=\sigma_{p}(T)$. If S and T satisfy property $\left(Z_{E_{a}}\right)$, then the following assertions are equivalent:
(i) $S \oplus T$ satisfies property $\left(\mathrm{Z}_{E_{a}}\right)$;
(ii) $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$.

Proof. (ii) \Longrightarrow (i) Suppose that $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$. As S and T satisfy property $\left(Z_{E_{a}}\right)$, i.e. $\sigma(S) \backslash \sigma_{w}(S)=$ $E_{a}(S)$ and $\sigma(T) \backslash \sigma_{w}(T)=E_{a}(T)$, we then have

$$
\begin{aligned}
\sigma(S \oplus T) \backslash \sigma_{w}(S \oplus T)= & {\left[\left(\sigma(S) \backslash \sigma_{w}(S)\right) \cap \rho(T)\right] \cup\left[\left(\sigma(T) \backslash \sigma_{w}(T)\right) \cap \rho(S)\right] } \\
& \cup\left[\left(\sigma(S) \backslash \sigma_{w}(S)\right) \cap\left(\sigma(T) \backslash \sigma_{w}(T)\right)\right] \\
= & {\left[E_{a}(T) \cap \rho(S)\right] \cup\left[E_{a}(S) \cap \rho(T)\right] \cup\left[E_{a}(S) \cap E_{a}(T)\right] . }
\end{aligned}
$$

Since by hypothesis $\sigma_{p}(T)=\sigma_{p}(S)$, then $E_{a}(T) \cap \rho_{a}(S)=E_{a}(S) \cap \rho_{a}(T)=\emptyset$ which implies that $E_{a}(T) \cap \rho(S)=$ $E_{a}(S) \cap \rho(T)=\emptyset$. Thus

$$
\sigma(S \oplus T) \backslash \sigma_{w}(S \oplus T)=E_{a}(S) \cap E_{a}(T)
$$

On the other hand, $\sigma_{p}(S \oplus T)=\sigma_{p}(S)=\sigma_{p}(T)$. This implies that

$$
\begin{aligned}
E_{a}(S \oplus T) & =\left\{\operatorname{iso} \sigma_{a}(S \oplus T)\right\} \cap \sigma_{p}(S \oplus T) \\
& =\left\{\operatorname{iso}\left[\sigma_{a}(S) \cup \sigma_{a}(T)\right]\right\} \cap \sigma_{p}(S) \\
& =\left\{\left[\sigma_{a}(S) \cup \sigma_{a}(T)\right] \backslash \operatorname{acc}\left[\sigma_{a}(S) \cup \sigma_{a}(T)\right]\right\} \cap \sigma_{p}(S) \\
& =\left\{\left[\sigma_{a}(S) \cup \sigma_{a}(T)\right] \backslash\left[\operatorname{acc} \sigma_{a}(S) \cup \operatorname{acc} \sigma_{a}(T)\right]\right\} \cap \sigma_{p}(S) \\
& =\left\{\left[i \operatorname{so} \sigma_{a}(S) \cap \rho_{a}(T)\right] \cup\left[i \operatorname{so} \sigma_{a}(T) \cap \rho_{a}(S)\right] \cup\left[\operatorname{iso} \sigma_{a}(S) \cap \operatorname{iso} \sigma_{a}(T)\right]\right\} \cap \sigma_{p}(S) \\
& =\left[E_{a}(S) \cap \rho_{a}(T)\right] \cup\left[E_{a}(T) \cap \rho_{a}(S)\right] \cup\left[E_{a}(S) \cap E_{a}(T)\right] \\
& =E_{a}(S) \cap E_{a}(T) .
\end{aligned}
$$

Hence $\sigma(S \oplus T) \backslash \sigma_{w}(S \oplus T)=E_{a}(S \oplus T)$ and this shows that property $\left(Z_{E_{a}}\right)$ is satisfied by $S \oplus T$.
(i) \Longrightarrow (ii) If $S \oplus T$ satisfies property $\left(Z_{E_{a}}\right)$, then by Lemma 2.1, $S \oplus T$ satisfies property $\left(Z_{\Pi_{a}}\right)$. Therefore we have the equality $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$, as seen in the proof of Theorem 2.6.

Corollary 2.11. Let $S \in L(X)$ and $T \in L(Y)$ be quasisimilar operators satisfying property $\left(Z_{E_{a}}\right)$. If S or T has SVEP, then $S \oplus T$ satisfies property $\left(Z_{E_{a}}\right)$.

Proof. The quasisimilarity of S and T implies that $\sigma_{p}(S)=\sigma_{p}(T)$. It implies also from [1, Theorem 2.15] that S and T have SVEP. So they have a shared stable sign index and hence $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$. But this is equivalent from Theorem 2.10, to say that $S \oplus T$ satisfies property $\left(Z_{E_{a}}\right)$.

Examples 2.12.

1. A bounded linear operator $T \in L(\mathcal{H})$ is said to be p-hyponormal, with $0<p \leq 1$, if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$ and is said to be \log-hyponormal if T is invertible and satisfies $\log \left(T^{*} T\right) \geq \log \left(T T^{*}\right)$. According to [2], if $T \in L(\mathcal{H})$ is invertible and p-hyponormal, there exists $S \in L(\mathcal{H}) \log$-hyponormal quasisimilar to T. Then $\sigma_{p}(S)=\sigma_{p}(T)$. Since S has SVEP, then S and T have a shared stable sign index and so $\sigma_{w}\left(S \oplus T=\sigma_{w}(S) \cup \sigma_{w}(T)\right.$. Moreover, if S and T satisfy property $\left(Z_{E_{a}}\right)$, then $S \oplus T$ satisfies property $\left(Z_{E_{a}}\right)$.
2. Let V denote the Volterra operator on the Banach space $C[0,1]$ defined by $V(f)(x)=\int_{0}^{x} f(t) d t$ for all $f \in$ $C[0,1] . V$ is injective and quasinilpotent. $\sigma(V)=\sigma_{w}(V)=\{0\}$ and $\Pi_{a}(V)=\emptyset$. So V satisfies property $\left(Z_{\Pi_{a}}\right)$. It is already mentioned that R satisfies property $\left(Z_{\Pi_{a}}\right)$. As R and V have SVEP, then they have a shared stable sign index. On the other hand, $\Pi_{a}(R) \cap \rho_{a}(V)=\Pi_{a}(V) \cap \rho_{a}(R)=\emptyset$. Hence $V \oplus R$ satisfies property $\left(Z_{\Pi_{a}}\right)$.

We finish this paper by posing the following two questions arising from Corollary 2.4.
Let $S \in L(X)$ and $T \in L(Y)$. Is it true that?

1. If $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$, then $\sigma_{b w}(S \oplus T)=\sigma_{b w}(S) \cup \sigma_{b w}(T)$.
2. If $\sigma_{w}(S \oplus T)=\sigma_{w}(S) \cup \sigma_{w}(T)$, then $S \oplus T$ satisfies Browder's theorem.

Acknowledgment. The author is grateful to the referee for helpful comments concerning this paper.

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic Publishers, Dordrecht, 2004.
[2] A. Aluthge, On p-hyponormal operators for $0<p<1$, Integr. Equ. and Oper. Theory, 13 (1990), 307-315.
[3] B. A. Barnes, Riesz points and Weyls theorem, Integral Equations Oper. Theory, 34 (1999), 187-196.
[4] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
[5] M. Berkani and H. Zariouh, New extended Weyl type theorems, Mat. Vesnik, 62 (2010), 145-154.
[6] M. Berkani, H. Zariouh, Weyl-type theorems for direct sums, Bull. Korean. Math. Soc. 49 (2012), 1027-1040.
[7] J. B. Conway, The theory of subnormal operators, Mathematical Surveys and mlonographs. American Mathematical Society, Springer, Providence, New York, 1992.
[8] S. V. Djordjević and Y. M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc. 131 (2003), 2543-2547.
[9] B. P. Duggal, C. S. Kubrusly, Weyl's theorem for direct sums, Studia Sci. Math. Hungar. 44 (2007), 275-290.
[10] H. Heuser, Functional Analysis, John Wiley \& Sons Inc, New York, 1982.
[11] K. B. Laursen and M. M. Neumann, An introduction to Local Spectral Theory, the Clarendon Press, Oxford university Press, New York, 2000.
[12] W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), 131-138.
[13] H. Zariouh, On the property $\left(Z_{E_{a}}\right)$, Rend. Circ. Mat. Palermo, Rend. Circ. Mat. Palermo, 65 (2016), 323-331.
[14] H. Zariouh and H. Zguitti, Variations on Browder's theorem, Acta Math. Univ. Comenianae, 81 (2012), 255-264.

[^0]: 2010 Mathematics Subject Classification. Primary 47A53, 47A10, 47A11
 Keywords. Property $\left(Z_{\Pi_{a}}\right)$; property $\left(Z_{E_{a}}\right)$; Weyl spectrum; direct sum.
 Received: 23 January 2017; Accepted: 20 June 2017
 Communicated by Dragan S. Djordjević
 Email address: h.zariouh@yahoo.fr (Hassan Zariouh)

