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Abstract. We show that generally the properties (ZEa ) and (ZΠa ) introduced by the author are not preserved
under direct sum of operators. Moreover, If S and T are Banach spaces operators satisfying property (ZEa )
or (ZΠa ), we give conditions on S and T to ensure the preservation of these properties by the direct sum
S ⊕ T. Some crucial applications are also given.

1. Introduction

For T in the Banach algebra L(X) of bounded linear operators acting on an infinite dimensional complex
Banach space X, we will denote by σ(T) the spectrum of T, by σa(T) the approximate point spectrum of
T, by N(T) the null space of T, by α(T) the nullity of T, by R(T) the range of T and by β(T) its defect. If
α(T) < ∞ and β(T) < ∞, then T is called a Fredholm operator and its index is defined by ind(T) = α(T)− β(T).
A Weyl operator is a Fredholm operator of index 0 and the Weyl spectrum is defined by σw(T) = {λ ∈
C |T − λI is not a Weyl operator}. T ∈ L(X) is called a semi-Fredholm if R(T) is closed and α(T) < ∞ (resp.,
β(T) < ∞).

For a bounded linear operator T and n ∈ N, let T[n] : R(Tn) → R(Tn) be the restriction of T to R(Tn).
T ∈ L(X) is said to be b-Weyl if for some integer n ≥ 0, the range R(Tn) is closed and T[n] is Weyl; its
index is defined as the index of the Weyl operator T[n]. The respective b-Weyl spectrum is defined by
σbw(T) = {λ ∈ C |T − λI is not a b-Weyl operator}. T ∈ L(X) is called a semi-b-Fredholm if for some integer
n ≥ 0, the range R(Tn) is closed and T[n] is semi-Fredholm; and the semi-b-Fredholm spectrum is defined by
σsb f (T) = {λ ∈ C |T − λI is not a semi-b-Fredholm operator}, see [4].

The ascent of an operator T is defined by a(T) = inf{n ∈ N | N(Tn) = N(Tn+1)}, and the descent of T
is defined by δ(T) = inf{n ∈ N | R(Tn) = R(Tn+1)}, with inf ∅ = ∞. According to [10], a complex number
λ ∈ σ(T) is a pole of the resolvent of T if T − λI has finite ascent and finite descent, and in this case they
are equal. We recall that T ∈ L(X) is said to be left Drazin invertible if a(T) < ∞ and R(Ta(T)+1) is closed; and
the left-Drazin spectrum of T is defined by σld(T) = {λ ∈ C |T − λI is not left Drazin invertible}. A complex
number λ ∈ σa(T) is a left pole of T if T − λI is left Drazin invertible.

In the following, we recall the definition of a property which has a relevant role in local spectral theory.
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Definition 1.1. [11] An operator T ∈ L(X) is said to have the single valued extension property (SVEP) at λ0 ∈ C,
if for every open neighborhood U of λ0, the only analytic function f : U −→ X which satisfies the equation
(T − λI) f (λ) = 0 for all λ ∈ U is the function f ≡ 0. An operator T ∈ L(X) is said to have the SVEP if T has the
SVEP at every point λ ∈ C.

It follows easily that T ∈ L(X) has the SVEP at every point of the boundary ∂σ(T) of the spectrum σ(T).
In particular, T has the SVEP at every point of iso σ(T).

Evidently, T ∈ L(X) has SVEP at every isolated point of the spectrum. We summarize in the following
list the usual notations and symbols needed later.
Notations and symbols:
iso A: isolated points of a subset A ⊂ C,
acc A: accumulations points of a subset A ⊂ C,
D(0, 1): the closed unit disc in C,
C(0, 1): the unit circle of C,
Π(T): poles of T,
Π0(T): poles of T of finite rank,
Πa(T): left poles of T,
Π0

a(T): left poles of T of finite rank,
σp(T): eigenvalues of T,
σ0

p(T): eigenvalues of T of finite multiplicity,
E0(T) := iso σ(T) ∩ σ0

p(T),
E(T) := iso σ(T) ∩ σp(T),
E0

a(T) := iso σa(T) ∩ σ0
p(T),

Ea(T) := iso σa(T) ∩ σp(T),
σb(T) = σ(T) \Π0(T): Browder spectrum of T,
σub(T) = σa(T) \Π0

a(T): upper-Browder spectrum of T,
σw(T): Weyl spectrum of T,
σbw(T): b-Weyl spectrum of T; the symbol ⊔ stands for the disjoint union.

Definition 1.2. [3], [5], [13], [14] Let T ∈ L(X).We say that T satisfies:
i) Property (ab) if σ(T) \ σw(T) = Π0

a(T).
ii) Property (1ab) if σ(T) \ σbw(T) = Πa(T).
iii) Property (Bab) if σ(T) \ σbw(T) = Π0

a(T).
iv) Browder’s theorem if σ(T) \ σw(T) = Π0(T).
v) Property (ZEa ) if σ(T) \ σw(T) = Ea(T).
vi) Property (ZΠa ) if σ(T) \ σw(T) = Πa(T).

Definition 1.3. Let T ∈ L(X) and S ∈ L(X). We will say that T and S have a shared stable sign index if for each
λ < σsb f (T) and µ < σsb f (S), ind(T − λI) and ind(S − µI) have the same sign.

For examples we have:

1. Here and elsewhere, H denotes a Hilbert space. Two hyponormal operators T and S acting on H
have a shared stable sign index, since ind(S − λI) ≤ 0 and ind(T − µI) ≤ 0 for every λ < σsb f (S) and
µ < σsb f (T). Recall that T ∈ L(H), is said to be hyponormal if T∗T−TT∗ ≥ 0 (or equivalently ∥T∗x∥ ≤ ∥Tx∥
for all x ∈ H). The class of hyponormal operators includes also subnormal operators and quasinormal
operators, see [7].

2. It is easily verified that if T ∈ L(X) has SVEP then ind(T − µI) ≤ 0 for every µ < σsb f (T). So if S and T
have SVEP, then they have a shared stable sign index.

In this paper, we focus on the problem of giving conditions on the direct summands to ensure that the
Fredholm-type spectral properties introduced very recently by the author in [13], hold for the direct sum.
More recently, several authors have worked in this direction, see for examples [6], [8], [9], [12]. The paper
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is organized as follows: after giving an introduction and some definitions in the first section, we prove in
the second section that property (ZΠa ) is not preserved under direct sum of operators and we prove that if
S and T satisfy property (ZΠa ) with the supplementary condition Πa(S) ∩ ρa(T) = Πa(T) ∩ ρa(S) = ∅, then
S ⊕ T satisfies property (ZΠa ) if and only if σw(S ⊕ T) = σw(S) ∪ σw(T).We obtain an analogous preservation
result for property (ZEa ). Some applications to quasisimilar hyponormal operators are given.

2. Properties (ZEa ) and (ZΠa ) for direct sum of operators

We start this section by citing the following two results (see also [13]) which will be used in the proof of
the main results of this paper. And in order to give a global overview of the subject, we also include their
proofs.

Lemma 2.1. Let T ∈ L(X). The following assertions hold:
i) If T satisfies property (ZEa ), then
Ea(T) = E0

a(T) = Π0
a(T) = Πa(T) = Π0(T) = Π(T) = E0(T) = E(T).

ii) If T satisfies property (ZΠa ), then Π0
a(T) = Πa(T) = Π0(T) = Π(T).

Proof. i) Suppose that T satisfies property (ZEa ), then σ(T) = σw(T) ⊔ Ea(T). Thus µ ∈ Ea(T) ⇐⇒ µ ∈
iso σa(T) ∩ σw(T)C =⇒ µ ∈ Π0

a(T), where σw(T)C is the complement of the Weyl spectrum of T. Hence
Ea(T) = E0

a(T) = Π0
a(T) = Πa(T), Π(T) = Π0(T) and E(T) = E0(T). Consequently, σ(T) = σw(T) ⊔ E0

a(T). This
implies that E0(T) = Π0(T). Hence Ea(T) = E0

a(T) = Π0
a(T) = Πa(T) and Π0(T) = Π(T) = E0(T) = E(T). Since

the inclusion Π(T) ⊂ Πa(T) is always true, it suffices to show its opposite. If µ ∈ Πa(T), then a(T − µI) is
finite and since T satisfies property (ZEa ), it follows that µ ∈ Π(T) and hence the equality desired..
ii) Goes similarly with the proof of the first assertion.

Theorem 2.2. Let T ∈ L(X). The following statements are equivalent:
i) T satisfies property (ZΠa );
ii) T satisfies property (1ab) and σbw(T) = σw(T);
iii) T satisfies property (ab) and Πa(T) = Π0

a(T);
iv) T satisfies property (Bab) and Πa(T) = Π0

a(T).
v) T satisfies Browder’s theorem and Πa(T) = Π0(T).

Proof. (i) ⇐⇒ (ii) Suppose that T satisfies property (ZΠa ), that’s σ(T) = σw(T) ⊔ Πa(T). From Lemma 2.1,
σ(T) = σw(T) ⊔Π0

a(T). So T satisfies property (ab). As Π(T) = Πa(T), then from [5, Theorem 2.8], T satisfies
property (1ab). Moreover, σbw(T) = σ(T) \Πa(T) = σw(T). The reverse implication is obvious.
(i)⇐⇒ (iii) Follows directly from Lemma 2.1.
(i) ⇐⇒ (iv) If T satisfies property (ZΠa ), then σ(T) \ σbw(T) = σ(T) \ σw(T) = Π0

a(T) = Πa(T). So T satisfies
property (Bab). Conversely, the property (Bab) for T implies from [14, Theorem 3.6] that σbw(T) = σw(T). So
σw(T) = σ(T) \Π0

a(T) = σ(T) \Πa(T) and this means that T satisfies property (ZΠa ). The equivalence between
assertions (i) and (v) is clear.

Now, we give the following proposition which will play an important role in this paper. Hereafter, Y
denotes an infinite dimensional complex Banach space.

Proposition 2.3. (See also [12, Lemma 3]) Let S ∈ L(X) and T ∈ L(Y). Then

σw(S ⊕ T) ⊆ σw(S) ∪ σw(T).

Proof. If λ < σw(S)∪ σw(T) be arbitrary, then S− λI and T − λI are Fredholm operators of index zero. Hence
(S ⊕ T) − λI is a Fredholm operator and ind((S ⊕ T) − λI) = ind(S − λI) + ind(T − λI) = 0. So λ < σw(S ⊕ T)
and then σw(S ⊕ T) ⊆ σw(S) ∪ σw(T).
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Generally, the inclusion showed in Proposition 2.3 is proper.To see this, here and elsewhere the operators
R and U are defined on the Hilbert space ℓ2(N) by

R(x1, x2, . . .) = (0, x1, x2, x3, . . .) and U(x1, x2, x3, . . .) = (x2, x3, . . .).

Then σw(R) = σw(U) = D(0, 1). Since α(R ⊕ U) = β(R ⊕ U) = 1, then 0 < σw(R ⊕ U) and hence σw(R ⊕ U) ,
σw(R) ∪ σw(U). Observe that this example shows also that σbw(R ⊕U) , σbw(R) ∪ σbw(U).

However, we have the following corollary:

Corollary 2.4. Let S ∈ L(X) and T ∈ L(Y). The following assertions hold:
i) If σbw(S ⊕ T) = σbw(S) ∪ σbw(T), then σw(S ⊕ T) = σw(S) ∪ σw(T).
ii) If S and T have a shared stable sign index, then σw(S ⊕ T) = σw(S) ∪ σw(T).
iii) If S ⊕ T satisfies Browder’s theorem, then σw(S ⊕ T) = σw(S) ∪ σw(T).

Proof. i) Let λ < σw(S ⊕ T) be arbitrary and without loss of generality we can assume that λ = 0. Then S ⊕ T
is a Weyl operator and so is B-Weyl operator. Thus S and T are B-Weyl operators. Since α(S) ≤ α(S⊕T) < ∞
and α(T) ≤ α(S ⊕ T) < ∞, then S and T are Weyl operators. Hence σw(S ⊕ T) ⊂ σw(S) ∪ σw(T), and by
Proposition 2.3, we conclude that σw(S ⊕ T) = σw(S) ∪ σw(T).
ii) If S and T have a shared stable sign index, then from [6, Lemma 2.2] we have σbw(S⊕T) = σbw(S)∪σbw(T).
So σw(S ⊕ T) = σw(S) ∪ σw(T).
iii) If S ⊕ T satisfies Browder’s theorem, then σw(S ⊕ T) = σb(S ⊕ T). As σb(S ⊕ T) = σb(S) ∪ σb(T), then
σw(S ⊕ T) = σb(S) ∪ σb(T). Since the inclusion σw(S) ∪ σw(T) ⊂ σb(S) ∪ σb(T) is always true, we then have
σw(S) ∪ σw(T) ⊂ σw(S ⊕ T). Hence σw(S ⊕ T) = σw(S) ∪ σw(T).

The following example shows that, in general the property (ZΠa ) is not preserved under direct sum of
operators.

Example 2.5. Let T ∈ L(Cn) be a nilpotent operator and let R ∈ L(ℓ2(N) be the operator defined above. Then
σ(T) = {0}, σw(T) = ∅, Πa(T) = {0}. Thus σ(T) \ σw(T) = Πa(T) and the property (Zπa ) is satisfied by T.Moreover,
σ(R) = D(0, 1), σw(R) = D(0, 1),Πa(R) = ∅. So σ(R) \σw(R) = Πa(R) and R satisfies property (ZΠa ). But their direct
sum T ⊕ R defined on the Banach space Cn ⊕ ℓ2(N) does not satisfy property (ZΠa ), because σ(T ⊕ R) = D(0, 1),
σw(T ⊕ R) = D(0, 1) and Πa(T ⊕ R) = {0}. Here Πa(T) ∩ ρa(R) = {0} and σw(T ⊕ R) = σw(T) ∪ σw(R); where
ρa(.) = C \ σa(.).

Nonetheless, in the next theorem we explore certain sufficient conditions which ensure the preservation
of property (ZΠa ) under direct sum of operators.

Theorem 2.6. Suppose that S ∈ L(X) and T ∈ L(Y) are such that Πa(S) ∩ ρa(T) = Πa(T) ∩ ρa(S) = ∅. If S and T
satisfy property (ZΠa ), then the following assertions are equivalent:
(i) S ⊕ T satisfies property (ZΠa );
(ii) σw(S ⊕ T) = σw(S) ∪ σw(T).

Proof. (ii) =⇒ (i) Since S and T satisfy property (ZΠa ),we then have

[σ(S) ∪ σ(T)] \ [σw(S) ∪ σw(T)] = [(σ(S) \ σw(S)) ∩ ρ(T)] ∪ [(σ(T) \ σw(T)) ∩ ρ(S)]
∪[(σ(S) \ σw(S)) ∩ (σ(T) \ σw(T))]

= [Πa(S) ∩ ρ(T)] ∪ [Πa(T) ∩ ρ(S)] ∪ [Πa(S) ∩Πa(T)]

The assumption Πa(S) ∩ ρa(T) = Πa(T) ∩ ρa(S) = ∅ implies that Πa(S) ∩ ρ(T) = Πa(T) ∩ ρ(S) = ∅; where
ρ(.) = C \ σ(.). Thus

[σ(S) ∪ σ(T)] \ [σw(S) ∪ σw(T)] = Πa(S) ∩Πa(T).
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On the other hand, as we know that σld(S ⊕ T) = σld(S) ∪ σld(T),we then have

Πa(S ⊕ T) = σa(S ⊕ T) \ σld(S ⊕ T)
= [σa(S) ∪ σa(T)] \ [σld(S) ∪ σld(T)]
= [(σa(S) \ σld(S)) ∩ ρa(T)] ∪ [(σa(T) \ σld(T)) ∩ ρa(S)]
∪[(σa(S) \ σld(S)) ∩ (σa(T) \ σld(T))]

= [Πa(S) ∩ ρa(T)] ∪ [Πa(T) ∩ ρa(S)] ∪ [Πa(S) ∩Πa(T)]
= Πa(S) ∩Πa(T).

Hence Πa(S ⊕ T) = [σ(S) ∪ σ(T)] \ [σw(S) ∪ σw(T)]. As by hypothesis σw(S ⊕ T) = σw(S) ∪ σw(T), then
Πa(S ⊕ T) = σ(S ⊕ T) \ σw(S ⊕ T) and this shows that S ⊕ T satisfies property (ZΠa ).
(i) =⇒ (ii) If S ⊕ T satisfies property (ZΠa ) then from Theorem 2.2, S ⊕ T satisfies Browder’s theorem. Thus
by Corollary 2.4, σw(S ⊕ T) = σw(S) ∪ σw(T).

Remark 2.7. Generally, we cannot ensure the transmission of the property (ZΠa ) from two operators S and T to their
direct sum even ifΠa(S)∩ ρa(T) = Πa(T)∩ ρa(S) = ∅. For this, the operators R and U defined above satisfy property
(ZΠa ), because σ(U) = σw(U) = D(0, 1) and Πa(U) = ∅. But this property is not satisfied by their direct sum, since
Πa(R ⊕U) = ∅, σ(R ⊕U) = D(0, 1) and σw(R ⊕ L) ( D(0, 1). Remark that Πa(R) ∩ ρa(U) = Πa(U) ∩ ρa(R) = ∅.

A bounded linear operator A ∈ L(X,Y) is said to be quasi-invertible if it is injective and has dense range.
Two bounded linear operators T ∈ L(X) and S ∈ L(Y) on complex Banach spaces X and Y are quasisimilar
provided there exist quasi-invertible operators A ∈ L(X,Y) and B ∈ L(Y,X) such that AT = SA and BS = TB.

Corollary 2.8. If S ∈ L(H) and T ∈ L(H) are quasisimilar hyponormal operators and satisfy property (ZΠa ), then
S ⊕ T satisfies property (ZΠa ).

Proof. As S and T are quasisimilar hyponormal, then by [6, Lemma 2.8] we haveΠ(T) = Π(S). The property
(ZΠa ) for S and for T entails from Lemma 2.1, that Π(T) = Πa(T) and Π(S) = Πa(S). So Πa(S) ∩ ρa(T) =
Πa(T) ∩ ρa(S) = ∅. Moreover, since S and T are hyponormal operators, then they have a shared stable sign
index. This implies from Corollary 2.4 that σw(S ⊕ T) = σw(S) ∪ σw(T). But this is equivalent from Theorem
2.6, to say that S ⊕ T satisfies property (ZΠa ).

Similarly to theorem 2.6, we prove a preservation result for property (ZEa ) under direct sum of operators.
Firstly remark that in general, we cannot expect that property (ZEa ) will be satisfied by the direct sum S⊕ T
if its components satisfy property (ZEa ). For instance, we give the following example:

Example 2.9. Let T and R be the operators defined in Example 2.5, then T and R satisfy property (ZEa ), because
σ(T) \ σw(T) = Ea(T) = {0}, σ(R) \ σw(R) = Ea(R) = ∅. But T ⊕ R does not satisfy property (ZEa ), because
σ(T ⊕ R) \ σw(T ⊕ R) = ∅ , Ea(T ⊕ R) = {0}. Here, observe that σp(R) = ∅, σp(T) = {0} and σw(T ⊕ R) =
σw(T) ∪ σw(R) = D(0, 1).

However, we characterize in the next theorem the stability of property (ZEa ) under direct sum via union
of Weyl spectra of its summands, which in turn are supposed to have the same eigenvalues. Before this,
we recall that σp(S ⊕ T) = σp(S) ∪ σp(T).Moreover, if A and B are bounded subsets of complex plane C then
acc(A ∪ B) = acc(A) ∪ acc(B).

Theorem 2.10. Let S ∈ L(X) and T ∈ L(Y) be such that σp(S) = σp(T). If S and T satisfy property (ZEa ), then the
following assertions are equivalent:
(i) S ⊕ T satisfies property (ZEa );
(ii) σw(S ⊕ T) = σw(S) ∪ σw(T).
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Proof. (ii) =⇒ (i) Suppose that σw(S⊕T) = σw(S)∪σw(T).As S and T satisfy property (ZEa ), i.e. σ(S) \σw(S) =
Ea(S) and σ(T) \ σw(T) = Ea(T),we then have

σ(S ⊕ T) \ σw(S ⊕ T) = [(σ(S) \ σw(S)) ∩ ρ(T)] ∪ [(σ(T) \ σw(T)) ∩ ρ(S)]
∪[(σ(S) \ σw(S)) ∩ (σ(T) \ σw(T))]

= [Ea(T) ∩ ρ(S)] ∪ [Ea(S) ∩ ρ(T)] ∪ [Ea(S) ∩ Ea(T)].

Since by hypothesis σp(T) = σp(S), then Ea(T) ∩ ρa(S) = Ea(S) ∩ ρa(T) = ∅ which implies that Ea(T) ∩ ρ(S) =
Ea(S) ∩ ρ(T) = ∅. Thus

σ(S ⊕ T) \ σw(S ⊕ T) = Ea(S) ∩ Ea(T).

On the other hand, σp(S ⊕ T) = σp(S) = σp(T). This implies that

Ea(S ⊕ T) = {isoσa(S ⊕ T)} ∩ σp(S ⊕ T)
= {iso[σa(S) ∪ σa(T)]} ∩ σp(S)
= {[σa(S) ∪ σa(T)] \ acc[σa(S) ∪ σa(T)]} ∩ σp(S)
= {[σa(S) ∪ σa(T)] \ [acc σa(S) ∪ acc σa(T)]} ∩ σp(S)
= {[isoσa(S) ∩ ρa(T)] ∪ [isoσa(T) ∩ ρa(S)] ∪ [isoσa(S) ∩ isoσa(T)]} ∩ σp(S)
= [Ea(S) ∩ ρa(T)] ∪ [Ea(T) ∩ ρa(S)] ∪ [Ea(S) ∩ Ea(T)]
= Ea(S) ∩ Ea(T).

Hence σ(S ⊕ T) \ σw(S ⊕ T) = Ea(S ⊕ T) and this shows that property (ZEa ) is satisfied by S ⊕ T.
(i) =⇒ (ii) If S ⊕ T satisfies property (ZEa ), then by Lemma 2.1, S ⊕ T satisfies property (ZΠa ). Therefore we
have the equality σw(S ⊕ T) = σw(S) ∪ σw(T), as seen in the proof of Theorem 2.6.

Corollary 2.11. Let S ∈ L(X) and T ∈ L(Y) be quasisimilar operators satisfying property (ZEa ). If S or T has SVEP,
then S ⊕ T satisfies property (ZEa ).

Proof. The quasisimilarity of S and T implies that σp(S) = σp(T). It implies also from [1, Theorem 2.15] that
S and T have SVEP. So they have a shared stable sign index and hence σw(S ⊕ T) = σw(S) ∪ σw(T). But this
is equivalent from Theorem 2.10, to say that S ⊕ T satisfies property (ZEa ).

Examples 2.12.

1. A bounded linear operator T ∈ L(H) is said to be p-hyponormal, with 0 < p ≤ 1, if (T∗T)p ≥ (TT∗)p

and is said to be log-hyponormal if T is invertible and satisfies log(T∗T) ≥ log(TT∗). According to
[2], if T ∈ L(H) is invertible and p-hyponormal, there exists S ∈ L(H) log-hyponormal quasisimilar
to T. Then σp(S) = σp(T). Since S has SVEP, then S and T have a shared stable sign index and so
σw(S⊕T = σw(S)∪σw(T).Moreover, if S and T satisfy property (ZEa ), then S⊕T satisfies property (ZEa ).

2. Let V denote the Volterra operator on the Banach space C[0, 1] defined by V( f )(x) =
∫ x

0 f (t)dt for all f ∈
C[0, 1]. V is injective and quasinilpotent. σ(V) = σw(V) = {0} and Πa(V) = ∅. So V satisfies property
(ZΠa ). It is already mentioned that R satisfies property (ZΠa ). As R and V have SVEP, then they have a
shared stable sign index. On the other hand,Πa(R)∩ ρa(V) = Πa(V)∩ ρa(R) = ∅.Hence V ⊕R satisfies
property (ZΠa ).

We finish this paper by posing the following two questions arising from Corollary 2.4.
Let S ∈ L(X) and T ∈ L(Y). Is it true that?
1. If σw(S ⊕ T) = σw(S) ∪ σw(T), then σbw(S ⊕ T) = σbw(S) ∪ σbw(T).
2. If σw(S ⊕ T) = σw(S) ∪ σw(T), then S ⊕ T satisfies Browder’s theorem.
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