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Spectral picture, perturbed Browder and Weyl theorems, and their
variations

B. P. Duggala
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Abstract. The holes (i.e., the union of the bounded components of the complement in the complex plane),
alongwith the isolated points, of the Weyl and the approximate Weyl spectrum (and their B-Fredholm
avatars) play a decisive role in determining Browder and Weyl theorems type properties for Banach space
operators and their perturbations.
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1. Introduction

Let B(X) (resp., B(H)) denote the algebra of operators, equivalently bounded linear transformations, on
a complex infinite dimensional Banach spaceX (resp., Hilbert spaceH) into itself. Given A ∈ B(X), let σ(A),
σa(A), σw(A) and σaw(A) and σab(A) denote, respectively, the spectrum, the approximate point spectrum,
the Weyl spectrum and the approximate Weyl spectrum of A; let Π0(A), Πa

0(A), E0(A) and Ea
0(A) denote,

respectively, the set of finite rank poles (of the resolvent) of A, the set of finite rank left poles of A, the
set of finite multiplicity eigenvalues which are isolated points of σ(A) and the set of finite multiplicity
eigenvalues which are isolated points of σa(A). Following current terminology [1], we say that A ∈ B(X)
satisfies Browder’s theorem (a-Browder’s theorem) , A ∈ (Bt) (resp., A ∈ (a − Bt)), if σ(A) \ σw(A) = Π0(A) (resp.,
if σa(A) \ σaw(A) = Πa

0(A)), and A satisfies Weyl’s theorem ( a-Weyl’s theorem), A ∈ (Wt) (resp.,A ∈ (a −Wt)), if
σ(A) \σw(A) = E0(A) (resp., σa(A) \σaw(A) = Ea

0(A)). Browder and Weyl type theorems have been considered
in the recent past by a number of authors and there exists in extant literature a large body of information
on Browder and Weyl thoerems, their generalized extensions and their variations (see [1, 2, 5, 6, 9–22, 24]
for further references).

If we let ησw(A) denote the connected hull of σw(A), ησw(A)C the unbounded component of the comple-
ment of ησw(A) in the complex plane C and η′σw(A) the union of the holes of σw(A), then A ∈ (Bt) if and only
if A has SVEP, the single-valued extension property, on ησw(A)C ∪ η′σw(A). Similarly, A ∈ (a − Bt) if and only if
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A has SVEP on ησaw(A)C∪η′σaw(A), A ∈ (Wt) if and only if A ∈ (Bt) and E0(A)∩{ησw(A)C∪η′σw(A)} = Π0(A)
and A ∈ (a −Wt) if and only if A ∈ (a − Bt) and Ea

0(A) ∩ {ησaw(A)C ∪ η′σaw(A)} = Πa
0(A).

We show in the following that, when proving Browder and Weyl theorem type results, the action takes
place on the holes and the isolated points of the Weyl spectrum. Thus, A ∈ (Bt) if and only if A has SVEP
on σ(A) ∩ η′σw(A) (resp., A ∈ (a − Bt) if and only if A has SVEP on σa(A) ∩ η′σaw(A)), and A ∈ (Wt) if and
only if A ∈ (Bt) and E0(A)∩ σw(A) = ∅ (resp., A ∈ (a−Wt) if and only if A ∈ (a− Bt) and Ea

0(A)∩ σaw(A) = ∅).
Similar assertions hold for the generalized versions, i.e. the B-Browder and B-Weyl versions [12], of these
results. It is seen that A satisfies property (b) [7, 9], σa(A) \ σaw(A) = Π0(A), if and only if A∗ has SVEP on
σa(A)∩η′σaw(A) (resp., A satisfies property (w) [2, 5], σa(A)\σaw(A) = E0(A), if and only if A satisfies property
(b) and E0(A)∩ σaw(A) = ∅); A satisfies property (ab) [9], σ(A) \ σw(A) = Πa

0(A), if and only if A∗ has SVEP on
isoσa(A)∩ η′σaw(A). Perturbation by commuting Riesz operators preserves SVEP at points [8]. This implies
that Browder’s theorem type results, including property (ab), survive perturbation by commuting Riesz
operators, but this does not extend to Weyl’s theorem type results. A typical result here goes as follows: If
R is a Riesz operator which commutes with A, then A satisfies property (w) (A satisfies property (b) implies
A + R satisfies property (b)) if and only if A∗ has SVEP on σa(A) ∩ η′σaw(A) and E0(A) ∩ σaw(A) = ∅ (resp., A∗

has SVEP on (σa(A+R) \σa(A))∩ η′σaw(A) and E0(A+R)∩σaw(A+R) = ∅). We apply these results, and their
generalized versions, to perturbation by commuting (Riesz operators which are) nilpotent, quasinilpotent
and finite rank operators. SVEP does not survive perturbation by non-commuting compact operators.
Given a compact operator K, it is seen that: A satisfies property (b) implies A + K satisfies property (b) (A
satisfies property (w) implies A + K satisfies property (w)) if and only if σa(A + K) ∩ η′σaw(A) ⊆ isoσ(A + K)
and isoσa(A + K) \ σa(A) ⊆ isoσ(A + K) (resp., if and only if A + K satisfies property (b) and isoσw(A) = ∅); if
the complement of σaw(A) in C is connected, then A ∈ (ab) implies A + K ∈ (ab) for all compact operators K.

2. Notation and terminology

In keeping with standard terminology, we shall denote the spectrum, the approximate point spectrum,
the surjectivity spectrum and the isolated points of the spectrum of an operator A ∈ B(X) by σ(A), σa(A),
σs(A) and isoσ(A), respectively. The boundary of a subset S of the set C of complex numbers will be denoted
by ∂S, the interior of S will denoted by int(S) and we shall write SC for the complement of S in C. We shall
denote the open unit disc by D. An operator A ∈ B(X) has SVEP, the single-valued extension property, at a
point λ0 ∈ C if for every open disc Dλ0 centered at λ0 the only analytic function f : Dλ0 −→ X satisfying
(A−λ) f (λ) = 0 is the function f ≡ 0. (Here, and in the sequel, we have shortened A−λI to A−λ.) Evidently,
every A has SVEP at points in the resolvent ρ(A) = C \ σ(A) and the boundary ∂σ(A) of the spectrum σ(A).
We say that T has SVEP if it has SVEP at every λ ∈ C. The ascent of A, asc(A) (resp. descent of A, dsc(A)), is
the least non-negative integer n such that A−n(0) = A−(n+1)(0) (resp., An(X) = An+1(X)): If no such integer
exists, then asc(A) (resp. dsc(A))= ∞. It is well known, see [1, 25, 27], that asc(A) < ∞ implies A has
SVEP at 0, dsc(A) < ∞ implies A∗ (= the dual operator) has SVEP at 0, finite ascent and descent for an
operator implies their equality, and that a point λ ∈ σ(A) is a pole (of the resolvent) of A if and only if
asc(A − λ) = dsc(A − λ) < ∞.

An operator A ∈ B(X) is: upper semi–Fredholm at λ ∈ C, λ ∈ Φus f (A) or A − λ ∈ Φ+(X), if A(X) is closed
and the deficiency index α(A − λ) = dim(A − λ)−1(0) < ∞; lower semi–Fredholm at λ ∈ C, λ ∈ Φls f (A) or
A − λ ∈ Φ−(X), if β(A − λ) = dim(X/(A − λ)(X)) < ∞; A is semi–Fredholm, λ ∈ Φ±(A) or A − λ ∈ Φ±(X),
if A − λ is either upper or lower semi–Fredholm, and A is Fredholm, λ ∈ Φ(A) or A − λ ∈ Φ(X), if
A − λ is both upper and lower semi–Fredholm. The index of a semi–Fredholm operator is the integer
ind(A) = α(A) − β(A). Corresponding to these classes of one sided Fredholm operators, we have the
following spectra: The upper semi Fredholm spectrum σus f (A) = {λ ∈ σ(A) : A − λ < Φ+(X)}, the lower semi
Fredholm spectrum σls f (A) = {λ ∈ σ(A) : A − λ < Φ−(X)} and the Fredholm spectrum σe(A) = σus f (A) ∪ σls f (A).
A ∈ B(X) is upper Weyl (resp., lower Weyl, (simply) Weyl) at 0 if it is upper semi Fredholm with ind(A) ≤ 0
(resp., lower semi Fredholm with ind(A) ≥ 0, Fredholm with ind(A) = 0). The upper (or, approximate)
Weyl spectrum, the lower (or, surjectivity) Weyl spectrum and the Weyl spectrum of A are respectively the
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sets σaw(A) = {λ ∈ σa(A) : λ < Φ+(A) or ind(A − λ) � 0}, σsw(A) = {λ ∈ σs(A) : λ < Φ−(A) or ind(A − λ) � 0}
and σw(A) = σaw(A) ∪ σsw(A). It is well known, [1, Theorems 3.16, 3.17], that a semi- Fredholm operator A
(resp., its conjugate operator A∗) has SVEP at a point λ if and only if asc(A − λ) < ∞ (resp., dsc(A − λ) < ∞)
; furthermore, if A − λ is Weyl (resp., upper Weyl), i.e. if λ ∈ Φ(A) and ind(A − λ) = 0 (resp., λ ∈ Φ+(A)
and ind(A − λ) ≤ 0), then A has SVEP at λ implies λ ∈ isoσ(A) with asc(A − λ) = dsc(A − λ) < ∞ (resp.,
λ ∈ isoσa(A) with asc(A − λ) < ∞). If we let σab(A) = {λ ∈ σa(A) : λ < Φ+(A) or asc(A − λ) ≮ ∞} and
σsb(A) = {λ ∈ σs(A) : λ < Φ−(A) or des(A − λ) ≮ ∞} denote, respectively, the upper (or approximate) and
the lower (or surjectivity) Browder spectrum of A, then σsb(A) = σab(A∗) and σb(A) = σab(A) ∪ σsb(A) is the
Browder spectrum of A. (See [1, 25–27, 32] for further information on Fredholm theory, SVEP, and isolated
points.)

A generalization of semi Fredholm and Fredholm operators is obtained as follows. We say that the
operator A ∈ B(X) is semi B-Fredholm, A ∈ ΦsB f (X), if there exists an integer n ≥ 1 such that An(X) is closed
and the induced operator A[n] = A|An(X), A[0] = A, is semi Fredholm (in the usual sense). It is seen that if
A[n] ∈ Φ±(X) for an integer n ≥ 1, then A[m] ∈ Φ±(X) for all integers m ≥ n, and one may (unambiguously)
define the index of A by ind(A) = α(A) − β(A) (= ind(A[n])) [12]. Upper semi B-Fredholm, lower semi
B-Fredholm and B-Fredholm spectra of A are then the sets
σuB f (A) = {λ ∈ σ(A) : A − λ is not upper semi B-Fredholm},
σlB f (A) = {λ ∈ σ(A) : A − λ is not lower semi B-Fredholm}, and
σBe(A) = σuB f (A) ∪ σlB f (A).

If we let

σBw(A) = {λ ∈ σ(A) : λ ∈ σBe(A) or ind(A − λ) , 0},
σaBw(A) = {λ ∈ σa(A) : λ ∈ σuB f (A) or ind(A − λ) � 0},
σsBw(A) = {λ ∈ σs(A) : λ ∈ σlB f (A) or ind(A − λ) � 0},
σBb(A) = {λ ∈ σ(A) : λ ∈ σBe(A) or asc(A − λ) , dsc(A − λ)},
σaBb(A) = {λ ∈ σa(A) : λ ∈ σuB f (A) or asc(A − λ) = ∞}, and
σsBb(A) = {λ ∈ σs(A) : λ ∈ σlB f (A) or dsc(A − λ) = ∞}

denote, respectively, the the B-Weyl, the upper B-Weyl, the lower B-Weyl, the B-Browder, the upper B-Browder
and the lower B-Browder spectrum of A, then σBw(A) = σaBw(A)∪ σsBw(A), σBb(A) = σaBb(A)∪ σsBb(A), σaBw(A) =
σsBw(A∗) and σaBb(A) = σsBb(A∗). The following implications are well known [10, Theorems 2.1 and 2.2]:
σw(A) = σb(A)⇐⇒ σBw(A) = σBb(A)⇐⇒ σ(A)\σBw(A) = Π(A)⇐⇒ A has SVEP at points in σ(A)\σBw(A),

and
σaw(A) = σab(A) ⇐⇒ σaBw(A) = σaBb(A) ⇐⇒ σa(A) \ σaBw(A) = Πa(A) ⇐⇒ A has SVEP at points in

σa(A) \ σaBw(A).
Evidently, σaw(A) ⊆ σw(A) and σaBw(A) ⊆ σBw(A); hence
σaBw(A) = σaBb(A)⇐⇒ σaw(A) = σab(A) =⇒ σw(A) = σb(A)⇐⇒ σBw(A) = σBb(A)

(where the one way implications are strict). In keeping with current terminology [10, 12, 17], we say in the
following that an operator

A satisfies generalized Browder’s theorem, or A ∈ (1Bt), if σBw(A) = σBb(A);
A satisfies generalized a-Browder’s theorem, or A ∈ (a − 1Bt), if σaBw(A) = σaBb(A).

A hole of a compact subset of C (more generally, of a subset of a topological space) is any bounded
component of its complement [26]. (Thus, a hole of σw(A) , respectively σaw(A), for an operator A is a
bounded maximal connected subset of C \ σw(A), respectively C \ σaw(A)).The connected hull ηS of a compact
subset S of C is the complement of the unique unbounded component of the complement SC of S in C. It is
clear that for every compact subset S of C,

η′S = ηS \ S = ∪Hole(S)
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(i.e., η′S is the union of the holes, equivalently bounded components of C \ S, of S). If E,F are compact
subsets of C, then ∂E ⊂ F ⊂ E implies ηE = ηF (and E can be obtained from F by filling in some of its holes).
If F has no holes, then (F = ηF, and hence) ∂E ⊂ F ⊂ E =⇒ E ⊃ F = ηF = ηE ⊃ E =⇒ E = F. If either of A
and A∗ has SVEP at a point λ < σw(A) for an operator A ∈ B(X), then λ < σb(A); equivalently, λ ∈ Π0(A) [1,
Corollary 3.53]. It is evident that if Π0(A) = σ(A) ∩ σw(A)C, then int{σ(A) ∩ σw(A)C} = ∅ (i.e., σ(A) ∩ σw(A)C

has empty interior), A has SVEP on σw(A)C and σw(A) = σb(A). Since ∂σb(A) ⊆ σw(A) ⊆ σb(A) for every
operator A ∈ B(X), ησw(A) = ησb(A) for every operator A ∈ B(X). If K ∈ B(X) is a compact operator and if
η′σw(A) = ∅, then (the argument above implies)

σw(A + K) = σw(A) =⇒ σw(A + K) = ησw(A + K) = ησb(A + K)
=⇒ σw(A + K) = σb(A + K),

i.e., given an operator A ∈ B(X), a sufficient condition for A + K to have SVEP on σw(A)C (= C \ σw(A)) for every
compact operator K ∈ B(X) is that η′σw(A) = ∅.

3. Some complementary results: Polaroid operators

An operator A ∈ B(X) is said to be polaroid (finitely polaroid) if the isolated points of the spectrum of A are
poles (of the resolvent) of A (resp., finite rank poles of A) ; A is left polaroid (finitely left polaroid) if isolated
points of the approximate point spectrum of A are left poles of A (resp., finite rank left poles of A). Given
A ∈ B(X), it is clear that

Π0(A) ⊆ Πa
0(A) ⊆ Πa(A),Π0(A) ⊆ Π(A) ⊆ Πa(A),

where the reverse inclusions generally fail. A ∈ B(X) is isoloid (finitely isoloid) if points λ ∈ isoσ(A) are
eigenvalues (resp., finite multiplicity eigenevalues) of A; A is a-isoloid (finitely a-isoloid) if points λ ∈ isoσa(A)
are eigenvalues (resp., finite multiplicity eigenvalues) of A. It is clear that A is polaroid implies A is isoloid
and A is left polaroid implies A is a-isoloid (where the reverse implications are, in general, false).

The left polaroid and polaroid properties do not survive perturbation by commuting Riesz operators:
The 0 operator is polaroid but its perturbation A = 0 + R by the non-nilpotent quasinilpotent operator
R(x1, x2, x3, ...) = ( x2

2 ,
x3
3 , ...) is neither left polaroid nor polaroid. However:

Proposition 3.1. If a Riesz operator R ∈ B(X) is such that [A,R] = 0 and isoσa(A + R) ⊂ isoσa(A) for an operator
A ∈ B(X), then A is finitely left polaroid implies A + R is finitely left polaroid.

Proof. Since perturbation by Riesz operators preserves σaw(.) [20, 31], σaw(A + R) = σaw(A). Hence, if A is
finitely left polaroid, then λ ∈ isoσa(A + R) implies

λ ∈ isoσa(A)⇐⇒ λ ∈ Πa
0(A) = {λ : λ ∈ isoσa(A) ∩ σaw(A)C}

⇐⇒ λ ∈ isoσa(A + R) ∩ σaw(A + R)C ⇐⇒ λ ∈ Πa
0(A + R),

i.e., A is finitely left polaroid if and only if A + R is finitely left polaroid.

It is clear from the (argument) above that if isoσa(A + R) = isoσa(A), then A + R is left polaroid if and only
if A is left polaroid, and if isoσ(A + R) = isoσ(A), then A + R is polaroid if and only if A is polaroid. The
following proposition provides examples of Riesz operators satisfying this property.

Proposition 3.2. Given operators A,R ∈ B(X) such that [A,R] = 0, if either R is nilpotent (even, quasinilpotent), or
Rn is finite rank for some integer n > 0 and isoσa(A) = isoσa(A+R), then A is finitely left polaroid (finitely polaroid)
if and only if A + R is finitely left polaroid (resp., finitely polaroid).

Proof. The hypotheses implyσa(A) = σa(A+R), σ(A) = σ(A+R), σaw(A) = σaw(A+R) andσw(A) = σw(A+R).

Does Proposition 3.2 extend to: “A is left polaroid if and only if A + R is left polaroid?” We have a partial
answer.
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Proposition 3.3. Let A,R ∈ B(X), where [A,R] = 0.
(A) If Rn is finite rank for some integer n > 0 and isoσa(A) = isoσa(A + R), then A is left polaroid (polaroid) if and
only if A + R is left polaroid (resp., polaroid).
(B) If R is nilpotent, then A is polaroid if and only if A + R is polaroid.

Proof. (A). Recall from [11] that the semi B-Fredholm spectrum of an operator is stable under finite rank
perturbations. Since σa(A) = σa(A + R) and

λ ∈ isoσa(A + R) ∩ σaBw(A + R)C ⇐⇒ λ ∈ isoσa(A + R) ∩ σaBe(A + R)C

⇐⇒ λ ∈ isoσa(A) ∩ σaBe(A)C ⇐⇒ λ ∈ isoσa(A) ∩ σaBw(A)C,

if A is left polaroid, then

λ ∈ isoσa(A + R)⇐⇒ λ ∈ isoσa(A)⇐⇒ λ ∈ Πa(A)
⇐⇒ λ ∈ isoσa(A) ∩ σaBw(A)C ⇐⇒ λ ∈ isoσa(A + R) ∩ σaBw(A + R)C ⇐⇒ λ ∈ Πa(A + R),

i.e., A is left polaroid if and only if A+R is left polaroid. Since σ(A+R) = σ(A), and λ ∈ isoσ(T)∩σBw(T)⇐⇒
λ ∈ isoσ(T) ∩ σBe(T) for every T ∈ B(X), the argument above proves also that A is polaroid if and only if
A + R is polaroid.

(B). The hypotheses imply σ(A+R) = σ(A). Since σBb(A+R) = σBb(A) for nilpotent R [19, Theorem 2.6], if A
is polaroid, then

λ ∈ isoσ(A + R)⇐⇒ λ ∈ isoσ(A)⇐⇒ λ ∈ Π(A)⇐⇒ λ ∈ isoσ(A) ∩ σBw(A)C

⇐⇒ λ ∈ isoσ(A) ∩ σBb(A)C ⇐⇒ λ ∈ isoσ(A + R) ∩ σBb(A + R)C ⇐⇒ λ ∈ Π(A + R),

i.e., A is polaroid if and only if A + R is polaroid.

4. Browder, Weyl theorems: Perturbations

It is well known that if either of A and A∗ has SVEP, then A satisfies (all four versions of) Browder’s
theorem. A necessary and sufficient condition for A ∈ (Bt) and A ∈ (1Bt) (resp., A ∈ (a−Bt) and A ∈ (a−1Bt))
is that A has SVEP on σw(A)C (resp., σaw(A)C) [1, 10, 18]. We start in the following by proving that it is the
activity on the bounded components η′σw(A) =

∪
Holeσw(A) of A and the isolated points of σw(A) (resp.,

η′σaw(A) =
∪

Holeσaw(A) and isolated points of σaw(A)) which determines if the operator satisfies Browder’s
(resp., a-Browder’s) and Weyl’s (resp., a-Weyl’s) theorem: A ∈ (Bt) (resp., A ∈ (a − Bt)) if and only if A has
SVEP on η′σw(A) (resp., η′σaw(A)); A ∈ (Wt) (resp., A ∈ (a−Wt)) if and only if A ∈ (Bt) and E0(A)∩σw(A) = ∅
(resp., if and only if A ∈ (a − Bt) and Ea

0(A) ∩ σaw(A) = ∅). Given an operator A ∈ B(X), let (for convenience)
Ξ(A) and Ξa(A) denote, respectively, the sets Ξ(A) = {λ ∈ σ(A) : A does not have SVEP at λ}, and Ξa(A) =
{λ ∈ σa(A) : A does not have SVEP at λ}.

Theorem 4.1. If A ∈ B(X), then:
(i) A ∈ (Bt)⇐⇒ η′σw(A) ∩ Ξ(A) = ∅.
(ii) A ∈ (a − Bt)⇐⇒ η′σaw(A) ∩ Ξa(A) = ∅.
(iii) A ∈ (1Bt)⇐⇒ η′σBw(A) ∩ Ξ(A) = ∅.
(iv) A ∈ (a − 1Bt)⇐⇒ η′σaBw(A) ∩ Ξa(A) = ∅.

The proof of the theorem proceeds through a few steps, which we state below as lemmas, starting with the
result that A has SVEP on ησw(A)C and ησaw(A)C for every A ∈ B(X).

Lemma 4.2. For operators A ∈ B(X), both A and A∗ have SVEP on ησw(A)C and ησaw(A)C .

Proof. The component ησw(A)C (resp., ησaw(A)C) being unbounded, intersects the resolvent set ρ(A) =
C \ σ(A). Consequently, asc(A − λ) = dsc(A − λ) < ∞, α(A − λ) = 0 for all but a countable set of λ which are
isolated poles of A. Hence A, also A∗, has SVEP everywhere on ησw(A)C (resp., ησaw(A)C).
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Lemma 4.2 extends to ησBw(A)C and ησaBw(A)C.

Lemma 4.3. For operators A ∈ B(X), both A and A∗ have SVEP on ησBw(A)C and ησaBw(A)C.

Proof. The proof in both the cases is similar; we consider points λ ∈ ησaBw(A)C. Take a point λ ∈ ησaBw(A)C.
There exists a large enough positive integer n0 = n0(λ) such that λ + 1

n ∈ Φ+(A), ind(A − λ − 1
n ) ≤ 0 for

all n ≥ n0 [23, Theorem 4.7]. The operator A − λ and (A − λ) − 1
n commute and satisfy the property that

limn→∞ ||(A − λ) − 1
n || = ||A − λ||. Hence, since (λ + 1

n ∈ ησaw(A)C implies) A has SVEP at λ + 1
n , A has SVEP

at λ. Since ησsBw(A) = ησaBw(A), A∗ also has SVEP on ησaBw(A).

Remark 4.4. An (instructive) alternative argument proving Lemmas 4.2 and 4.3 goes as follows. The
inclusions ∂σw(A) ⊆ σaw(A) ⊆ σw(A) and ∂σBw(A) ⊆ σaBw(A) ⊆ σBw(A) imply ησaw(A) = ησw(A) and ησaBw(A) =
ησBw(A). Since the unbounded components ησw(A) and ησBw(A) intersect the resolvent ρ(A), A − λ is
invertible except perhaps for a countable set consisting of the poles of A.

Lemma 4.5. For operators A ∈ B(X):
(i) η′σBw(A) ∩ Ξ(A) = ∅ ⇐⇒ η′σw(A) ∩ Ξ(A) = ∅.
(ii) η′σaBw(A) ∩ Ξa(A) = ∅ ⇐⇒ η′σaw(A) ∩ Ξa(A) = ∅.

Proof. The proof in both the cases is similar; we prove (ii). Since σaBw(A) ⊆ σaw(A) if and only if ησaw(A)C ∪
η′σaw(A) ⊆ ησaBw(A) ∪ η′σaBw(A) and since ησaw(A)C ∩ Ξa(A) = ∅ = ησaBw(A)C ∩ Ξa(A), we have

η′σaBw(A) ∩ Ξa(A) = ∅ =⇒ η′σaw(A) ∩ Ξa(A) = ∅.

Conversely, assume that η′σaw(A) ∩ Ξa(A) = ∅. (Thus A has SVEP on σaw(A)C.) Take a λ ∈ η′σaBw(A), and
apply the srgument of the proof of Lemma 4.3 to conclude that A has SVEP at λ. The choice of the point λ
having been arbitrary, it follows that A has SVEP on η′σaBw(A).

Corollary 4.6. For operators A ∈ B(X):
(i) σw(A)C ∩ Ξ(A) = ∅ ⇐⇒ σBw(A)C ∩ Ξ(A) = ∅.
(ii) σaw(A)C ∩ Ξa(A) = ∅ ⇐⇒ σaBw(A)C ∩ Ξa(A) = ∅.

Proof. Immediate from the lemmas above since σxw(A)C = ησxw(A)C ∪ η′σxw(A), σxw = σw or σaw, and
σxBw(A)C = ησxBw(A)C ∪ η′σxBw(A), σxBw = σBw or σaBw.

Proof of Theorem 4.1. We prove statements (iii) and (iv); statements (i) and (ii) are similarly proved (else,
apply Lemma 4.5). Since A has SVEP on ησBw(A)C and ησaBw(A)C for every A ∈ B(X),

σ(A) ∩ σBw(A)C = {σ(A) ∩ ησBw(A)C} ∪ {σ(A) ∩ η′σBw(A)}
= {Π(A) ∩ ησBw(A)C} ∪ {σ(A) ∩ η′σBw(A)},

and
σa(A) ∩ σaBw(A)C = {σa(A) ∩ ησaBw(A)C} ∪ {σa(A) ∩ η′σaBw(A)}

= {Πa(A) ∩ ησaBw(A)C} ∪ {σa(A) ∩ η′σaBw(A)}.

Hence A ∈ (1Bt) (resp., A ∈ (a−1Bt)) if and only if σ(A)∩η′σBw(A) = Π(A)∩η′σBw(A) (resp., σa(A)∩η′σaBw(A) =
Πa(A) ∩ η′σaBw(A)). Equivalently, A ∈ (1Bt) (resp., A ∈ (a − 1Bt)) if and only if η′σBw(A) ∩ Ξ(A) = ∅ (resp.,
η′σaBw(A) ∩ Ξa(A) = ∅). �
If R ∈ B(X) is a Riesz operator which commutes with an operator A ∈ B(X), then:
(I) σxw(A + R) = σxw(A), where σxw = σw or σaw [20, 31];
(II) A + R ((A + R)∗) has SVEP at a point λ if and only if A (resp., A∗) has SVEP at λ [8].
Hence:
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Corollary 4.7. Given operators A,R ∈ B(X), if R is a Riesz operator which commutes with A, then η′σxw(A + R) ∩
Ξx(A + R) = ∅ if and only if η′σxw(A) ∩ Ξx(A) = ∅, where σxw = σw or σaw and (correspondingly) Ξx = Ξ or Ξa.

It is immediate from Corollary 4.7 that
A + R ∈ (x − Bt)⇐⇒ A ∈ (x − Bt),A + R ∈ (x − 1Bt)⇐⇒ A ∈ (x − 1Bt),

where (x − Bt) = (Bt) or (a − Bt) and (x − 1Bt) = (1Bt) or (a − 1Bt). Corollary 4.7 applies in particular to
commuting (with A) finite rank, quasinilpotent and compact operators R.

Weyl’s Theorems. Given an operator A ∈ B(X), let E(A) = {λ ∈ σ(A) : 0 < α(A − λ)} (denote the set of
eigenvalues of A) and Ea(A) = {λ ∈ σa(A) : 0 < α(A − λ)}. We say that the operator A ∈ B(X) satisfies
generalized Weyl’ theorem, A ∈ (1Wt), if σ(A) ∩ σBw(A)C = E(A);
generalized a-Weyl’ theorem, A ∈ (a − 1Wt), if σa(A) ∩ σaBw(A)C = Ea(A).

The following implications

(a − 1Wt) =⇒ (1Wt) =⇒ (Wt), (a − 1Wt) =⇒ (a −Wt) =⇒ (Wt)

hold, but the reverse implications are in general false [1, 12, 16–18]. It is evident that (xWt) =⇒ (xBt), where
(x..) = (..) or (1..) or (a− ..) or (a− 1..). Also, if A ∈ (Bt) (resp., A ∈ (1Bt)), then σ(A)∩ σw(A)C = Π0(A) ⊆ E0(A)
(resp., σ(A)∩σBw(A)C = Π(A) ⊆ E(A)); similarly, if if A ∈ (a−Bt) (resp., A ∈ (a− 1Bt)), then σa(A)∩σaw(A)C =
Πa

0(A) ⊆ Ea
0(A) (resp., σa(A) ∩ σaBw(A)C = Πa(A) ⊆ Ea(A)). Thus, a necessary and sufficient condition for an

A ∈ (Bt) to satisfy A ∈ (Wt) is that E0(A) ⊆ Π0(A) (resp., A ∈ (1Bt) to satisfy A ∈ (1Wt) is that E(A) ⊆ Π(A));
similarly, a necessary and sufficient condition for an A ∈ (a−Bt) to satisfy A ∈ (a−Wt) is that Ea

0(A) ⊆ Πa
0(A)

(resp., A ∈ (a − 1Bt) to satisfy A ∈ a − (1Wt) is that Ea(A) ⊆ Πa(A)). Since

Ea
0(A) = {Ea

0(A) ∩ σaw(A)C} ∪ {Ea
0(A) ∩ σaw(A)}

and since Ea
0(A) ∩ σaw(A)C ⊆ Πa

0(A), a sufficient condition for Ea
0(A) ⊆ Πa

0(A) is

Ea
0(A) ∩ σaw(A) = Ea

0(A) ∩ isoσaw(A) = ∅.

Similarly, a sufficient condition for E0(A) ⊆ Π0(A) is E0(A) ∩ isoσw(A) = ∅. These conditions are necessary
too.

Theorem 4.8. A necessary and sufficient conditon for an operator A ∈ B(X) to satisfy:
(i) A ∈ (Wt) is that η′σw(A) ∩ Ξ(A) = ∅ and E0(A) ∩ isoσw(A) = ∅.
(ii) A ∈ a − (Wt) is that η′σaw(A) ∩ Ξa(A) = ∅ and Ea

0(A) ∩ isoσaw(A) = ∅.
(iii) A ∈ (1Wt) is that η′σBw(A) ∩ Ξ(A) = ∅ and E(A) ∩ isoσBw(A) = ∅.
(iv) A ∈ (a − 1Wt) is that η′σaBw(A) ∩ Ξa(A) = ∅ and Ea(A) ∩ isoσaBw(A) = ∅.

Proof. The proof in all cases is similar: We prove (iv). Since (a − 1Wt) implies (a − 1Bt), the necessity
of the condition η′σaBw(A) ∩ Ξa(A) = ∅ is clear (see Theorem 4.1). To see the necessity of the condition
Ea(A) ∩ isoσaBw(A) = ∅, assume that A ∈ (a − 1Bt) and that there exists a λ ∈ Ea(A) ∩ isoσaBw(A). Then, since
0 < α(A − λ), there does not exist an integer d > 0 such that (A − λ)d(X) is closed. Consequently, λ < Πa(A),
and hence λ < isoσa(A) ∩ σaBw(A)C (implies λ < Ea(A), since A ∈ (a − 1Wt) implies Πa(A) = Ea(A).) This
being a contradiction, we must have Ea(A) ∩ isoσaBw(A) = ∅. To prove the sufficiency of the conditions, we
start by observing that the condition η′σaBw(A) ∩ Ξa(A) = ∅ implies A ∈ (a − 1Bt), hence σa(A) ∩ σaBw(A)C =
Πa(A) ⊆ Ea(A). Let λ ∈ Ea(A). Then A has SVEP at λ, and hence λ ∈ σaBw(A)C implies λ ∈ Πa(A). This, if
(Ea(A) ∩ σaBw(A) =) Ea(A) ∩ isoσaBw(A) = ∅, implies Ea(A) ⊆ Πa(A). Since the reverse inclusion is true for
every operator A, Ea(A) = Πa(A), i.e., the conditions are sufficient.

Remark 4.9. Examples of classes of operators satisfying the hypotheses of Theorems 4.1 and 4.8 abound.
Let (THN) denote the class of operators A ∈ B(X) such that every part of A (A part of A is its restriction
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to a closed invariant subspace), and the inverse of every invertible part of A, is normaloid (i.e., its spectral
radius equals its norm). Operators A ∈ (THN) have have SVEP on η′σaw(A) (equiavelntly, SVEP on
σaw(A)C) and are polaroid [16]. Hence operators A ∈ (THN) satisfy Theorem 4.1 and Theorem 4.8 (i)
and (iii). Prominent examples of (THN) operators include hyponormal (Hilbert space) operators and
paranormal operators [1, 16–18, 25]. Banach space operators A ∈ H0(p) for which the quasinilpotent part
H0(T−λ) = {x ∈ X : limn→∞ ||(A − λ)nx|| 1n = 0} = (A−λ)−p(0) for some integer p > 0 and all complexλ [1, Page
172], in particular subscalar operators, are another important example of polaroid operators with SVEP.
Operator A ∈ B(X) satisfying σa(A) = σaw(A) satisfy Theorem 4.1; furthermore, if also σa(A) is connected
(as, for example, is the case when A ∈ B(ℓp), 1 ≤ p < ∞, is a weighted right shift [1, 27]), then A satisfies
Theorem 4.8. Analytic Toeplitz operators A f (with symbol f ) satisfy σ(T f ) is connected and σ(T f ) = σw(T f ):
Hence analytic Toeplitz operators satisfy Theorem 4.8 (i) and (iii).

Unlike the situation for Browder theorem type results, results of the type of Weyl’s theorem do not
survive perturbation by commuting Riesz operators. Consider, for example, the operator A = I⊕ 0 ∈ B(ℓ2 ⊕
ℓ2), I the identity operator and 0 the zero operator. Then σ(A) = σa(A) = {0, 1} = E(A) = Ea(A), σBw =
σaBw(A) = ∅, and A satisfies both generalized Weyl’s theorem and a-generalized Weyl’s theorem. Let F be
the finite rank operator defined by F(x1, x2, x3, ...) = (−x1, 0, 0, ...) and let R = F ⊕ Q, where Q ∈ B(ℓ2) is a
non-nilpotent injective quasinilpotent operator. Then the operator A+R satisfies σ(A) = σa(A+R) = {0, 1} =
E(A+R) = Ea(A+R), σBw(A+R) = σaBw(A+R) = {0}. Clearly, A+R < (1Wt) and A+R < (a− 1Wt). Observe
here that the operator A of the example is isoloid (indeed, a-isoloid), but not finitely isoloid (or finitely
a-isoloid). The following theorem, which generalizes a number of extant results [2, 5, 12, 17, 18, 29, 30],
says that the (necessary) condition A is finitely isoloid (resp., finitely a-isoloid) is sufficient for the transfer
of (Wt) and (1Wt) (resp., (a −Wt) and (a − 1Wt)) from A to A + R for commuting Riesz operators R.

Theorem 4.10. Let A,R ∈ B(X), where R is a Riesz operator which commutes with A. If A is finitely isoloid, then
A ∈ (Wt) implies A + R ∈ (Wt), A ∈ (1Wt) implies A + R ∈ (1Wt) and if A is finitely a-isoloid, then A ∈ (a −Wt)
implies A + R ∈ (a −Wt), A ∈ (a − 1Wt) implies A + R ∈ (a − 1Wt).

Proof. The proof in all the cases is similar: We prove A ∈ (a − 1Wt) =⇒ A + R ∈ (a − 1Wt), leaving it to the
reader to make the minor changes in the argument required to prove the remaining cases. The hypothesis

A ∈ (a − 1Wt) =⇒ A ∈ (a − 1Bt) =⇒ A + R ∈ (a − 1Bt)
⇐⇒ σa(A + R) ∩ σaBw(A + R)C = Πa(A + R) ⊆ Ea(A + R).

We prove Ea(A + R) ⊆ Πa(A + R). Let λ ∈ Ea(A + R). Then there exists a neighbourhood Nϵ(λ), ϵ > 0, of λ
such that µ < σa(A + R) for all µ ∈ Nϵ(λ) \ {λ}. Since µ < σa(A + R) implies µ ∈ σaw(A + R)C (equivalently,
µ ∈ σaw(A)C), it follows from (A ∈ (a − 1Bt) implies) A ∈ (a − Bt) that µ ∈ Πa

0(A) implies µ ∈ Πa(A) for every
µ ∈ Nϵ(λ) \ {λ}. Observe that for every λ ∈ Ea(A + R) either λ < σa(A), or λ ∈ isoσa(A), or λ ∈ accσa(A). If
λ < σa(A), then

λ ∈ σaw(A)C =⇒ λ ∈ σaw(A + R)C =⇒ λ ∈ Πa
0(A + R)

(since λ ∈ Ea(A + R) implies A + R has SVEP at λ). Again, if λ ∈ isoσa(A), then (A being finitely a-isoloid)

λ ∈ Ea
0(A) =⇒ λ ∈ σaw(A)C,A has SVEP at λ

⇐⇒ λ ∈ σaw(A + R)C,A + R has SVEP at λ
⇐⇒ λ ∈ Πa

0(A + R) =⇒ λ ∈ Πa(A + R).

Consider now λ ∈ accσa(A). There exists an infinite sequence {µn} ⊆ Nϵ(λ) \ {λ} such that (µn converges to
µ and) µn ∈ Πa

0(A) for all n. Since this implies µn ∈ σaw(A + R)C, and A + R has SVEP at µn,

µn ∈ Πa
0(A + R) =⇒ µn ∈ Πa(A + R) ⊆ Ea(A + R)

for all n. Since λ ∈ Ea(A + R) is isolated, this is a contradiction. Hence (accσa(A)∩ Ea(A + R) = ∅ and) every
λ ∈ Ea(A + R) is an element of Πa(A + R), i.e., Ea(A + R) ⊆ Πa(A + R).
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It is clear from the proof above that the hypotheses of Theorem 4.10 ensure E0(A + R) ∩ isoσw(A + R) = ∅
and E(A + R) ∩ isoσBw(A + R) = ∅ in part (i) of the theorem; similarly, Ea

0(A + R) ∩ isoσaw(A + R) = ∅ and
Ea(A + R) ∩ isoσaBw(A + R) = ∅ in part (ii) of the theorem. More generally:

Proposition 4.11. Given an operator A ∈ B(X), a necessary and sufficient condition for:

(i) E0(A) ⊆ Π0(A), equivalently E0(A) = Π0(A), is that E0(A) ∩ isoσw(A) = ∅.
(ii) Ea

0(A) ⊆ Πa
0(A), equivalently Ea

0(A) = Πa
0(A), is that Ea

0(A) ∩ isoσaw(A) = ∅.
(iii) E(A) ⊆ Π(A), equivalently E(A) = Π(A), is that E(A) ∩ isoσBw(A) = ∅.
(iv) Ea(A) ⊆ Πa(A), equivalently Ea(A) = Πa(A), is that Ea(A) ∩ isoσaBw(A) = ∅.

Proof. The proof in all cases being similar, we prove (iv). If Ea(A) ⊆ Πa(A), and if there exists a λ ∈
Ea(A)∩ isoσaBw(A), then (being a left pole of the resolvent of A) λ < σaBw(A) – a contradiction. Conversely, if
we assume that Ea(A)∩ isoσaBw(A) = ∅ and that there exists a λ ∈ Ea(A) such that λ < Πa(A), then (A−λ)d(X)
is not closed for any integer d > 0. Reason: If (A−λ)d(X) is closed for an integer d > 0, then, since λ ∈ Ea(A)
implies A has SVEP at λ, λ ∈ Πa(A). Consequently, λ ∈ σaBw(A) ∩ Ea(A) – again a contradiction.

5. Variations on Browder, Weyl Theorems

The a-Browder and a-Weyl theorems are obtained from (their classical counterparts) Browder and Weyl
theorems σ(A) ∩ σw(A)C = Π0(A) and σ(A) ∩ σw(A)C = E0(A) by replacing σ(A) by σa(A), σw(A) by σaw(A),
Π0(A) by Πa

0(A) and E0(A) by Ea
0(A); similarly, the generalized versions of the Browder and Weyl theorems

(resp., the a-generalized versions of the Browder and Weyl theorems) are obtained upon replacing σw(A),
Π0(A) and E0(A) by σBw(A), Π(A) and E(A) (resp., σaw(A), Πa

0(A) and Ea
0(A) by σaBw(A), Πa(A) and Ea(A)). A

number of further variations, obtained by making other suitably meaningful choices, have been considered
in the recent past (see [2, 5, 9, 13–15] for a flavour of the type of variations considered). Prominenet amongst
the variations to have attracted some attention are the properties (a), (ab) (w) and their generalized versions.
We say that an operator A ∈ B(X) satisfies property:

(b) if σa(A) ∩ σaw(A)C = Π0(A);

(1b) if σa(A) ∩ σaBw(A)C = Π(A);

(ab) if σ(A) ∩ σw(A)C = Πa
0(A);

(1ab) if σ(A) ∩ σBw(A)C = Πa(A);

(w) if σa(A) ∩ σaw(A)C = E0(A);

(1w) if σa(A) ∩ σaBw(A)C = E(A).

A number of the properties of operators satisfying the above defined properties lie on the surface and
are easily adduced. Thus, if A ∈ B(X) satisfies property (b), A ∈ (b), then A has SVEP on σaw(A)C, A∗ has
SVEP on σa(A) ∩ σaw(A)C = σa(A) ∩ σw(A)C, A ∈ (a − Bt) and Πa

0(A) = Π0(A); A may however fail to satisfy
a-Weyl’s (even, Weyl’s) theorem. In this section we relate these properties to their spectral picture, study
relations between these properties and consider the permanence of these properties under perturbation by
commuting Riesz operators. In the process, we generalize a number of known results. We start with a
characterization of properties (b) and (w).

Theorem 5.1. Given an operator A ∈ B(X):
(i). A ∈ (w) =⇒ A ∈ (b)⇐⇒ A∗ has SVEP on σa(A) ∩ η′σaw(A) (equivalently, σa(A) ∩ η′σaw(A) ⊆ isoσ(A)).
(ii). A ∈ (w)⇐⇒ A ∈ (b) and E0(A) ∩ isoσaw(A) = ∅.
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Proof. (i). The defintion of property (w) implies that if A ∈ (w), then both A and A∗ have SVEP on
σa(A)∩ σaw(A)C. Since A has SVEP on σa(A)∩ σaw(A)C implies σa(A)∩ σaw(A)C = Πa

0(A)(⊆ Ea
0(A)), if also A∗

has SVEP on σa(A)∩σaw(A)C, then σa(A)∩σaw(A)C = Πa
0(A) = Π0(A). Hence A ∈ (w) implies σa(A)∩σaw(A)C =

Πa
0(A) = Π0(A) = E0(A). In particular, A ∈ (w) implies A ∈ (b). It is clear that if A∗ has SVEP at a λ ∈ σaw(A)C,

thenλ ∈ σw(A)C. Since an operator T and its adjoint T∗ have SVEP on the unbounded component ησw(T)C, A∗

has SVEP at λ ∈ σa(A)∩ ησaw(A)C if and only if λ ∈ σa(A)∩ ησw(A)C. (Indeed, since ∂σw(A) ⊆ σaw(A) ⊆ σw(A)
implies ησaw(A) = ησw(A), σa(A) ∩ ησaw(A)C = σa(A) ∩ ησw(A)C.) Since A ∈ (b)⇐⇒ σa(A) ∩ σaw(A)C = Π0(A),
we have that A,A∗ have SVEP on σa(A) ∩ σaw(A)C = {σa(A) ∩ ησaw(A)C} ∪ {σa(A) ∩ η′σaw(A)}, equivalently,
σa(A) ∩ η′σaw(A) ⊆ isoσ(A).
(ii). The implication

A ∈ (w) =⇒ A ∈ (b),E0(A) ∩ σaw(A) = ∅(⇐⇒ E0(A) ∩ isoσaw(A) = ∅)

being evident from the argument of the proof of (i) above, we prove the reverse implication. As seen above,
the hypothesis A ∈ (b) implies A∗ has SVEP on σa(A) ∩ σaw(A)C; hence σa(A) ∩ σaw(A)C = Π0(A) ⊆ E0(A).
Consider a λ ∈ E0(A) such that λ < Π0(A). Since 0 < α(A − λ) < ∞, (A − λ)d(X) is not closed for any integer
d > 0. Hence λ ∈ σaw(A). Since already λ is isolated in σ(A), λ ∈ isoσaw(A). This being a contradiction of our
assumption E0(A) ∩ isoσaw(A) = ∅, we must have λ ∈ Π0(A). Hence E0(A) ⊆ Π0(A).

An argument similar to the one above proves the following:

Corollary 5.2. Given an operator A ∈ B(X):
(i). A ∈ (1w) =⇒ A ∈ (1b)⇐⇒ A∗ has SVEP on σa(A) ∩ η′σaBw(A) (equivalently, σa(A) ∩ η′σaBw(A) ⊆ isoσ(A)).

(ii). A ∈ (1w)⇐⇒ A ∈ (1b) and E(A) ∩ isoσaBw(A) = ∅.

More is true, as we now prove.

Theorem 5.3. For operators A ∈ B(X):

(i). A ∈ (1b) =⇒ A ∈ (b).

(ii). A ∈ (1w) =⇒ A ∈ (w).

(iii). A ∈ (b) and A∗ has SVEP on σ(A) ∩ η′σaw(A) implies A ∈ (1b).

(iv). A ∈ (w) is left polaroid (or, polaroid) and Πa
0(A) ⊆ Π0(A) implies A ∈ (1w).

Proof. (i). We start by observing that the hypothesis A ∈ (b) is equivalent to (A ∈ (a − Bt),Πa
0(A) = Π0(A),

equivalently) A ∈ (a − Bt),A∗ has SVEP on σa(A) ∩ σaw(A)C, and the hypothesis A ∈ (1b) is equivalent to
A ∈ (a− 1Bt),A∗ has SVEP on σa(A)∩ σaBw(A)C. Since A ∈ (a−Bt) if and only if A ∈ (a− 1Bt) [10], and since
σa(A) ∩ σaw(A)C ⊆ σa(A) ∩ σaBw(A)C, A ∈ (1b) implies A ∈ (a − Bt) and A∗ has SVEP on σa(A) ∩ σaw(A)C, i.e.,
A ∈ (b).

(ii). If A ∈ (1w), then A ∈ (1b) (implies A ∈ (b)) and E(A) ∩ isoσaBw(A) = ∅. Assume now that there
exists a λ ∈ E0(A) ∩ isoσaw(A). Then (A − λ)d(X) is not closed for any integer d > 0. Consequently, if
A ∈ (1w), then λ ∈ σaBw(A) and hence, since λ ∈ E0(A) implies λ ∈ E0(A) ∩ isoσaBw(A) ⊆ E(A) ∩ isoσaBw(A),
E(A)∩ isoσaBw(A) , ∅. This being a contradiction, we must have E0(A)∩ isoσaw(A) = ∅. Conclusion: A ∈ (w).

(iii). Evidently, A∗ has SVEP on σ(A) ∩ σaw(A)C if and only if A∗ has SVEP on σ(A) ∩ η′σaw(A) =
σ(A∗) ∩ η′σsw(A∗), and A∗ has SVEP on σ(A) ∩ σaBw(A)C if and only if A∗ has SVEP on σ(A) ∩ η′σaBw(A) =
σ(A∗) ∩ η′σsBw(A∗). Consider a λ ∈ η′σsBw(A∗). There exists a large enough integer n > 0 such that
λ + 1

n ∈ σ(A∗) ∩ σsw(A∗)C [23], and hence if A∗ has SVEP on σ(A) ∩ η′σaw(A), then A∗ has SVEP at λ + 1
n . The

operators A∗ − λ and A∗ − λ − 1
n being quasinilpotent equivalent, A∗ has SVEP at λ [27, Proposition 3.4.11].

The choice of the point λ having been arbitrary, it follows that A∗ has SVEP on σ(A)∩ σaBw(A)C. Combining
this with the fact that A ∈ (b) implies

A ∈ (a − Bt)⇐⇒ A ∈ (a − 1Bt)⇐⇒ σa(A) ∩ σaBw(A)C = Πa(A),
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we conclude that A ∈ (1b) (whenever A∗ has SVEP on σa(A)∩ η′σaw(A), equivalently, whenever A∗ has SVEP
on Πa(A)).

(iv). We prove that A ∈ (b) and Π(A) = E(A): This would then imply A ∈ (1w). If A ∈ (w), then A ∈ (b)
and A∗ has SVEP at points in σa(A) ∩ σaw(A)C where A has SVEP. Since

σ(A) ∩ σaw(A)C = {σa(A) ∩ σaw(A)C} ∪ {{σ(A) \ σa(A)} ∩ σaw(A)C},

and since

λ ∈ {σ(A) \ σa(A)} ∩ σaw(A)C =⇒ λ ∈ Πa
0(A) \ σa(A) = ∅,

the hypothesis Πa
0(A) ⊆ Π0(A) (equivalently, Πa

0(A) = Π0(A)) implies A∗ has SVEP on Πa
0(A). Hence A∗ has

SVEP at points in σa(A) ∩ σaw(A)C where A has SVEP, and this (by (iii) above) implies

A ∈ (1b)⇐⇒ σa(A) ∩ σaBw(A)C = Π(A) ⊆ E(A).

Consider now a λ ∈ E(A). Since A is left polaroid (resp., polaroid) by hypothesis, λ ∈ E(A) implies λ ∈ Πa(A)
and A∗ has SVEP at λ (resp., λ ∈ Π(A)). In either case λ ∈ Π(A), which then implies E(A) ⊆ Π(A).

Remark 5.4. (I) The hypothesis A∗ has SVEP on σ(A)∩σaw(A)C (equivalently on σ(A)∩η′σaw(A)) in Theorem
5.3(iii) can not be replaced by A∗ has SVEP on σa(A) ∩ σaw(A)C. (Thus A ∈ (b) does not imply A ∈ (1b).) To
see this, let A = U ⊕ 0, where U ∈ B(H) is the forward unilateral shift and 0 ∈ B(H) is the zero operator.
Then σa(A) = σaw(A) = ∂D∪ {0},Π(A) = ∅,A < (1b). Notice that A∗ has SVEP on σa(A) ∩ σaw(A)C = ∅, and A∗

does not have SVEP on σ(A) ∩ σaw(A)C = D \ {0} = σ(A) ∩ η′σaw(A). Notice further that Πa
0(A) = {0} and A∗

does not have SVEP on Πa
0(A).

(II) The reverse implication A ∈ (w) =⇒ A ∈ (1w) in Theorem 5.3 fails for the reason that E0(A)∩isoσaw(A) = ∅
does not, in general, imply E(A) ∩ isoσaBw(A) = ∅. Consider the operator A = Q ⊕ 0 ∈ B(X ⊕ X), where Q is
an injective quasinilpotent operator. Then A ∈ (w) and E(A)∩ isoσaBw(A) = {0} , ∅. Observe that A is not left
polaroid. Indeed, the example A = U⊕ 0 of part (I) of the remark shows that the condition A is left polaroid
is essential. We have σa(A) ∩ σaw(A)C = ∅ = E0(A), σa(A) ∩ σaBw(A)C = {0} , E0(A), Πa

0(A) = Π0(A) = ∅ and A
is not left polaroid.

The following theorem characterizes operators A ∈ B(X) such that A ∈ (ab), or, A ∈ (1ab).

Theorem 5.5. Let A ∈ B(X).
(A). The following conditions are mutually equivalent:

(i) A ∈ (ab).

(ii) A∗ has SVEP on η′σw(A) and σw(A) ∩Πa
0(A) = ∅.

(iii) A∗ has SVEP on Πa
0(A) ∩ η′σw(A).

(iv) A∗ has SVEP on isoσa(A) ∩ η′σaw(A).
(B). The following conditions are mutually equivalent:

(i) A ∈ (1ab).
(ii) A∗ has SVEP on η′σBw(A) and σBw(A) ∩Πa(A) = ∅.
(iii) A∗ has SVEP on Πa(A) ∩ η′σBw(A).
(iv) A∗ has SVEP on isoσa(A) ∩ η′σaBw(A).

Proof. The proof in both the cases is the same ( simply replaceΠa
0(A), Π0(A), and σw(A) by Πa(A), Π(A) and

σBw(A), respectively, in the following). We prove (A). Recall that A has SVEP onΠa
0(A), and that A has SVEP
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at a point in σw(A)C if and only if A and A∗ have SVEP at the point. If A ∈ (ab), then

σ(A) ∩ σw(A)C = Πa
0(A)

⇐⇒ Πa
0(A) ∩ σw(A) = ∅,A∗ has SVEP on σw(A)C

⇐⇒ Πa
0(A) ∩ σw(A) = ∅,A∗ has SVEP on η′σw(A)C

=⇒ Πa
0(A) ⊆ σw(A)C,A∗ has SVEP on σw(A)C

=⇒ Πa
0(A) ⊆ σw(A)C ∩ σ(A) = Π0(A) ⊆ Πa

0(A)

=⇒ σ(A) ∩ σw(A)C = Πa
0(A),

i.e., (i)⇐⇒ (ii). To prove (i)⇐⇒ (iii), we start by observing that (i) implies A∗ has SVEP onΠa
0(A)∩ {σ(A)∩

σw(A)C} = Πa
0(A) ∩ σw(A)C. Hence A∗ has SVEP on Πa

0(A) ∩ η′σw(A)C, and (i) =⇒ (iii). To prove the reverse
implication (iii) =⇒ (i), we note that if A∗ has SVEP on Πa

0(A) ∩ η′σw(A)C, equivalently if A∗ has SVEP on
Πa

0(A) ∩ σw(A)C, then Πa
0(A) ∩ σw(A)C = Πa

0(A) ∩ σaw(A)C = Π0(A) ∩ σw(A)C. Hence (iii) implies

Πa
0(A) = Πa

0(A) ∩ σaw(A)C = Π0(A) ∩ σw(A)C = σ(A) ∩ σw(A)C,

i.e., (iii) =⇒ (i). To complete the proof, we prove next that (iii) ⇐⇒ (iv). Recalling A∗ has SVEP at a
λ ∈ σaw(A)C if and only if λ ∈ σw(A)C (and A∗ has SVEP at λ), we have

(iii) ⇐⇒ A∗ has SVEP on Πa
0(A) ∩ η′σw(A)

⇐⇒ A∗ has SVEP on Πa
0(A) ∩ σw(A)C

⇐⇒ A∗ has SVEP on {isoσa(A) ∩ σaw(A)C} ∩ σw(A)C

⇐⇒ A∗ has SVEP on isoσa(A) ∩ σw(A)C

=⇒ A∗ has SVEP on isoσa(A) ∩ σaw(A)C

⇐⇒ A∗ has SVEP on isoσa(A) ∩ η′σaw(A),

i.e., (iii)⇐⇒ (iv).

Remark 5.6. Operators A ∈ B(X) such that A ∈ (b) have SVEP onσa(A)∩σaw(A)C and satsify σa(A)∩σaw(A)C =
σa(A) ∩ σw(A)C. Since A has SVEP on σa(A) ∩ σaw(A)C implies A has SVEP on σ(A) ∩ σw(A)C (this is simply
(a−Bt) =⇒ (Bt)), A ∈ (b) impliesΠa

0(A) = σa(A)∩σaw(A)C = σa(A)∩σw(A)C ⊆ σ(A)∩σw(A)C = Π0(A) ⊆ Πa
0(A).

Hence A ∈ (b) =⇒ A ∈ (ab). The reverse implication does not hold: Consider the operator A = U ⊕ U∗,
where U ∈ B(H) is the forward unilateral shift, when it is seen that σ(A) = σw(A), σ(A)∩σw(A)C = Πa

0(A) = ∅
(implies A ∈ (ab)) and A < (a−Bt) (implies A < (b)). The reverse implication requires additional hypotheses.
For example, if σw(A) \ σaw(A) = ∅, then

A ∈ (ab) ⇐⇒ σ(A) ∩ σw(A)C = Πa
0(A)

=⇒ σa(A) ∩ σw(A)C = Π0(A) (since A∗ has SVEP on Πa
0(A))

⇐⇒ σa(A) ∩ σaw(A)C = Π0(A) (since σw(A) = σaw(A))
⇐⇒ A ∈ (b).

6. Variations: Perturbation by commuting Riesz operators

Unlike the Browder theorems, properties (b), (w) and their generalized versions do not survive perturba-
tion by commuting Riesz operators (even finite rank and quasinilpotent variety). Property (ab) is, however,
inherited by A + R from A for commuting Riesz operators R.

Theorem 6.1. If A,R ∈ B(X), where R is Riesz and [A,R] = 0, then:
(A) A ∈ (ab)⇐⇒ A + R ∈ (ab).
(B) A ∈ (b) =⇒ A + R ∈ (b) if and only if one of the following mutually equivalent conditions holds:
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(i) A∗ has SVEP on isoσa(A + R) ∩ σaw(A)C.

(ii) A∗ has SVEP on Πa
0(A + R).

(iii) Πa
0(A + R) ⊆ Π0(A + R).

(iv) A∗ has SVEP on {σa(A + R) \ σa(A)} ∩ η′σaw(A).
(C) A ∈ (w) =⇒ A + R ∈ (w) if and only if E0(A + R) ∩ isoσaw(A + R) = ∅, and one of the equivalent conditions (i)
to (iv) of (B) above holds.

Proof. (A). Recall from Theorem 5.5(A) that A ∈ (ab) if and only if A∗ has SVEP on η′σw(A) andσw(A)∩Πa
0(A) =

∅. Since η′σw(A) = η′σw(A + R), and since A∗ has SVEP at a point if and only if (A + R)∗ has SVEP at the
point, A∗ has SVEP on η′σw(A) if and only if A∗ has SVEP on η′σw(A + R). Again, since

σw(A + R) ∩Πa
0(A + R)

= σw(A + R) ∩ {λ ∈ σaw(A + R)C : A + R has SVEP at λ}
= σw(A) ∩ {λ ∈ σaw(A)C : A has SVEP at λ} = σw(A) ∩Πa

0(A),
σw(A + R) ∩Πa

0(A + R) = ∅ ⇐⇒ σw(A) ∩Πa
0(A) = ∅.

Hence A ∈ (ab)⇐⇒ A + R ∈ (ab).
(B). In the following we start by proving the necessity of condition (ii), prove next the equivalence of
conditions (i) to (iv), and then prove that condition (iv) is sufficient.

If A ∈ (b), then (σa(A) ∩ σaw(A)C = Πa
0(A) = Π0(A) implies) A ∈ (a − Bt), which then implies that

A + R ∈ (a − Bt), i.e.,
σa(A + R) ∩ σaw(A + R)C = Πa

0(A + R) (⊇ Π0(A + R)).

Hence, if A + R ∈ (b), then necessarily (A + R)∗, equivalently A∗, has SVEP on Πa
0(A + R).

The equivalences (i)⇐⇒ (ii)⇐⇒ (iii) follows from the following:

isoσa(A + R) ∩ σaw(A)C = isoσa(A + R) ∩ σaw(A + R)C

= {λ ∈ σaw(A + R)C : A + R has SVEP at λ} = Πa
0(A + R), and

A∗ has SVEP on isoσ(A + R) ∩ σaw(A)C ⇐⇒ A∗ has SVEP on Πa
0(A + R)

⇐⇒ Πa
0(A + R) = Π0(A + R) (⇐⇒ Πa

0(A + R) ⊆ Π0(A + R)).

We prove next that (ii)⇐⇒ (iv). The hypothesis A ∈ (b) implies A∗ has SVEP on

σa(A) ∩ σaw(A)C = {σa(A) ∩ ησw(A)C} ∪ {σa(A) ∩ η′σaw(A)}
= {σa(A) ∩ ησw(A + R)C} ∪ {σa(A) ∩ η′σaw(A + R)}

Since σa(A+R)∩η′σaw(A) = {(σa(A+R)∩σa(A))∩η′σaw(A)}∪ {(σa(A+R) \σa(A))∩η′σaw(A)}, A∗ has SVEP on
σa(A)∩σaw(A)C, equivalently A∗ has SVEP on πa

0(A+R), if and only if condition (iv) is satisfied. To complete
the proof, we prove next that A ∈ (b) and condition (iv) imply A+R ∈ (b). If A ∈ (b), then (as seen above, A∗

and hence) (A + R)∗ has SVEP on σa(A) ∩ η′σaw(A + R). We have:

A + R ∈ (b) ⇐⇒ (A + R)∗ has SVEP on σa(A + R) ∩ η′σaw(A + R)
⇐⇒ (A + R)∗ has SVEP on {{σa(A + R) ∩ σa(A)} ∩ η′σaw(A + R)}
∪ {{σa(A + R) \ σa(A)} ∩ η′σaw(A + R)}
⇐⇒ (A + R)∗ has SVEP on {σa(A + R) \ σa(A)} ∩ η′σaw(A + R).

(C). Sufficiency. Recall from Theorem 5.1(ii) that

A ∈ (w)⇐⇒ A ∈ (b), E0(A) ∩ isoσaw(A) = E0(A) ∩ σaw(A) = ∅,

and from (B) above that A ∈ (b) if and only if one of the hypotheses (i) to (iv) is satified. Since

Πa
0(A + R) ∩ σaw(A)C ⊆ Π0(A + R) =⇒ σa(A + R) ∩ σaw(A + R)C = Π0(A + R) ⊆ E0(A + R),
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the sufficiency would follow once we have proved

E0(A + R) ∩ isoσaw(A + R) = ∅ =⇒ E0(A + R) ⊆ Π0(A + R).

For every λ ∈ E0(A + R) such that λ ∈ E0(A),

λ < E0(A) ∩ isoσaw(A) = E0(A) ∩ isoσaw(A + R)
=⇒ λ < E0(A + R) ∩ isoσaw(A + R)

(⇐⇒ λ < E0(A + R) ∩ σaw(A + R)⇐⇒ λ ∈ Π0(A + R)).

Consider next λ ∈ E0(A + R) such that λ < E0(A) (= σa(A) ∩ σaw(A)C). Since

λ < σaw(A)C =⇒ λ < σaw(A + R)C =⇒ λ < E0(A + R) ∩ σaw(A + R)C,

we must have (λ ∈ σaw(A)C and) λ < σa(A). But then (A, consequently) A + R has SVEP at λ, which then
forces λ ∈ Πa

0(A+R). Since λ ∈ E0(A+R) implies (A+R)∗ has SVEP at λ, λ ∈ Πa
0(A+R) implies λ ∈ Π0(A+R).

Necessity. The necessity of the condition E0(A+R)∩ isoσaw(A+R) = ∅ is immediate from the equivalence

A + R ∈ (w)⇐⇒ A + R ∈ (b),E0(A + R) ∩ isoσaw(A + R) = ∅.

Furthermore, since

A + R ∈ (b) ⇐⇒ σa(A + R) ∩ σaw(A + R)C = Π0(A + R)
=⇒ σa(A + R) ∩ σaw(A + R)C = Πa

0(A + R) = Π0(A + R)
=⇒ Πa

0(A + R) ⊆ Π0(A + R),

the condition Πa
0(A + R) ∩ σaw(A + R)C ⊆ Π0(A + R) too is necessary.

Theorem 6.1 extends to operators A ∈ (1ab), A ∈ (1b) and A ∈ (1w)

Theorem 6.2. Let A,R ∈ B(X), where R is a Riesz operator such that [A,R] = 0. Then:
(A) A ∈ (1b) =⇒ A + R ∈ (1b) if and only if Πa(A + R) ∩ σaBw(A + R)C ⊆ Π(A + R).
(B) A ∈ (1ab) =⇒ A + R ∈ (1ab) if and only if isoσa(A + R) ∩ σaBw(A + R)C ⊆ isoσa(A + R) ∩ σBw(A + R)C

(equivalently, Πa(A + R) ⊆ Π(A + R)).
(C) For left polaroid operators A, A ∈ (1w) =⇒ A + R ∈ (1w) if and only if (A + R)∗ has SVEP on Πa(A + R) and
E(A+R)∩ isoσaw(A+R) = ∅ (equivalently, if and only ifΠa(A+R) ⊆ Π(A+R) and E(A+R)∩ isoσaw(A+R) = ∅).

Proof. (A). Since Πa
0(A + R) ⊆ Πa(A + R) and σaBw(A + R) ⊆ σaw(A + R),

Πa
0(A + R) ∩ σaw(A + R)C ⊆ Πa(A + R) ∩ σaBw(A + R)C.

Hence the hypothesisΠa(A+R)∩σaBw(A+R)C ⊆ Π(A+R) implies (A+R)∗ has SVEP onΠa
0(A+R)∩σaw(A+R)C =

Πa
0(A + R) ∩ σaw(A)C (= Πa

0(A + R)). Consequently,

A ∈ (1b) =⇒ A ∈ (b) =⇒ A + R ∈ (b).

Recall from Theorem 5.3(iii) that if (A + R)∗ has SVEP on Πa(A + R) = (isoσa(A + R) ∩ σaBw(A + R)C =)
Πa(A + R) ∩ σaBw(A + R)C, then

A + R ∈ (b) =⇒ A + R ∈ (1b).

Hence the condition Πa(A + R) ∩ σaBw(A + R)C ⊆ Π(A + R) is sufficient for A ∈ (1b) to imply A + R ∈ (1b).
To see the necessity of the condition, assume A ∈ (1b) implies A + R ∈ (1b). Then

A ∈ (1b) =⇒ A + R ∈ (1b) =⇒ A + R ∈ (a − 1Bt)
⇐⇒ σa(A + R) ∩ σaBw(A + R)C = Πa(A + R),
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and
A + R ∈ (1b) =⇒ σa(A + R) ∩ σaBw(A + R)C = Π(A + R).

Hence
Πa(A + R) = σa(A + R) ∩ σaBw(A + R)C = Π(A + R).

(B). The hypothesis A ∈ (1ab) implies A ∈ (ab), and hence A + R ∈ (ab) (see Theorem 6.1(A)). Since

A + R ∈ (ab) =⇒ A + R ∈ (Bt)⇐⇒ A + R ∈ (1Bt)
⇐⇒ σ(A + R) ∩ σBw(A + R)C = Π(A + R) ⊆ Πa(A + R),

and since
Πa(A + R) = isoσa(A + R) ∩ σaBw(A + R)C,

the hypothesis isoσa(A + R) ∩ σaBw(A + R)C ⊆ isoσa(A + R) ∩ σBw(A + R)C implies

Πa(A + R) = isoσa(A + R) ∩ σBw(A + R)C = Π(A + R).

(Recall that λ ∈ isoσa(A + R) ∩ σBw(A + R)C if and only if λ ∈ isoσ(A + R) ∩ σBw(A + R)C.) This proves the
sufficiency of the condition.

Conversely, if A ∈ (1ab) implies A + R ∈ (1ab), then

σ(A) ∩ σBw(A)C = Πa(A) =⇒ σ(A + R) ∩ σBw(A + R)C

= isoσa(A + R) ∩ σaBw(A + R)C = Πa(A + R).

Hence, since

A ∈ (1ab) =⇒ A ∈ (1Bt)⇐⇒ A + R ∈ (1BT)
⇐⇒ σ(A + R) ∩ σBw(A + R)c = Π(A + R)
= {λ : λ ∈ isoσa(A + R) ∩ σBw(A + R)C},

we must have

{λ : λ ∈ isoσa(A + R) ∩ σaBw(A + R)C}
= {λ : λ ∈ isoσa(A + R) ∩ σBw(A + R)C}
⇐⇒ {λ : λ ∈ isoσa(A + R) ∩ σaBw(A + R)C}
⊆ {λ : λ ∈ isoσa(A + R) ∩ σBw(A + R)C}.

(C). The hypothesis A ∈ (1w) implies A ∈ (w). Since Πa
0(A + R) ⊆ Πa(A + R), the hypothesis (A + R)∗ has

SVEP onΠa(A+R) implies (A+R)∗ has SVEP onΠa
0(A+R) (and henceΠa

0(A+R)∩σw(A+R)C = Π0(A+R)).
Again, since E0(A + R) ⊆ E(A + R), E(A + R) ∩ isoσaw(A + R) = ∅ implies E0(A + R) ∩ isoσaw(A + R) = ∅.
Consequently,

A ∈ (1w) =⇒ A ∈ (w) =⇒ A + R ∈ (w).

Assume now that A+R is left polaroid. Then, since (already (A+R)∗ has SVEP onΠa(A+R), and therefore)
Πa(A+R) = Π(A+R), Theorem 5.3(iv) applies and we conclude that A+R ∈ (1w). This proves the sufficiency.

The necessity of the conditions (A+ R)∗ has SVEP onΠa(A + R) and E(A + R)∩ σaw(A+ R) = ∅ is immediate
from A + R ∈ (1w) if and only if σa(A + R) ∩ σaBw(A + R)C = E(A + R) (once one observes the fact that
E(A + R) ∩ σaBw(A + R) = ∅ =⇒ E(A + R) ∩ σaw(A + R) = ∅.)
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7. Perturbation by commuting finite rank, nilpotent and quasinilpotent operators

Theorems 6.1 and 6.2 subsume a number of extant results on the perturbation of operators satisfying
either of the properties (b), (ab), (w) and their generalizations. In the following we consider but a few of these
results on perturbation by commuting finite rank, nilpotent and quasinilpotent operators , starting with the
result that A ∈ (b)⇐⇒ A+R ∈ (b) for R either quasinilpotent or finite rank such that isoσa(A) = isoσa(A+R).
But before that we recall that if [A,R] = 0 and: (i) R is quasinilpotent, then σx(A + R) = σx(A), σx = σ or σa;
(ii) Rn is finite rank, then accσ(A + R) = accσ(A).

Proposition 7.1. Given A,R ∈ B(X) such that [A,R] = 0, if:
(A) R is quasinilpotent, then A ∈ (b)⇐⇒ A + R ∈ (b).

(B) Rn is finite rank for some integer n > 0 and isoσa(A) = isoσa(A + R), then A ∈ (b)⇐⇒ A + R ∈ (b).

Proof. The proof in both the cases is almost a direct consequence of the fact that if [A,R] = 0 and R is
quasinilpotent, or, Rn is finite rank with isoσa(A) = isoσa(A + R), then σa(A) = σa(A + R). Since A∗ has SVEP
at a point if and only if (A+R)∗ has SVEP at the point, and since σa(A)∩ η′σaw(A) = σa(A+R)∩ η′σaw(A+R),

A ∈ (b) ⇐⇒ A∗ has SVEP on σa(A) ∩ η′σaw(A)
⇐⇒ (A + R)∗ has SVEP on σa(A + R) ∩ η′σaw(A + R),

i.e., A ∈ (b)⇐⇒ A + R ∈ (b).

Remark 7.2. Since σa(A)∩σaw(A+R)C = {(σa(A)∩σa(A+R))∩σaw(A+R)C}∪{(σa(A)\σa(A+R))∩σaw(A+R)C},
and if A is polaroid σa(A) \ σa(A + R) ∩ σaw(A + R)C = isoσ(A) ∩ σa(A + R)C whenever (A + R)∗ has SVEP on
σa(A) ∩ σaw(A)C, the hypothesis isoσa(A) = isoσa(A + R), in the case in which Rn is finite rank in Proposition
7.1, may be replaced by a hypothesis guaranteeing isoσ(A) ∩ σa(A + R)C = ∅.

The equivalence of Proposition 7.1 extends to property (1b) for commuting nilpotent, and finite rank
operators satisfying σa(A) = σa(A + R).

Proposition 7.3. Given operators A,R ∈ B(X) such that [A,R] = 0 and either (i) R is nilpotent, or, (ii) Rn is finite
rank with σa(A) = σa(A + R), then A ∈ (1b) if and only if A + R ∈ (1b).

Proof. If (ii) is satisfied, then σa(A + R) = σa(A) and (since semi B-Fredholm spectrum is stable under
perturbations by finite rank operators [11, Proposition 2.7]) σaBw(A + R) = σaBw(A). Hence A∗ has SVEP on
σa(A) ∩ η′σaBw(A) if and only if (A + R)∗ has SVEP on σa(A + R) ∩ η′σaBw(A + R). This ensures A ∈ (1b) ⇐⇒
A + R ∈ (1b). If A is nilpotent, then A (A∗) has finite ascent if and only if A + R (resp., (A + R)∗) has finite
ascent [19, Lemma 2.5]. Hence, for λ ∈ σaBw(A)C, λ is a pole of the resolvent of A if and only if λ is a pole of
the resolvent of A + R. This implies A ∈ (1b)⇐⇒ A + R ∈ (1b).

The equivalence A ∈ (1b)⇐⇒ A+R ∈ (1b) fails for commuting quasinilpotents R. Let T = U⊕0 ∈ B(ℓ2⊕ ℓ2),
where U is the forward unilateral shift and 0 is the zero operator. Let Q ∈ B(ℓ2) be a non-nilpotent
quasnilpotent operator, and R = 0 ⊕ Q. Define the operator A ∈ B(ℓ2 ⊕ ℓ2) by A = U ⊕ Q. Then σa(A) =
∂D∪ {0} = σaBw(A),Π(A) = ∅ and A ∈ (1b) and the operator T = A − R satisfies σa(T) = ∂D∪ {0}, σaBw(T) =
∂D,Πa(T) = {0} and Π(T) = ∅. Hence σa(A − R) ∩ σaBw(A − R)C = Πa(A − R) and A − R < (1b).

Remark 7.4. The above example is in a way typical of operators for which A ∈ (1b) does not imply
A + R ∈ (1b) for comuting quasinilpotent (indeed, Riesz) operators R ( see Theorem 6.2(A), which says that
we must have Πa(A + R) ⊆ Π(A + R)).

We consider next implications A ∈ (w) =⇒ A + R ∈ (w) and A ∈ (1w) =⇒ A + R ∈ (1w) for commuting finite
rank and quasinilpotent operators R. If R is either nilpotent, or if Rn is finite rank with isoσa(A) = isoσa(A+R),
and [A,R] = 0, then σa(A) = σa(A + R) and σaw(A) = σaw(A + R). Hence, if A ∈ (w), then E0(A) =
σa(A)∩σaw(A)C = σa(A+R)∩σaw(A+R)C = Π0(A+R) ⊆ E0(A+R). The reverse inclusion E0(A+R) ⊆ E0(A) fails.
Consider, for example, the operator A + R, where A ∈ B(ℓ2) is the operator A(x1, x2, x3, ...) = (0, 1

2 x1, 1
3 x2, ...)

and R ∈ B(ℓ2) is the nilpotent, finite rank operator R(x1, x2, x3, ...) = (0,− 1
2 x1, 0, ...), when it is seen that

(E0(A + R) ∩ isoσaw(A + R) , ∅ and) E0(A + R) * E0(A).
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Proposition 7.5. If A,R are the operators of Proposition 7.3, then A ∈ (w) ⇐⇒ A + R ∈ (w) if and only if
E0(A + R) = E0(A).

Proof. The proof is immediate from the argument above which shows that A ∈ (w) implies E0(A) = σa(A +
R)∩σaw(A+R)C ⊆ E0(A+R), and A+R ∈ (w) implies E0(A+R) = σa((A+R)−R)∩σaw((A+R)−R)C ⊆ E0(A).

The equality E0(A) = E0(A + R) in the above proposition may be achieved in a number of ways. Thus, if A
is left polaroid (or, polaroid) and A ∈ (w), then (σx(A + R) = σx(A), σx = σ or σa, and)

λ ∈ E0(A + R) =⇒ λ ∈ isoσa(A + R) = isoσa(A), (A + R)∗ has SVEP at λ
(resp., λ ∈ isoσ(A + R) = isoσ(A) if A is polaroid)

=⇒ λ ∈ Π(A) ⊆ E(A);

since 0 < α(A+ R− λ) < ∞ =⇒ 0 < α(A− λ) < ∞, λ ∈ E0(A). Again, if A ∈ (w) and A+ R is left polaroid (or,
polaroid), then

λ ∈ E0(A + R) =⇒ λ ∈ Π0(A + R) =⇒ λ ∈ Π0(A) ⊆ E0(A).

The hypothesis A ∈ (w) is isoloid (Recall: A is isoloid if λ ∈ isoσ(A) =⇒ λ ∈ E(A)) implies E0(A+R) = E0(A)
(and, by symmetry, the hypothesis A + R ∈ (w) is isoloid implies E0(A) = E0(A + R)).

Perturbation by commuting quasinilpotents fails to satisfy the condition E0(A + R) ∩ isoσaw(A + R) = ∅.
Consider the operators A = 0 and R(x1, x2, x3, ...) = ( 1

2 x2, 1
3 x3, ...). Then A ∈ (w), R ∈ B(ℓ2) is (a non-injective)

quasinilpotent, σa(A + R) = σaw(A + R) = {0}, Πa
0(A + R) = Π0(A + R) = ∅, E0(A + R) = {0} (, E0(A) = ∅) and

A + R < (w). The following proposition shows that A ∈ (w) implies A + R ∈ (w) for commuting injective
quasinilpotent operators R, and for commuting quasinilpotent operators R for which the operator A is
finitely left polaroid.

Proposition 7.6. Given operators A,R ∈ B(X) such that R is a quasinilpotent which commutes with A, if:
(i) Either R is injective, or A is finitely left polaroid, then A ∈ (w) if and only if A + R ∈ (w). (ii) A is left polaroid,
then A ∈ (w) implies A + R ∈ (w) if and only if σaBw(A)C ∩ isoσaw(A) = ∅.
Proof. (i). We prove the forward implication for the case in which R is an injective quasinilpotent; the proof
of the backward implication follows by symmetry. For this we prove that

Πa
0(A + R) = Π0(A + R),E0(A + R) ∩ isoσaw(A + R) = ∅

(see Theorem 6.1(C)). The operator R being quasinilpotent, [A,R] = 0 implies σa(A) = σa(A + R), σaw(A) =
σaw(A + R), and A (A∗) has SVEP at a point if and only if A + R (resp., (A + R)∗) has SVEP at the point. If
A ∈ (w), then

E0(A) = σa(A) ∩ σaw(A)C = σa(A + R) ∩ σaw(A + R)C

= Πa
0(A + R) (since A + R has SVEP on E0(A))

= Π0(A + R) (since (A + R)∗ has SVEP on E0(A)).

Recall now from [18, Theorem 8.4.8, Page 133] (else, see the proof of [2, Theorem 2.13]) that if R is injective,
then Π0(A) = Π0(A + R) = E0(A + R) = ∅; hence E0(A + R) ∩ σaw(A + R) = ∅. (Indeed, A ∈ (w) =⇒ E0(A) =
E0(A + R) = σa(A) ∩ σaw(A)C = σw(A + R) ∩ σaw(A + R)C = ∅.)

We prove next the case in which A is finitely left polaroid. Here, since A is finitely left polaroid if and
only if A + R is finitely left polaroid (see Proposition 3.2), it would suffice to prove the forward implication
A ∈ (w) =⇒ A + R ∈ (w). Furthermore, since A ∈ (w) implies Πa

0(A + R) = Π0(A + R) (a straightforward
consequence, as seen above, of the fact that the definition of A ∈ (w) implies both A and A∗ have SVEP
on σa(A) ∩ σaw(A)C), we have only to prove that E0(A + R) ∩ isoσaw(A + R) = ∅. Assume that there exists a
λ ∈ E0(A + R) ∩ isoσaw(A + R). Then , since

λ ∈ isoσa(A + R) =⇒ λ ∈ isoσa(A)
=⇒ λ ∈ Πa

0(A) = σa(A) ∩ σaw(A)C = σa(A + R) ∩ σaw(A + R)C,
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λ < σaw(A + R). This being a contradiction, we must have E0(A + R) ∩ isoσaw(A + R) = ∅.

(ii). It is clear from the argument of the proof of (i) above that if A ∈ (w) is left polaroid, then Πa
0(A + R) =

Π0(A+R), E0(A) ⊆ E0(A+R) and λ ∈ E0(A+R) implies λ ∈ Πa(A) = isoσa(A)∩σaBw(A)C, A∗ has SVEP at λ.
Since isoσa(A)∩σaBw(A)C = {(isoσa(A)∩σaBw(A)C)∩ (σaw(A)∪σaw(A)C)} = {(isoσa(A)∩σaBw(A)C)∩σaw(A)C} =
isoσa(A) ∩ σaw(A)C if and only if

(isoσa(A) ∩ σaBw(A)C) ∩ σaw(A) = ∅ ⇐⇒ σaBw(A)C ∩ isoσaw(A) = ∅,
we have λ ∈ E0(A + R) implies λ ∈ Πa

0(A) (= Π0(A) = E0(A), since A ∈ (w)) if and only if σaBw(A)C ∩
isoσaw(A) = ∅. Thus E0(A+R) ⊆ E0(A) (implies E0(A+R) = E0(A) and E0(A+R)∩ isoσaw(A+R) = ∅, implies
A + R ∈ (w)) if and only if σaBw(A)C ∩ isoσaw(A) = ∅.

Property (1w) does not, as one would expect, survive perturbation by commuting finite rank and
nilpotent operators . If we let A ∈ B(ℓ2) be the quasinilpotent operator A(x1, x2, x3, ...) = (0, x1

2 ,
x2
3 , · · · ),

then σa(A) = σaBw(A) = {0}, E(A) = ∅ and A ∈ (1w). Let R ∈ B(ℓ2) be the finite rank (nilpotent) operator
R(x1, x2, x3, · · · ) = (0,− x1

2 , 0, · · · ), then σa(A + R) = σaBw(A + R) = E(A + R) = {0} and A + R < (1w). However,
just as for property (w), a satisfactory situation prevails for the case in which either A is left polaroid and R
is the finite rank operator of Proposition 7.3, or, A is polaroid and R is the operator of Proposition 7.3.

Proposition 7.7. Let A,R ∈ B(X), where [A,R] = 0.
(i) If A is left polaroid and R is the finite rank operator of Proposition 7.3, then A ∈ (1w) if and only if A + R ∈ (1w).
(ii) If A is polaroid and R is the operator of Proposition 7.3, then A ∈ (1w) if and only if A + R ∈ (1w).
(iii) If X = H is a Hilbert space and the operator R is nilpotent, then A ∈ (1w) if and only if A + R ∈ (1w).

Proof. (i). We prove the forward implication; the reverse implication follows by symmetry (since A is left
polaroid if and only if A + R is left polaroid by Proposition 3.3). Since the left polaroid hypothesis on A
implies

λ ∈ E(A + R) =⇒ λ ∈ Πa(A + R), (A + R)∗ has SVEP at λ, 0 < α(A + R − λ)
=⇒ λ ∈ Π(A + R), 0 < α(A + R − λ) =⇒ λ ∈ E(A + R),

we have

λ ∈ E(A) =⇒ λ ∈ isoσ(A) = isoσ(A + R), 0 < α(A − λ)
=⇒ λ ∈ Π(A + R), 0 < α(A + R − λ) =⇒ λ ∈ E(A + R).

(We remark here that if α(A + R − λ) = 0, then λ < σa(A + R) = σa(A).) Thus

E(A) ⊆ E(A + R) ⊆ E((A + R) − R) = E(A) =⇒ E(A) = E(A + R).

Since A ∈ (1w) implies E(A) ∩ isoσaw(A) = ∅, we must have E(A + R) ∩ isoσaw(A + R) = ∅. Already we have
Πa(A + R) = Π(A + R). Hence A + R ∈ (1w).

(ii). Again, we prove the forward implication. (Recall from Proposition 3.3 that A is polaroid if and
only if A + R is polaroid.) Suppose A ∈ (1w). If R is the finite rank operator of the statement, then
σaBw(A) = σaBw(A + R) (see the proof of Proposition 7.3), and if R is the nilpotent operator of the statement,
then σBb(A) = σBb(A + R) [19, Theorem 2.6]. Since σx(A) = σx(A + R), σx = σ or σa, if R is the finite rank
operator of the statement, then

Πa(A + R) = {λ : λ ∈ σa(A + R) ∩ σaBw(A + R)C,A + R has SVEP at λ}
= {λ : λ ∈ σa(A) ∩ σaBw(A)C,A and A∗ have SVEP at λ

(since A ∈ (1w))}
= {λ : λ ∈ σa(A + R) ∩ σaBw(A + R)C,A + R and (A + R)∗

have SVEP at λ} = Π(A + R)
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and if R is the nilpotent operator of the statement, then

Πa(A + R) = {λ : λ ∈ σa(A + R) ∩ σaBw(A + R)C,A + R has SVEP at λ}
= {λ : λ ∈ σa(A) ∩ σaBw(A)C,A and A∗ have SVEP at λ}
= {λ : λ ∈ σa(A) ∩ σBb(A)C} = {λ : λ ∈ σa(A + R) ∩ σBb(A + R)C}
= {λ : λ ∈ Πa(A + R), (A + R)∗ has SVEP at λ} = Π(A + R).

The polaroid property of A implies

λ ∈ E(A + R) =⇒ λ ∈ isoσ(A + R), 0 < α(A + R − λ)
⇐⇒ λ ∈ isoσ(A), 0 < α(A + R − λ) =⇒ λ ∈ isoσ(A), 0 < α(A − λ)
=⇒ λ ∈ E(A) = E((A + R) − R) =⇒ λ ∈ E(A + R).

Hence E(A + R) = E(A), E(A + R) ∩ isoσaw(A + R) = E(A) ∩ isoσaw(A) = ∅, and A + R ∈ (1w).
(iii). If X is a Hilbert space, then σaBw = σaBw(A + R) (see [6, Theorem 4.4] and [18, Corollary 2.9]).

Property (1w) does not travel from A to A + R for commuting quasinilpotents (even, commuting injective
quasinilpotents). Let, for example, A = U ⊕Q ∈ B(ℓ2 ⊕ ℓ2), where U is the forward unilateral shift and Q is
an injective quasinilpotent. Let R = −(Q ⊕ Q). Then σa(A) = ∂D∪ {0} = σaBw(A), E(A) = ∅, A ∈ (1w) and
σa(A+R) = ∂D∪{0}, σaBw(A+R) = ∂D,E(A+R) = ∅,A+R < (1w). Requiring A is finitely polaroid, however,
does the trick.

Proposition 7.8. If the operators A,R ∈ B(X) are such that [A,R] = 0, A is finitely polaroid and R is a quasinilpotent,
then A ∈ (1w) if and only if A + R ∈ (1w).

Proof. In view of the fact that A is finitely polaroid if and only if A + R is finitely polaroid, Proposition 3.2,
it would suffice to prove the forward implication. If A is finitely polaroid, then

A ∈ (1w)⇐⇒ σa(A) ∩ σaBw(A)C = E(A) = E0(A).

Since λ ∈ σaBw(A)C and 0 < α(A − λ) < ∞ imply λ ∈ σaw(A)C,

A ∈ (1w) =⇒ σa(A) ∩ σaw(A)C = E0(A)
⇐⇒ σa(A + R) ∩ σaw(A + R)C = E0(A + R) (Proposition 7.6)
=⇒ σa(A + R) ∩ σaBw(A + R)C = E(A + R)

(since A + R is finitely polaroid).

We end this section with the result that the hypotheses of Proposition 7.6 (ii) are sufficient for the transfer
of property (1w) from A to A + R for commuting quasinilpotents R.

Proposition 7.9. Let A,R ∈ B(X), where R is a quasinilpotent operator such that [A,R] = 0. If isoσaw(A)∩σaBw(A) =
∅, then A ∈ (1w) implies A + R ∈ (1w).

.

Proof. If isoσaw(A) ∩ σaBw(A) = ∅, then (the argument of the proof of Proposition 7.6 (ii) implies that)
isoσa(A) ∩ σaBw(A)C = isoσa(A) ∩ σaw(A)C. The hypothesis A ∈ (1w) implies

E(A) = σa(A) ∩ σaBw(A)C = {λ : λ ∈ isoσa(A) ∩ σaBw(A)C,A∗ has SVEP at λ}
= {λ : λ ∈ isoσa(A) ∩ σaw(A)C,A∗ has SVEP at λ}
= {λ : λ ∈ isoσa(A + R) ∩ σaw(A + R)C, (A + R)∗ has SVEP at λ}
= {λ : λ ∈ Πa

0(A + R), (A + R)∗ has SVEP at λ}
= {λ : λ ∈ Π0(A + R), 0 < α(A + R − λ)

(since α(A + R − λ) = 0 forces λ < σ(A) = σ(A + R))}
⊆ {λ : λ ∈ Π(A + R), 0 < α(A + R − λ)} ⊆ E(A + R).
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Again, since

E(A + R) = {λ : λ ∈ isoσ(A + R), 0 < α(A + R − λ)}
= {λ : λ ∈ isoσ(A), 0 < α(A + R − λ)}
= {λ : λ ∈ Πa(A),A∗ has SVEP at λ, 0 < α(A − λ)

(since α(A − λ) = 0 =⇒ λ < σ(A) = σ(A + R))}
= {λ : λ ∈ Π(A), 0 < α(A − λ)} ⊆ E(A),

we have
E(A + R) = Π(A + R) = E(A) =⇒ E(A + R) ∩ σaBw(A + R) = ∅.

Finally, since λ ∈ Πa(A+R) implies (λ ∈ isoσa(A+R) implies) λ ∈ isoσa(A), λ ∈ Πa(A) = isoσa(A)∩σaBw(A)C =
E(a) = E(A + R) = Π(A + R).

8. Perturbation by non-commuting compact operators

Compact operators K ∈ B(X) being Riesz, the results above cover the transfer of propertise (Bt), (Wt),
(1w) etc. from A ∈ B(X) to A+K for commuting K. The commutativity here is essential, (in a number of cases)
for the reason that SVEP does not survive perturbation by (not necessarily commuting) compact operators.

A pertinent example here is that of the unitary operator A =
(

U 1 −UU∗

0 U∗

)
∈ B(H ⊕H), U the forward

unilateral shift, and its perturbation by the compact operator K =
(

0 −1 +UU∗

0 0

)
∈ B(H ⊕H). Since the

operator A has SVEP and is polaroid (with σ(A) = σa(A) = σw(A) = σaw(A) = ∂D and Πa
0(A) = Πa(A) =

Π0(A) = Π(A) = Ea
0(A) = E0(A) = Ea(A) = E(A) = ∅, A satisfies (all) the properties (thus far) considered.

However, the operator A + K, which satisfies σ(A + K) = σa(A + K) = D and σw(A + K) = σaw(A + K) = ∂D,
does not satisfy any of the properties (Bt), (Wt), (w), (1w) etc. Observe that η′σw(A) = η′σaw(A) = D (the
open unit disc), i.e., the Weyl and the a-Weyl spectra of A have holes. The absence of holes leads to (some)
positive results (see [21, 22, 28, 33]). Thus, if an operator A ∈ B(X) is such that σw(A) (resp., σaw(A)) has no
holes, then A + K ∈ (Bt) (resp., A + K ∈ (a − Bt)) for every compact operator K ∈ B(X) [21, Theorem 4.1];
if also isoσw(A) = ∅ (resp., isoσaw(A) = ∅), then A + K ∈ (Wt) (resp., A + K ∈ (a −Wt)) for every compact
operator K ∈ B(X) [21, Theorem 6.4]. For operators A ∈ B(X) such that σ(A) = σw(A), a sufficient condition
for A + K ∈ (Bt) for every compact operator K ∈ B(X) is that η′σ(A) is a finite union of the holes of σ(A) [22,
Theorem 3.2]. Again, if the component Ωa(A) = {λ ∈ Φ+(A) : ind(A − λ) ≤ 0} is connected for an A ∈ B(X),
then A + K ∈ (1b) for every compact operator K ∈ B(X) if and only if A∗ has SVEP on σa(A) ∩ σaw(A)C

[21, Theorem 5.2]. Observe from Theorem 5.1 above that A + K ∈ (b) (resp., A + K ∈ (w)), for operators
A,K ∈ B(X) with K compact, if and only if (A + K)∗ has SVEP on σa(A + K) ∩ η′σaw(A) (resp., if and only
if (A + K) ∈ (b) and E0(A + K) ∩ isoσaw(A) = ∅). The example of the operator B = U ⊕ U∗, U ∈ B(H) the

forward unilateral shift, the compact operator K =
(

0 −1 +UU∗

0 0

)
and A = B−K shows that A ∈ (b) does

not imply A+K ∈ (b). Observe that η′σaw(A+K) = η′σaw(A) = D and σa(A+K)∩ σaw(A+K)C * isoσa(A+K)
(= ∅). Again, if we let A ∈ U ⊕ 0 ∈ B(ℓ2 ⊕ ℓ2), then σa(A) = σaw(A) = ∂D ∪ {0}, Π0(A) = ∅ and A ∈ (b). Let
E ∈ B(ℓ2) be the compact operator E(x1, x2, x3, ...) = (0, x2

2 ,
x3
3 , ...). Then the operator K = 0⊕ E is compact and

the operator A + K satisfies σa(A + K) = ∂D∪ {0, 1
2 ,

1
3 , ...}, σaw(A + K) = ∂D∪ {0},Π0(A) = ∅ and A + K < (b).

Observe that σa(A+K)∩σaw(A+K)C * isoσa(A+K) (= ∅). The following theorem shows that the hypotheses
σa(A + K) ∩ σaw(A + K)C ⊆ isoσa(A + K) and isoσa(A + K) ∩ σa(A)C ⊆ isoσ(A + K) are both necessary and
sufficient for A ∈ (b) to imply A + K ∈ (b).

Theorem 8.1. Given operators A,K ∈ B(X) with B compact, A ∈ (b) implies A + K ∈ (b) if and only if σa(A + K) ∩
σaw(A + K)C ⊆ isoσa(A + K) and isoσa(A + K) ∩ σa(A)C ⊆ isoσ(A + K).
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Proof. Sufficiency. Assume that σa(A+K)∩σaw(A+K)C ⊆ isoσa(A+K) and isoσa(A+K)∩σa(A)C ⊆ isoσ(A+K).
The hypothesis A ∈ (b) implies both A and A∗ have SVEP on σa(A) ∩ η′σaw(A). Since A∗ has SVEP at a point
λ ∈ η′σaw(A) implies λ ∈ η′σw(A), if A ∈ (b), then

{λ : λ ∈ σa(A) ∩ η′σaw(A),A∗ has SVEP at λ}
= {λ : λ ∈ σa(A) ∩ η′σw(A),A has SVEP at λ}
= {λ : λ ∈ σa(A) ∩ η′σw(A + K),A has SVEP at λ}.

Assume now that A ∈ (b), and consider the set

{λ : λ ∈ σa(A + K) ∩ η′σaw(A + K)}
= {λ : λ ∈ (σa(A + K) ∩ σa(A)) ∩ η′σw(A + K)}
∪{λ : λ ∈ (σa(A + K) ∩ σa(A)C) ∩ η′σw(A + K)}

= S1 ∪ S2 (say).

Since σa(A) ∩ η′σaw(A + K) = σa(A) ∩ η′σaw(A) ⊆ Π0(A) ⊆ σw(A + K)C,

S1 ⊆ {λ : λ ∈ σa(A + K) ∩ σw(A + K)C}
⊆ {λ : λ ∈ isoσa(A + K) ∩ σw(A + K)C} ⊆ Π0(A + K).

Again, if isoσa(A + K) \ σa(A) ⊆ isoσ(A + K), then

S2 ⊆ {λ : λ ∈ isoσ(A + K) ∩ η′σaw(A + K)} ⊆ Π0(A + K).

Hence

σa(A + K) ∩ σaw(A + K)C ⊆ Π0(A + K) = isoσa(A + K) ∩ σw(A + K)C

⊆ σa(A + K) ∩ σaw(A + K)C,

i.e., A + K ∈ (b).

Necessity. If A + K ∈ (b), then isoσa(A + K) ∩ σa(A)C ⊆ isoσa(A + K) ∩ σaw(A)C ⊆ Π0(A + K) ⊆ isoσ(A + K)
and

{λ : λ ∈ σa(A + K) ∩ σaw(A + K)C, (A + K)∗ has SVEP at λ}
= {λ : λ ∈ σa(A + K) ∩ σw(A + K)C, (A + K) has SVEP at λ}
= Π0(A + K) ⊆ Πa

0(A + K) ⊆ isoσa(A + K).

This completes the proof.

Operators A ∈ B(X) such that σa(A) = σaw(A) satisfy property (b). If also such an operator A satisfies
σa(A + K) ∩ σaw(A)C ⊆ isoσ(A + K) for a compact operator K ∈ B(X), then A + K ∈ (b): This follows from
Theorem 8.1, since σa(A) = σaw(A) implies σa(A+K)∩σa(A)∩η′σaw(A) = ∅ and σa(A+K)∩σa(A)C∩σaw(A)C =
σa(A + K) ∩ σaw(A)C.

Corollary 8.2. Operators A ∈ B(X) such that σa(A) = σaw(A) satisfy property (b). Furthermore, if K ∈ B(X) is a
compact operator such that σa(A + K) ∩ η′σaw(A) ⊆ isoσ(A + K), then A + K ∈ (b).

An important example of the class of operators A ∈ B(X) satisfying σa(A) = σaw(A) is that of the operators
satisfying the abstract shift condition A∞(X) =

∪∞
n=1 An(X) = {0} [27, Page 78]. (Weighted right shift operators

A ∈ B(ℓp), 1 ≤ p < ∞, are an interesting subclass of the class of operators satisfying the abstract shift
condition [27].) LetA denote the class of non-quasinilpotent operators A ∈ B(X) satisfying the abstract shift
condition. Then σw(A) is connected for operators A ∈ A, and it follows from [21, Theorem 6.4] that A+K is
polaroid for compact operators K ∈ B(X). Hence:

Corollary 8.3. If A ∈ A and K ∈ B(X) is a compact operator such that σa(A + K) ∩ η′σaw(A) ⊆ isoσ(A + K), then
A + K ∈ (w).
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Proof. Corollary 8.2 implies that A+K ∈ (b). Since isoσw(A) = ∅, A+K is polaroid. Hence E0(A+K) ⊆ Π0(A+K)
(⇐⇒ E0(A + K) = Π0(A + K)). This implies A + K ∈ (w).

The argument above leads us to:

Theorem 8.4. Given operators A,K ∈ B(X), with K compact, a sufficient condition for A ∈ (w) implies A+K ∈ (w)
is that A ∈ (b) implies A + K ∈ (b) and isoσw(A) = ∅.

Proof. Evident, since A ∈ (w) implies (A ∈ (b), hence) A + K ∈ (b), and isoσw(A) = ∅ implies Π0(A + K) =
E0(A + K).

The example of the unitary operator A ∈ B(H ⊕H) and the compact operator K ∈ B(H ⊕H) considered
above (at the begining of this section) shows that A ∈ (ab) does not imply A + K ∈ (ab) (i.e., property (ab) is
not stable under perturbation by compact operators). The following theorem gives a sufficient condition.

Theorem 8.5. Given A ∈ B(X), a sufficient condition for A ∈ (ab) to impliy A+K ∈ (ab) for every compact operator
K ∈ B(X) is that σaw(A)C is connected.

Proof. We start by proving that A + K has SVEP on σaw(A)C = σaw(A + K)C for all compact operators K.
Suppose to the contrary that there exists a compact operator K such that A+K does not have SVEP at a point
λ ∈ σaw(A+K)C. Then asc(A+K−λ) = ∞. The component σaw(A+K)C being connectedρa(A+K) = C\σa(A+K)
intersects σaw(A+K)C. Hence the continuity of the index at pointsλ ∈ σaw(A+K)C implies thatα(A+K−λ) = 0
at every λ ∈ σaw(A+K)C, except perhaps for a countable subset (where α(A+K−λ) > 0). In any case, A+K
has SVEP at λ, consequently asc(A+K − λ) < ∞. This being a contradiction, we must have A+K has SVEP
on σaw(A + K)C, and hence (A + K ∈ (a − Bt), i.e.,) σa(A + K) ∩ σaw(A + K)C = Πa

0(A + K). Assume now that
A ∈ (ab). Then σ(A) ∩ σw(A)C = Πa

0(A), and hence A∗ has SVEP on Πa
0(A). Since

A∗ has SVEP on Πa
0(A)⇐⇒ A∗ has SVEP on σaw(A)C

=⇒ σaw(A + K)C = σaw(A)C = σw(A)C = σw(A + K)C,

and since A + K has SVEP on (σaw(A + K)C =) σw(A + K)C,

Πa
0(A + K) = {λ : λ ∈ isoσa(A + K) ∩ σaw(A + K)C}

= {λ : λ ∈ isoσa(A + K) ∩ σw(A + K)C}
= {λ : λ ∈ isoσa(A + K) ∩ (isoσ(A + K) ∩ σw(A + K)C)}
= {λ : λ ∈ isoσ(A + K) ∩ σw(A + K)C}
= {λ ∈ Πa

0(A + K) : (A + K)∗ has SVEP at λ}.
Hence A + K ∈ (ab).
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