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Abstract. In this paper a general theorem of Meir - Keeler type for mappings satisfying an implicit
relation in partial metric spaces, which generalize Theorem 2.3 and Corollary 2.4 [3] is proved.

1. Introduction

Let f , g be self mappings that are defined on a nonempty set X. We say that x ∈ X is a coincidence
point of f and g if fx = gx. We denote by C(f, g) the set of all coincidence points of f and g.

Let (X, d) be a metric space. Jungck [10] defined f and g to be compatible if limn→∞ d(fgxn, gfxn) = 0,
whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

In 1994, Pant introduced the notion of pointwise R - weakly commuting mappings. It is proved in [18]
that pointwise R - weakly commuting is equivalent to commutativity in coincidence points.

Definition 1.1 ([11]). Two self mappings f and g that are defined on a nonempty set X are said to be
weakly compatible if fgu = gfu for each u ∈ C(f, g).

In 1969, Meir and Keeler [15], established a fixed point theorem for mappings that are defined on a
metric space (X, d) satisfying the following condition:

for each ε > 0, there exists δ > 0 such that

ε < d(x, y) < ε+ δ implies d(fx, fy) < ε.

There exists a vast literature which generalizes the result of Meir-Keeler.
In 1986, Jungck [10] and Pant [16] extend these results for four mappings. It is known by Jungck

[10], Pant [16], [17], [19] and other papers that, in the case of theorems for four mappings A, B, S and
T : (X, d) → (X, d), a condition of Meir - Keeler type does not assure the existence of a fixed point.
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In 1994, Matthews [14] introduced the concept of partial metric space as a part of the study of denotional
semantics of dataflows networks and proved the Banach contraction principle in such spaces. Many authors
studied some contractive conditions in complete partial metric spaces.

Recently, in [1], [2], [6], [7], [12], [13] and in other papers, some fixed point theorems under various
contractive conditions are proved. Quite recently, some generalizations of Meir - Keeler type in partial
metric spaces are proved in [3], [4], [24].

Several classical fixed point theorems and common fixed point theorems have been unified considering a
general condition by an implicit relation in [21], [22] and in other papers.

Recently, the method is used in the study of fixed points in metric spaces, symmetric spaces, quasi -
metric spaces, b - metric spaces, Hilbert spaces, ultra - metric spaces, convex metric spaces, compact metric
spaces, paracompact metric spaces, in two and three metric spaces, for single - valued mappings, hybrid
pairs of mappings and set - valued mappings.

Quite recently, the method is used in the study of fixed points for mappings satisfying a contractive
condition of integral type, in fuzzy metric spaces, probabilistic metric spaces, intuitionistic metric spaces,
ordered metric spaces and G - metric spaces.

With this method, the proofs of some fixed point theorems are simpler. Also, the method allows the
study of local and global properties of fixed point structures.

The study of coincidence and fixed points for mappings satisfying implicit relations in partial metric
spaces is initiated in [8], [9], [25], [5].

Fixed point theorems for mappings of Meir - Keeler type satisfying an implicit relation in metric spaces
are proved in [23], [20].

In this paper, a general fixed point theorem of Meir - Keeler type for mappings satisfying an implicit
relation in partial metric spaces, which generalize Theorem 2.1 and Corollary 2.4 [3] is proved.

2. Preliminaries

Definition 2.1 ([14]). Let X be a nonempty set. A function p : X×X → R+ is said to be a partial metric
on X if for any x, y, z ∈ X, the following conditions hold:

(P1) : p(x, x) = p(y, y) = p(x, y) if and only if x = y,
(P2) : p(x, x) ≤ p(x, y),
(P3) : p(x, y) = p(y, x),
(P4) : p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).
The pair (X, p) is called a partial metric space.

If p(x, y) = 0, then x = y, but the converse does not always hold.
If x ̸= y, then p (x, y) > 0.
Each partial metric space on X generates a T0 - topology τp which has as base the family of open p -

balls {Bp(x, ε) : x ∈ X and ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x)+ ε} for all x ∈ X and ε > 0.
A sequence {xn} in a partial metric space (X, p) converges to a limit x ∈ X with respect to τp if and

only if p(x, x) = limn→∞ p(x, xn).
If p is a partial metric on X, then the function

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.

Definition 2.2 ([14]). Let (X, p) be a partial metric space.
a) A sequence {xn} in X is said to be a Cauchy sequence if limn,m→∞ p(xn, xm) exists and is finite.
b) (X, p) is said to be complete if every Cauchy sequence in X converges with respect to τp to a point

x ∈ X, that is limm,n→∞ p(xn, xm) = p(x, x).
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Lemma 2.3 ([14], [2]). Let (X, p) be a partial metric space. Then:
a) A sequence {xn} is Cauchy if and only if {xn} is Cauchy in the metric space (X, dp).
b) (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover, limn→∞ dp (xn, x) =

0 if and only if

lim
n→∞

p (x, xn) = lim
n,m→∞

p (xn, xm) = p (x, x) . (1)

Lemma 2.4 ([2], [13]). Let (X, p) be a partial metric space. If limn→∞ xn = x and p (x, x) = 0, then
limn→∞ p (xn, y) = p (x, y), ∀y ∈ X.

The following Meir - Keeler common fixed point theorem on partial metric spaces is proved in [3].

Theorem 2.5 (Theorem 2.3 [3]). Let A,B, S and T be self mappings defined on a partial metric space
(X, p) satisfying the following conditions:

(C1) AX ⊂ TX and BX ⊂ SX,
(C2) for all ε > 0, there exists δ > 0 such that for all x, y ∈ X,

ε < M(x, y) < ε+ δ implies p(Ax,By) ≤ ε,

where

M(x, y) = max

{
p(Sx, Ty), p(Sx,Ax), p(Ty,By),

1

2
[p(Sx,By) + p(Ty,Ax)]

}
,

(C3) for all x, y ∈ X with M (x, y) > 0 implies p (Ax,By) < M (x, y),
(C4) p(Ax,By) ≤ max{a[p (Sx, Ty)+ p (Sx,Ax)+ p (Ty,By)], b[p (Sx,By)+ p (Ty,Ax)]}, for all x, y ∈ X,

0 ≤ a <
1

2
, 0 ≤ b <

1

2
.

If one of AX, BX, TX and SX is a closed subset of X, then
(i) A and S have a coincidence point,
(ii) B and T have a coincidence point.
Moreover, if A and S, as well as, B and T are weakly compatible, then A,B, S and T have a unique

common fixed point.

Theorem 2.6 (Corollary 2.4 [3]). Let A,B, S and T be self mappings defined on a partial metric space
(X, p) satisfying the following conditions:

(C1) AX ⊂ TX and BX ⊂ SX,
(C2) for all ε > 0, there exists δ > 0 such that for all x, y ∈ X,

ε < M(x, y) < ε+ δ implies p(Ax,By) ≤ ε,

where

M(x, y) = max

{
p(Sx, Ty), p(Sx,Ax), p(Ty,By),

1

2
[p(Sx,By) + p(Ty,Ax)]

}
,

(C3) for all x, y ∈ X with M (x, y) > 0 implies p (Ax,By) < M (x, y),
(C4) p(Ax,By) ≤ k[p (Sx, Ty) + p (Sx,Ax) + p (Ty,By) + p (Sx,By) + p (Ty,Ax)], for all x, y ∈ X and

0 < k <
1

3
.

If one of AX, BX, TX and SX is a complete subspace of X, then
(i) A and S have a coincidence point,
(ii) B and T have a coincidence point.
Moreover, if A and S, as well as, B and T are weakly compatible, then A,B, S and T have a unique

common fixed point.

Remark 2.7. It is shown in [24] that in Theorem 2.6, 0 ≤ k <
1

4
.
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3. Implicit relation

Definition 3.1. Let FMK be the set of all real continuous mappings F (t1, ..., t6) : R6
+ → R satisfying the

following conditions:

(F1) : F is nonincreasing in variables t2, t3, ..., t6,

(F2) : F (t, t, 0, t, t, t) ≤ 0 implies t = 0,

(F3) : F (t, t, t, 0, t, t) ≤ 0 implies t = 0.

In the following examples the property (F1) is obviously.

Example 3.2. F (t1, ..., t6) = t1 −max{a(t2 + t3 + t4), b(t5 + t6)}, where 0 ≤ a <
1

2
and 0 ≤ b <

1

2
.

(F2) : F (t, t, 0, t, t, t) = t (1−max{2a, 2b}) ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t (1−max{2a, 2b}) ≤ 0 implies t = 0.

Example 3.3. F (t1, ..., t6) = t1 − k (t2 + t3 + t4 + t5 + t6), where k ∈
[
0,

1

4

)
.

(F2) : F (t, t, 0, t, t, t) = t (1− 4k) ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t (1− 4k) ≤ 0 implies t = 0.

Example 3.4. F (t1, ..., t6) = t1 − kmax{t2, t3, t4, t5, t6}, where k ∈ [0, 1).

(F2) : F (t, t, 0, t, t, t) = t (1− k) ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t (1− k) ≤ 0 implies t = 0.

Example 3.5. F (t1, ..., t6) = t1 − kmax

{
t2, t3, t4,

t5 + t6
2

}
, where k ∈ [0, 1).

(F2) : F (t, t, 0, t, t, t) = t (1− k) ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t (1− k) ≤ 0 implies t = 0.

Example 3.6. F (t1, ..., t6) = t1 − at2 − bt3 − ct4 − dt5 − et6, where a, b, c, d, e ≥ 0, a + c + d + e < 1 and
a+ b+ d+ e < 1.

(F2) : F (t, t, 0, t, t, t) = t[1− (a+ c+ d+ e)] ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t[1− (a+ b+ d+ e)] ≤ 0 implies t = 0.

Example 3.7. F (t1, ..., t6) = t1 − αmax{t2, t3, t4} − (1− α) (at5 + bt6), where α ∈ (0, 1) , a, b ≥ 0 and
a+ b < 1.

(F2) : F (t, t, 0, t, t, t) = t (1− α) (a+ b) ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t (1− α) (a+ b) ≤ 0 implies t = 0.

Example 3.8. F (t1, ..., t6) = t1 −max{ct2, ct3, ct4, at5 + bt6}, where c ∈ (0, 1) , a, b ≥ 0 and a+ b < 1.

(F2) : F (t, t, 0, t, t, t) = t (1−max{c, a+ b}) ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t (1−max{c, a+ b}) ≤ 0 implies t = 0.

Example 3.9. F (t1, ..., t6) = t1−at2−bmax{t3, t4}−cmax{t3+t4, t5+t6}, where a, b, c ≥ 0 and a+b+2c <
1.

(F2) : F (t, t, 0, t, t, t) = t[1− (a+ b+ 2c)] ≤ 0 implies t = 0.

(F3) : F (t, t, t, 0, t, t) = t[1− (a+ b+ 2c)] ≤ 0 implies t = 0.
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4. Main results

Theorem 4.1. Let A,B, S and T be self mappings on a complete partial metric space (X, p) satisfying the
following conditions:

AX ⊂ TX and BX ⊂ SX, (2)

for all ε > 0, there exists δ > 0 such that for all x, y ∈ X,
ε < M(x, y) < ε+ δ implies p(Ax,By) ≤ ε,

where M(x, y) = max
{
p(Sx, Ty), p(Sx,Ax), p(Ty,By), 1

2 [p(Sx,By) + p(Ty,Ax)]
}
,

(3)

for all x, y ∈ X with M (x, y) > 0 implies p (Ax,By) < M (x, y) , (4)

F (p(Ax,By), p (Sx, Ty) , p (Sx,Ax) , p (Ty,By) , p (Sx,By) , p (Ty,Ax)) ≤ 0,
for all x, y ∈ X and F ∈ FMK .

(5)

If one of AX, BX, SX, TX is a closed subset of (X, p), then
a) C(A,S) ̸= ∅,
b) C(B, T ) ̸= ∅.
Moreover, if A and S, as well B and T are weakly compatible, then A,B, S and T have a unique common

fixed point.

Proof. Let x0 be an arbitrary point in X. Since AX ⊂ TX, there exists x1 ∈ X such that Tx1 = Ax0.
Since BX ⊂ SX, there exists x2 ∈ X such that Sx2 = Bx1.

Continuing this process we construct two sequences {xn} and {yn} in X defined by

y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1, ∀n ∈ N.

Suppose that p (y2n, y2n+1) = 0 for some n ∈ N. Then y2n = y2n+1 which implies Ax2n = Tx2n+1 =
Bx2n+1 = Sx2n+2. Then T and B have a coincidence point. Further, p (y2n+1, y2n+2) = 0 for some n ∈ N,
then Ax2n+2 = Tx2n+3 = Bx2n+1 = Sx2n+2, so A and S have a coincidence point. For the rest, assume
that p (yn, yn+1) > 0, ∀n ∈ N. If for some x, y ∈ X, M (x, y) = 0 then we have Ax = Sx and By = Ty,
hence C(S,A) ̸= ∅ and C(B, T ) ̸= ∅.

If M (x, y) > 0 for all x, y ∈ X, as in [3] we obtain that for sequence {yn}, limn→∞ p (yn, yn+1) = 0, so
{yn} is a Cauchy sequence in (X, dp) and by Lemma 2.3, {yn} is a Cauchy sequence in (X, p). Since (X, p)
is complete, there exists y ∈ X such that from Lemmas 2.3, 2.4 and limn→∞ p (yn, yn+1) = 0 we have

p (y, y) = lim
n→∞

p (yn, y) = lim
n→∞

p (yn, yn) = 0.

This implies that

lim
n→∞

p (y2n, y) = lim
n→∞

p (y2n−1, y) = 0.

Hence,

lim
n→∞

p (Ax2n, y) = lim
n→∞

p (Tx2n−1, y) = 0

and

lim
n→∞

p (Bx2n−1, y) = lim
n→∞

p (Sx2n, y) = 0.

Now we suppose without loss of generality that SX is a closed subset of the partial metric space (X, p).
Then there exists u ∈ X such that y = Su.

By (5) we have successively

F

(
p(Au,Bx2n+1), p (Su, Tx2n+1) , p (Su,Au) ,

p (Tx2n+1, Bx2n+1) , p (Su,Bx2n+1) , p (Tx2n+1, Au)

)
≤ 0,
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F

(
F (p(Au, y2n+1), p (Su, y2n) , p (Su,Au) ,
p (y2n, y2n+1) , p (Su, y2n+1) , p (y2n, Au)

)
≤ 0.

Letting n tends to infinity we obtain

F (p(y,Au), p (y, Su) , p (Su,Au) , 0, p (y, Su) , p (y,Au)) ≤ 0,

F (p(Au, Su), p (Su, Su) , p (Su,Au) , 0, p (Su, Su) , p (Su,Au)) ≤ 0.

By (P2) and (F1) we have

F (p(Au, Su), p (Su,Au) , p (Su,Au) , 0, p (Su,Au) , p (Su,Au)) ≤ 0.

By (F3) we have p(Au, Su) = 0, i.e. Au = Su. Hence, y = Au = Su and C(A,S) ̸= ∅.
Since AX ⊂ TX, y ∈ TX. Hence, there exists v ∈ X such that y = Tv.
Again, by (5) we obtain

F

(
p(Au,Bv), p (Su, Tv) , p (Su,Au) ,
p (Tv,Bv) , p (Su,Bv) , p (Tv,Au)

)
≤ 0,

F (p(y,Bv), 0, 0, p (y,Bv) , p (y,Bv) , 0) ≤ 0,

which implies by (F1) and (P2) that

F (p(Tv,Bv), p(Tv,Bv), 0, p(Tv,Bv), p(Tv,Bv), 0) ≤ 0.

By (F2), p(Tv,Bv) = 0, i.e. Tv = Bv = y and C(B, T ) ̸= ∅.
Hence, y = Su = Au = Tv = Bv.
Suppose that A and S are weakly compatible and B and T are, also, weakly compatible.
By y = Su = Au we obtain Sy = SAu = ASu = Ay and by y = Tv = Bv we obtain Ty = TBv =

BTv = By.
By (5) we obtain

F

(
p(Au,By), p (Su, Ty) , p (Su,Au) ,
p (Ty,By) , p (Su,By) , p (Ty,Au)

)
≤ 0,

F (p(y,By), p (y,By) , 0, p (By,By) , p (y,By) , p (y,By)) ≤ 0.

Since by (P2) p(By,By) ≤ p(y,By), then by (F1) we obtain

F (p(y,By), p (y,By) , 0, p (y,By) , p (y,By) , p (y,By)) ≤ 0,

which implies by (F2) that p (y,By) = 0, i.e. y = By = Ty and y is a common fixed point of B and T .
Again, by (5) we obtain

F

(
p(Ay,Bv), p (Sy, Tv) , p (Sy,Ay) ,
p (Tv,Bv) , p (Sy,Bv) , p (Tv,Ay)

)
≤ 0,

F (p(Ay, y), p (Ay, y) , p (Ay,Ay) , 0, p (Ay, y) , p (y,Ay)) ≤ 0.

By (F1) and (P2) we obtain

F (p(Ay, y), p (Ay, y) , p (Ay, y) , 0, p (Ay, y) , p (y,Ay)) ≤ 0,
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which implies by (F3) that p (Ay, y) = 0, i.e. y = Ay = Sy. Hence, y is a fixed point of A and S. Therefore,
y is a common fixed point of A,B, S and T .

Suppose that w is another common fixed point of A,B, S and T . Then by (5) we have

F

(
p(Ay,Bw), p (Sy, Tw) , p (Sy,Ay) ,
p (Tw,Bw) , p (Sy,Bw) , p (Tw,Ay)

)
≤ 0,

F (p(y, w), p (y, w) , 0, p (w,w) , p (y, w) , p (y, w))

By (F1) and (P2) we obtain

F (p(y, w), p (y, w) , 0, p (y, w) , p (y, w) , p (y, w)) ≤ 0,

which implies by (F2) that p (y, w) = 0, i.e. y = w. Hence, y is a unique common fixed point of A,B, S and
T .

Theorem 4.2. Let A,B, S and T be self mappings on a partial metric space (X, p) satisfying the following
conditions:

AX ⊂ TX and BX ⊂ SX, (6)

for all ε > 0, there exists δ > 0 such that for all x, y ∈ X,
ε < M(x, y) < ε+ δ implies p(Ax,By) ≤ ε,

where M(x, y) = max
{
p(Sx, Ty), p(Ax, Sx), p(By, Ty), 1

2 [p(Sx,By) + p(Ty,Ax)]
}
,

(7)

for all x, y ∈ X with M (x, y) > 0 implies p (Ax,By) < M (x, y) , (8)

F (p(Ax,By), p (Sx, Ty) , p (Sx,Ax) , p (Ty,By) , p (Sx,By) , p (Ty,Ax)) ≤ 0,
for all x, y ∈ X and F ∈ FMK .

(9)

If one of AX, BX, SX, TX is a complete subspace of (X, p), then
a) C(A,S) ̸= ∅,
b) C(B, T ) ̸= ∅.
Moreover, if A and S, as well B and T are weakly compatible, then A,B, S and T have a unique common

fixed point.

Proof. The proof is similar to the proof of Theorem 4.1.

Remark 4.3. 1) By Theorem 4.1 and Example 3.3 we obtain Theorem 2.5.
2) By Theorems 4.1 and Example 3.3 we obtain Theorem 2.6.
3) By Theorems 4.1, 4.2 and Examples 3.4 - 3.9 we obtain new particular results.
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