Functional Analysis, Approximation and Computation 9 (1) (2017), 25–35

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Numerical Range of a Simple Compression

Philip G Spain^a

^aSchool of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, United Kingdom

Abstract. The numerical range of the contraction $K: \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ acting on $L(\mathbb{C}^2)$ is identified, so allowing one to exhibit a hermitian projection that is not ultrahermitian.

An explicit formula for the norm of the operator $\kappa_m := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} ma & b \\ c & d \end{bmatrix} (m \in \mathbb{C})$. translates into a family of inequalities in four complex variables.

Introduction

Although the product of hermitian operators on a Hilbert space is also hermitian if (and only if) they commute, this does not extend to hermitian operators on a Banach space. Indeed, the square of a hermitian need not be hermitian: and even the product of two commuting hermitian *projections* need not be hermitian.

Here I identify the numerical range of the simplest nontrivial compression operator $K: \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, and so can exhibit hermitian projections that are not ultrahermitian.

The norms of the related operators $\kappa_m := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} ma & b \\ c & d \end{bmatrix}$ are calculated explicitly (as m varies in the complex plane).

Perhaps surprisingly, the quantity $a^2 + b^2 + c^2 + d^2 + \sqrt{(a^2 + b^2 + c^2 + d^2)^2 - 4(ad \pm bc)^2}$ does not necessarily decrease when one replaces a by 0 (a, b, c and d being arbitrary real numbers), but may increase by up to the factor $\|\kappa_0\|$.

1. Numerical range

I follow the standard notation and rehearse only a few salient details, referring the reader to [BD], for example, for a full exposition and other references.

Given a Banach space *X* we say that

$$f \in X'$$
 supports $x \in X$ if $\langle x, f \rangle = ||x|| = ||f|| = 1$.

2010 Mathematics Subject Classification. 47A12, 47B15.

Keywords. Numerical range; Compression; Ultrahermitian projection.

Received: 12 December 2016; Accepted: 27 January 2017

Communicated by Dragan S. Djordjević

Email address: Philip.Spain@glasgow.ac.uk (Philip G Spain)

The *supporting set* for *X* is

$$\Pi_X := \{(x, f) \in X \times X' : \langle x, f \rangle = ||x|| = ||f|| = 1\}.$$

The (spatial) numerical range of the operator $T \in L(X)$ is

$$V(T) := \left\{ \langle Tx, f \rangle : (x, f) \in \Pi_X \right\}.$$

Definition 1.1. *H* in L(X) is hermitian if its numerical range is real: equivalently, if $||e^{irH}|| = 1$ $(\forall r \in \mathbb{R})$: equivalently, if $||I_X + irH|| \le 1 + o(r)$ $(\mathbb{R} \ni r \to 0)$.

2. The Banach space $L(\mathbb{C}^2)$ and some linear algebra

My example lives on $L(\mathbb{C}^2)$ with the operator norm. Facts to notice about this Banach space:

• Given $f \in L(\mathbb{C}^2)$ we can define a functional $\omega_f : y \mapsto \operatorname{tr}(yf)$ in $L(\mathbb{C}^2)'$: here tr is the *unnormalised* trace: and

$$\|\omega_f\| = \operatorname{tr}|f| = \operatorname{tr}(f^*f)^{\frac{1}{2}}.$$

Since any functional must be of this form we see that the [pre]dual of $L(\mathbb{C}^2)$ is, as a set, the same space as $L(\mathbb{C}^2)$: but with the trace norm.

• $\Pi_{L(\mathbb{C}^2)}$ is *biunitarily invariant* in the sense that

$$(uxv,v^*fu^*)\in\Pi_{L(\mathbb{C}^2)}\iff (x,f)\in\Pi_{L(\mathbb{C}^2)}$$

for any unitaries u and v.

• $\Pi_{L(\mathbb{C}^2)}$ is invariant under complex conjugation too — so V(T) is symmetric in the real axis when T has real entries

Given an element $x = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of $L(\mathbb{C}^2)$ define

$$\sigma^2 = |a|^2 + |b|^2 + |c|^2 + |d|^2$$
, $v^2 = |ad - bc|$, and $\rho^4 = \sigma^4 - 4v^4$.

Then (routine computation!) the eigenvalues of x^*x are $(\sigma^2 \pm \rho^2)/2$ from which we have

$$||x||_{L(\mathbb{C}^2)}^2 = \frac{\sigma^2 + \rho^2}{2}$$
 and $tr|x| = \left[\sigma^2 + 2\nu^2\right]^{\frac{1}{2}}$.

Singular value decomposition

Given $x \in L(\mathbb{C}^2)$ there are unitaries u and v such that

$$uxv = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

where λ_1 and λ_2 ($\lambda_1 \ge \lambda_2$) are the eigenvalues of |x|. In particular, if ||x|| = 1, there are u, v such that

$$uxv = \begin{bmatrix} 1 & 0 \\ 0 & \lambda \end{bmatrix} =: \quad x_{\lambda}$$

with $0 \le \lambda \le 1$: and $\lambda = 1$ precisely when x itself is unitary.

The supporting set $\Pi_{L(\mathbb{C}^2)}$

Define

$$f_{(\alpha)} = \begin{bmatrix} \alpha & 0 \\ 0 & 1 - \alpha \end{bmatrix}.$$

Lemma 2.1. The functionals $f_{(\alpha)}$ ($0 \le \alpha \le 1$) support x_1 : and only these. The functional $f_{(1)}$ is the only support of x_{λ} when $0 \le \lambda < 1$. \square

Hence

Lemma 2.2.

$$\Pi_{L(\mathbb{C}^2)} = \{(u^* x_\lambda v^*, v f_{(\alpha)} u)\}$$

$$where \ u,v \ are \ unitary, \ 0 \leq \lambda \leq 1, \ \mathcal{E} \ \alpha \ \left\{ \begin{array}{l} \in [0,1] \\ =1 \end{array} \right. \quad \lambda = 1 \\ 0 \leq \lambda < 1 \end{array} \right\}.$$

3. The compression *K*

Consider the selfadjoint projection $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ in $L(\mathbb{C}^2)$. Then the left and right multiplication operators

$$L = L_P$$
 & $R = R_P$

are hermitian projections in $L(L(\mathbb{C}^2))$, for $||e^{irL_P}|| = ||e^{irR_P}|| = ||e^{irP}|| = 1$ ($r \in \mathbb{R}$). They commute, and their product

$$K = LR = RL$$

is a norm 1 projection on $L(\mathbb{C}^2)$, the *compression* $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$.

Theorem 3.1. *K* is not hermitian.

Proof. Note that $||I-2Q|| = ||e^{i\pi Q}|| = 1$ for any hermitian projection Q. However, $||I-2K|| \ge \sqrt{2}$ — for $(I-2K)\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $\|\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}\| = \sqrt{2}$ while $\|\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\| = 2$. (In fact, $||I-2K|| = ||\kappa_{-1}|| = \sqrt{2}$: see §5 below.) \square [AF] showed, also explicitly, that $\|\exp(3\pi i K/2)\| > 1$.

Ultrahermitian projections

Consider the following two properties that may hold for a projection E on a Banach space X. Note that they are symmetrical in E and its complement \overline{E} (= I – E). First,

$$||Ex|| ||E'\phi|| + ||\overline{E}x|| ||\overline{E}'\phi|| \le ||x|| ||\phi||$$

for $x \in X$, $\phi \in X'$: and, second,

$$(U2) $||EAE + \overline{E}B\overline{E}|| \le 1$$$

for any contractions $A, B \in L(X)$.

Hermitian projections on Hilbert spaces have both these properties, as is easy to check.

The present author showed, see [S], that the properties (U1) and (U2) are equivalent, and introduced the term *ultrahermitian* for a projection that has either [and so both] of them.

Ultrahermitian projections are automatically hermitian [S, Theorem 4.3] and the product of two hermitian projections of which one is ultrahermitian must be hermitian [S, Corollary 4.8]. Hence

Theorem 3.2. The left and right multiplication operators L_P and R_P , though hermitian, are not ultrahermitian.

4. The numerical range V(K)

By Lemma 2.2 this is the convex set of all

$$\begin{split} \varpi_{\lambda,\alpha} &:= \langle K u^* x_{\lambda} v^*, v f_{(\alpha)} u \rangle \\ &= \operatorname{tr} \left([P u^* x_{\lambda} v^* P] [v f_{(\alpha)} u] \right) \\ &= \operatorname{tr} \left([P u^* x_{\lambda} v^* P] [P v f_{(\alpha)} u P] \right) \\ &= \left(u^* x_{\lambda} v^* \right)_{(1,1)} \left(v f_{(\alpha)} u \right)_{(1,1)} \end{split}$$

where u, v are arbitrary unitaries, $0 \le \lambda \le 1$, and $\alpha \left\{ \begin{array}{l} \in [0,1] \\ =1 \end{array} \right. \quad \lambda = 1 \\ 0 \le \lambda < 1 \end{array} \right\}$.

As a full set of unitaries we may take

$$u := \quad \omega_0 \begin{bmatrix} c & \omega_2 s \\ \omega_1 s & -\omega_1 \omega_2 c \end{bmatrix} \quad \text{and} \quad v := \quad w_0 \begin{bmatrix} C & w_2 S \\ w_1 S & -w_1 w_2 C \end{bmatrix}$$

with $|\omega_k| = 1$, $c = \cos \theta$, $s = \sin \theta$, $(0 \le \theta \le \pi/2)$, and $|w_k| = 1$, $C = \cos \varphi$, $S = \sin \varphi$, $(0 \le \varphi \le \pi/2)$. Compute:

$$Pu^*x_{\lambda}v^*P = \overline{\omega_0 w_0} \begin{bmatrix} cC + \lambda \overline{\omega_1 w_2} sS & 0\\ 0 & 0 \end{bmatrix}$$

$$Pvf_{(\alpha)}uP = \omega_0 w_0 \begin{bmatrix} \alpha cC + (1-\alpha)\omega_1 w_2 sS & 0\\ 0 & 0 \end{bmatrix}$$

So

$$\begin{split} \omega_{\lambda,\alpha} &= \alpha c^2 C^2 + \lambda (1-\alpha) s^2 S^2 + [\alpha \lambda \overline{\omega_1 w_2} + (1-\alpha) \omega_1 w_2] c C s S \\ &= \left\{ \begin{array}{ll} c^2 C^2 + \lambda \overline{\omega_1 w_2} c C s S & 0 \leq \lambda < 1^* \\ \alpha [c^2 C^2 + \overline{\omega_1 w_2} c C s S] + (1-\alpha) [s^2 S^2 + \omega_1 w_2 c C s S] & \lambda = 1 \end{array} \right\} \end{split}$$

(* — also for $\lambda = 1$ — put $\alpha = 1$ in the following line.)

Replace $\overline{\omega_1 w_2}$ by ω . The points $\omega_{\lambda,1}$, *ie*

$$c^2C^2 + \lambda\omega cCsS \quad (0 \le \lambda \le 1)$$

form the closed discs

$$D(\theta, \varphi) := \left\{ \cos^2 \theta \cos^2 \varphi + \zeta \, \cos \theta \cos \varphi \sin \theta \sin \varphi \, : \, |\zeta| \le 1 \right\}$$

with boundaries as in Figure 1. This demonstrates

Theorem 4.1.

$$V(K) = \bigcup_{\substack{0 \le \theta \le \pi/2 \\ 0 \le \varphi \le \pi/2}} D(\theta, \varphi).$$

Remark 4.2. Since $-\frac{1}{8} \in V(K)$ we see that $||I - 2K|| \ge |V(I - 2K)| = \frac{5}{4}$, so, again, K cannot be hermitian.

Lemma 4.3 (Cosine-geometric mean). Given θ , φ in the first quadrant define their cosine-geometric mean

$$\psi := \cos^{-1} \sqrt{\cos \theta \cos \varphi}.$$

Then the disc $D(\theta, \varphi)$ *lies concentrically inside the disc*

$$D(\psi,\psi) = \left\{\cos^4\psi + \zeta \cos^2\psi \sin^2\psi \, : \, |\zeta| \le 1\right\}.$$

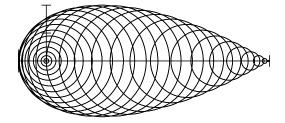


Figure 1: $\left\{\cos^2\theta\cos^2\varphi + \omega\cos\theta\cos\varphi\sin\theta\sin\varphi : |\omega| = 1\right\}$

Proof. Just check that $\sin\theta\sin\varphi = \cos(\theta - \varphi) - \cos^2\psi \le 1 - \cos^2\psi = \sin^2\psi$. \square Next, for $0 < \alpha < 1$, the points $\omega_{1,\alpha}$ of the numerical range ie

$$\alpha[c^2C^2 + \overline{\omega} cCsS] + (1 - \alpha)[s^2S^2 + \omega cCsS]$$

lie in the convex hull of $D(\psi, \psi)$ and $D(\tilde{\psi}, \tilde{\psi})$, where $\tilde{\psi}$ is the cosine-geometric mean of $\frac{\pi}{2} - \theta$ and $\frac{\pi}{2} - \varphi$. Thus

Theorem 4.4.

$$V(K) = \bigcup_{\substack{0 \le \theta \le \pi/2 \\ 0 \le \varphi \le \pi/2}} D(\theta, \varphi) = \bigcup_{0 \le \psi \le \pi/2} D(\psi, \psi). \square$$

The circles $\partial D(\theta, \varphi)$ and $\partial D(\psi, \psi)$ lie as shown in Figure 2; and V(K), the union of the discs $D(\psi, \psi)$, is as in Figure 3.

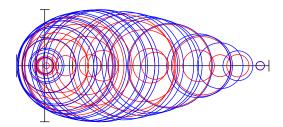


Figure 2: $\partial D(\theta, \varphi)$ (red) & $\partial D(\psi, \psi)$ (blue)

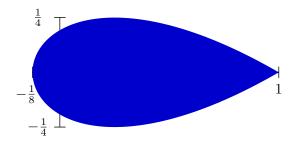


Figure 3: $V(K) = \bigcup_{0 \le \theta \le \pi/2} D(\theta, \theta)$

The envelope and cusp

The circumference of the disc $D(\psi, \psi)$ is [setting $\gamma = \cos^2 \psi$]

$$(x - \gamma^2)^2 + y^2 = \gamma^2 (1 - \gamma)^2 = \gamma^2 - 2\gamma^3 + \gamma^4$$
.

To find the envelope of the $D(\psi, \psi)$ solve this equation simultaneously with its γ -derivative

$$2(x - \gamma^2)[-2\gamma] = 2\gamma - 6\gamma^2 + 4\gamma^3$$

to get

$$2x = 3\gamma - 1$$

2y = \pm (1 - \gamma) \{4\gamma - 1\}^{\frac{1}{2}}

for $\frac{1}{4} \le \gamma \le 1$.

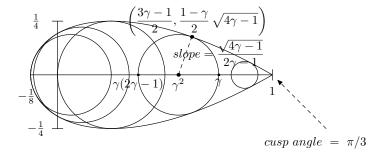


Figure 4: The cusp angle

5. The map κ_m and its norm $(m \in \mathbb{C})$

The map κ_m is defined as

$$\kappa_m:=I+(m-1)K\,:\,\,L(\mathbb{C}^2)\to L(\mathbb{C}^2):\begin{bmatrix}a&b\\c&d\end{bmatrix}\mapsto\begin{bmatrix}ma&b\\c&d\end{bmatrix}\,.$$

As a first estimate $||\kappa_m|| \ge 1$ and $||\kappa_m|| \ge |m|$.

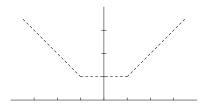


Figure 5: $||\kappa_m|| \ge \max\{1, |m|\}$

Since κ_m attains its norm on the unit ball of $L(\mathbb{C}^2)$, the convex hull of the unitaries (the Russo-Dye theorem [BD, §38]), we next examine the values $\|\kappa_m u\|$ for unitary u. It will be more convenient to work with the expression $2 \|\kappa_m u\|^2$.

With $c = \cos \theta$, $s = \sin \theta$, and $0 \le \theta \le \pi/2$, consider a typical unitary

$$u := u(c) = \omega_0 \begin{bmatrix} c & \omega_2 s \\ \omega_1 s & -\omega_1 \omega_2 c \end{bmatrix}$$

where ω_1 and ω_2 are arbitrary unimodular complex numbers. Calculate:

$$\begin{split} \sigma(\kappa_m u)^2 &= 2 + (|m|^2 - 1)c^2 \\ \rho(\kappa_m u)^4 &= c^2 \left\{ 4|m - 1|^2 + \left[(|m|^2 - 1)^2 - 4|m - 1|^2 \right]c^2 \right\} \\ F_m(c) &:= 2 ||\kappa_m u||^2 \\ &= \sigma(\kappa_m u)^2 + \rho(\kappa_m u)^2 \\ &= 2 + (|m|^2 - 1)c^2 + c \left\{ 4|m - 1|^2 + \left[(|m|^2 - 1)^2 - 4|m - 1|^2 \right]c^2 \right\}^{\frac{1}{2}} \end{split}$$

The ω_1 and ω_2 are now seen to be irrelevant, so, without loss of generality, take $\omega_1 = \omega_2 = 1$.

$$\Gamma := 4 |m-1|^2 - (|m|^2 - 1)^2.$$

Then

$$F_m(c) = 2 + (|m|^2 - 1)c^2 + c\left\{4|m - 1|^2 - \Gamma c^2\right\}^{\frac{1}{2}}.$$

Note that

$$F_m(0) = 2,$$

 $F_m(1) = 2 + |m|^2 - 1 + \{(|m|^2 - 1)^2\}^{\frac{1}{2}},$
 $= 2 \max\{1, |m|^2\} [\ge F_m(0)].$

Thus

$$||\kappa_m|| = \max\{1, |m|\}$$

when F_m has no turning point in [0, 1].

The cardioid $\Gamma = 0$

The locus $\Gamma = 0$, that is, $|m|^2 - 1 = 2|m - 1|$, is the *cardioid* shown in Figure 6.

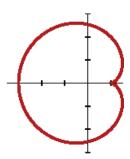


Figure 6: $|m|^2 - 1 = 2|m - 1|$

In plane polar coordinates (r, ϕ) the equation is $8r \cos \phi = 3 + 6r^2 - r^4$.

Outside the cardioid $\Gamma = 0$

The function $F_m(c)$ certainly increases on [0,1] if $\Gamma \le 0$ (which forces $|m| \ge 1$) so $||\kappa_m|| = \max\{1, |m|\} = |m|$ outside the cardioid.

Inside the cardioid $\Gamma = 0$

To find turning points differentiate with respect to *c*:

$$\begin{split} F_m'(c) &= 2(|m|^2 - 1)c + \left\{4 \, |m - 1|^2 - \Gamma \, c^2\right\}^{\frac{1}{2}} \\ &- \Gamma \, c^2 \, \left\{4 \, |m - 1|^2 - \Gamma \, c^2\right\}^{-\frac{1}{2}} \\ &= 2(|m|^2 - 1)c + 2 \left\{2 \, |m - 1|^2 - \Gamma \, c^2\right\} \left\{4 \, |m - 1|^2 - \Gamma \, c^2\right\}^{-\frac{1}{2}} \end{split}$$

Setting $F'_m(c) = 0$ and squaring [so possibly introducing spurious solutions] leads to the equation

$$\Gamma c^4 - 4 |m - 1|^2 c^2 + |m - 1|^2 = 0$$

for c^2 .

Note that if |m| = 1 [leaving m = 1 aside] the equation reduces to $(1 - 2c^2)^2 = 0$, and therefore κ_m attains its norm at $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, independently of arg m.

Otherwise the discriminant is

$$\Delta = (2|m-1|^2)^2 - [4|m-1|^2 - (|m|^2 - 1)^2]|m-1|^2$$
$$= |m-1|^2 (|m|^2 - 1)^2 > 0$$

and the candidate solutions are

$$c_{\pm}^{2} = \frac{2|m-1|^{2} \pm |m-1| (|m|^{2} - 1)}{\left[2|m-1| - (|m|^{2} - 1)\right] \left[2|m-1| + (|m|^{2} - 1)\right]}$$
$$= \frac{|m-1|}{2|m-1| \mp (|m|^{2} - 1)} > 0$$

It is straightforward to check that

$$4|m-1|^2 - \Gamma c_{\pm}^2 = \frac{|m-1|^2}{c_{\pm}^2},$$

$$2|m-1|^2 - \Gamma c_{\pm}^2 = \mp |m-1|(|m|^2 - 1).$$

Thus

$$F'_{m}(c_{\pm}) = 2(|m|^{2} - 1)c + 2\left\{2|m - 1|^{2} - \Gamma c^{2}\right\} \left\{4|m - 1|^{2} - \Gamma c^{2}\right\}^{-\frac{1}{2}}$$
$$= 2c_{\pm}\left\{\left[|m|^{2} - 1\right] \mp \left[|m|^{2} - 1\right]\right\},$$

which shows that c_+ alone is a possible turning point for F_m : but does c_+ lie in [0, 1]?

The condition for this is that $|m-1| \le 2|m-1| - (|m|^2 - 1)$ ie that

$$|m|^2 - 1 \le |m - 1|$$
.

The cardioidoid $||m|^2 - 1| = |m - 1|$

The 'edge locus' $|m|^2 - 1| = |m - 1|$, which, for lack of another name I shall call a *cardioidoid*, bounds the blue region in Figure 7.

In plane polar coordinates it has equation $2r\cos\phi = 3r^2 - r^4$.

However, the set $|m|^2 - 1 \le |m - 1|$ includes the unit disc too: I refer to this set as the *filled cardioidoid*.

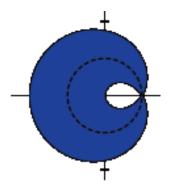


Figure 7: The cardioidoid

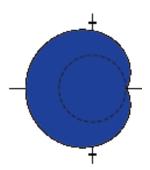


Figure 8: Filled cardioidoid

Inside the filled cardioidoid

Suppose that m lies inside the filled cardioidoid, so that $c_+ \in [0, 1]$. Then

$$F_m(c_+) = \cdots = 2 \frac{(|m-1|+1)^2 - |m|^2}{2|m-1|+1-|m|^2}.$$

Next

$$F_m(c_+) - 2 = \frac{2|m-1|^2}{2|m-1|+1-|m|^2} \ge 0$$

and

$$F_m(c_+) - 2|m|^2 = \frac{2(|m|^2 - 1 - |m - 1|)^2}{2|m - 1| + 1 - |m|^2} \ge 0$$

so

$$F_m(c_+) \geq F_m(1) \geq F_m(0).$$

Therefore

$$\|\kappa_m\|^2 = \frac{(|m-1|+1)^2 - |m|^2}{2|m-1|+1-|m|^2}$$

for *m* inside the filled cardioidoid. When *m* is real, within these limits, this expression reduces to $\frac{4}{3+m}$. To sum up:

Theorem 5.1.

$$\|\kappa_m\| = \left\{ \begin{array}{ll} |m| & \text{outside} \\ \\ \sqrt{\frac{(|m-1|+1)^2 - |m|^2}{2|m-1|+1-|m|^2}} & \text{inside} \\ \\ \sqrt{\frac{4}{3+m}} & \text{on real axis inside} \end{array} \right\} \ the \ filled \ cardioidoid.$$

Graph of $||\kappa_m||$ *for m real*

For *real m* inside the filled cardioidoid, $ie -2 \le m \le 1$, we have

$$||\kappa_m|| = \sqrt{\frac{4}{3+m}}.$$

The graph of norm κ_m is shown in Figure 9.

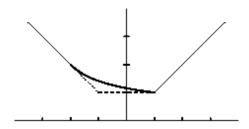


Figure 9: $\|\kappa_m\|$ is continuous for all m but is not differentiable at 1, even as a function of a real variable

6. An inequality

The inequalities

$$||\kappa_m A|| \le ||\kappa_m|| \, ||A||$$

(for complex 2×2 matrices A) are hardly transparent when written out explicitly. However, for m = 0, the simplest case, we have $||I - K|| = ||\kappa_0|| = 2/\sqrt{3}$ so, for any real numbers a, b, c, d, we have

$$\begin{split} 3\left(b^2+c^2+d^2+\sqrt{(b^2+c^2+d^2)^2-4b^2c^2}\right) \\ &\leq 4\left(a^2+b^2+c^2+d^2+\sqrt{(a^2+b^2+c^2+d^2)^2-4(ad\pm bc)^2}\right) \end{split}$$

or, on rewriting,

$$\begin{split} &3\left(b^2+c^2+d^2+\sqrt{[(b-c)^2+d^2][(b+c)^2+d^2]}\right)\\ &\leq 4\left(a^2+b^2+c^2+d^2+\sqrt{[(a-d)^2+(b\mp c)^2][(a+d)^2+(b\pm c)^2]}\right). \end{split}$$

Acknowledgment

It is a pleasure to thank R.E. Harte for piquing my interest in V(K) and for bringing the paper [AF] to my attention.

References

- [AF] J. Anderson & C. Foiaş, Properties which normal operators share with normal derivations and related operators, Pacific J Math 61 (1975) 313–325.
 [BD] F. F. Bonsall & J. Duncan, Complete Normed Algebras, Springer (1973).
 [S] P. G. Spain, Ultrahermitian Projections on Banach Spaces, ResearchGate.