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Numerical Range of a Simple Compression

Philip G Spain®

?School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, United Kingdom

Abstract. The numerical range of the contraction K : [‘; Z] - [g 8] acting on L(C?) is identified, so

allowing one to exhibit a hermitian projection that is not ultrahermitian.
An explicit formula for the norm of the operator «,, := [Z Z] - ["Z” Z] (m € C). translates into a family

of inequalities in four complex variables.

Introduction

Although the product of hermitian operators on a Hilbert space is also hermitian if (and only if) they
commute, this does not extend to hermitian operators on a Banach space. Indeed, the square of a hermitian
need not be hermitian: and even the product of two commuting hermitian projections need not be hermitian.

Here I identify the numerical range of the simplest nontrivial compression operator K : [‘Z Z] = [g 8],
and so can exhibit hermitian projections that are not ultrahermitian.

The norms of the related operators «,, := [‘; Z] - ["Z” Z] are calculated explicitly (as m varies in the
complex plane).

Perhaps surprisingly, the quantity a2 +b? +c2 +d? + v/(a® + b2 + c2 + d2)? — 4(ad + bc)? does not necessarily
decrease when one replaces a by 0 (4, b, c and d being arbitrary real numbers), but may increase by up to
the factor ||xg||.

1. Numerical range

I follow the standard notation and rehearse only a few salient details, referring the reader to [BD], for
example, for a full exposition and other references.
Given a Banach space X we say that

f € X' supports x € X if (x, f) = ||x]| = Hf” =1.
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The supporting set for X is
My = {(x, /) e XX X' :(x, )=l = ||f]| =1}
The (spatial) numerical range of the operator T(€ L(X)) is
V(T) = {(Tx, f) : (x, f) € TIx}.
Definition 1.1. H in L(X) is hermitian if its numerical range is real: equivalently, if ||| = 1 (¥r € R):
equivalently, if |Ix +irH||<1+o(r) (R>r — 0).
2. The Banach space L(C?) and some linear algebra
My example lives on L(C?) with the operator norm. Facts to notice about this Banach space:

e Given f € L(C?) we can define a functional @ ¢y = tr(yf) in L(C?)': here tr is the unnormalised trace:
and

lwofl| = tr|f] = tr(Ff)7

Since any functional must be of this form we see that the [pre]dual of L(C?) is, as a set, the same space
as L(C?): but with the trace norm.

o I} is biunitarily invariant in the sense that
(LLXU, v*fu*) € HL(CZ) — (X, f) € HL(CZ)
for any unitaries 1 and v.

e Il ) is invariant under complex conjugation too — so V(T) is symmetric in the real axis when T has
real entries.

Given an element x = [’; Z] of L(C?) define
o> =laP + b+ +|d?, ?=lad—-bc], and p4 =o* -4t

Then (routine computation!) the eigenvalues of x*x are (62 + p?)/2 from which we have

2 2 1
o“+p 1
”xH%(CZ) = T and tr |X| = [0'2 + 21/2]2 .

Singular value decomposition
Given x € L(C?) there are unitaries u and v such that

(14 o]

Uxo = ho /\2

where A; and A; (A1 > Ay) are the eigenvalues of |x|. In particular, if ||x|| = 1, there are u, v such that

— 71 O —_—
Uxv = ho N

with 0 < A <1: and A = 1 precisely when x itself is unitary.
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The supporting set I1jc2
Define

ﬂw:[f)( 19a]‘

Lemma 2.1. The functionals f,) (0 < a < 1) support x1: and only these.
The functional fqy is the only support of x, when 0 < A <1. O

Hence

Lemma 2.2.
) = {(W'x20", vf(ayu)}

where u,v are unitary, 0 <A <1, & «a {

e[0,1] A=1 _
=1 0<A<1

3. The compression K
Consider the selfadjoint projection P = [(1) 8] in L(C?). Then the left and right multiplication operators

L=Lp & R=Rp

are hermitian projections in L(L(C?)), for || || = ||e"R¢|| = ||| = 1 (r € R).
They commute, and their product

K=LR=RL
is a norm 1 projection on L(C?), the compression [Z Z] - [g 8]
Theorem 3.1. K is not hermitian.
Proof. Note that || - 2Q]|| = [|¢™Q|| = 1 for any hermitian projection Q. However, ||[ —2K|| > V2 — for
(-26[7 {]=[ i]and ||[‘11 }]” — V2 while “[} }]“ = 2. (In fact, |l = 2K|| = |ic_1|| = V2: see §5 below.)
I[:|AF] showed, also explicitly, that “exp(3niK/2)|| > 1.

Ultrahermitian projections
Consider the following two properties that may hold for a projection E on a Banach space X. Note that
they are symmetrical in E and its complement E (=1 —E). First,

) e [[E' ]|+ B[] < 1 o]

for x € X, ¢ € X’: and, second,
(U2) |[EAE + EBE|| <1

for any contractions A, B € L(X).

Hermitian projections on Hilbert spaces have both these properties, as is easy to check.

The present author showed, see [S], that the properties (U1) and (U2) are equivalent, and introduced
the term ultrahermitian for a projection that has either [and so both] of them.

Ultrahermitian projections are automatically hermitian [S, Theorem 4.3] and the product of two hermi-
tian projections of which one is ultrahermitian must be hermitian [S, Corollary 4.8]. Hence

Theorem 3.2. The left and right multiplication operators Lp and Rp, though hermitian, are not ultrahermitian.
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4. The numerical range V(K)
By Lemma 2.2 this is the convex set of all
@i = (Ku'xv', vfiu)
= tr ([Pu*x,\v*P] [vf(a)u])
= fr ([Pu*xw"P] [Po f(,x)uP])

= (u*x/\v*)(l,l) (vf(o‘)”)(m)

€[0,1] A=1 }

where u, v are arbitrary unitaries, 0 < A <1, and « { 1 0<1<1

As a full set of unitaries we may take

Cc w7 S

w1S —wiwycC

L C Wy S
] and vi= Wy [w1 S —wiw C]

u::= a)o[

with |wg| =1,c=cos0,s =sin6, (0< 0 < m/2),and |wg| =1,C =cosp, S =sing, (0 < ¢ < 1/2). Compute:

oo
Pux, 0P = ot cC+ AwjwysS 0
0 0
acC+(1-a)wiw,sS 0
Pvf(a)uP = Wy W [ ( 0 ) 172 0:|
So
®pe = ac*C?+ A1 — )s?S? + [adAwiw; + (1 — a)wiw;]cCsS
[ *C* + AwrwacCsS 0<A<1®
T\ al[c*C? + wiw2cCsS] + (1 — a)[s%S? + w w,cCsS] A=1

(* —also for A =1 — put @ = 1 in the following line.)
Replace wiw; by w. The points @, 1, ie
*C*+ AwcCsS (0<A<1)
form the closed discs
D6, ) = {Cos2 0 cos® g + L cosOcospsinOsing : | < 1}

with boundaries as in Figure 1. This demonstrates

Theorem 4.1.
vk = | ) D@©,e).
0<6<n/2
0<p<m/2

Remark 4.2. Since —% € V(K) we see that ||I - 2K|| > |V(I - 2K)| = g, so, again, K cannot be hermitian.

Lemma 4.3 (Cosine-geometric mean). Given 0, @ in the first quadrant define their cosine-geometric mean

Y := cos™! 4/cos O cos .

Then the disc D(6, @) lies concentrically inside the disc
D@, ) = {cos4 Y+ cos*Psin® ;| < 1}.
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Figure 1: {cos2 0cos? g+ w cos OcospsinOsing : |w| = 1}

Proof. Just check that sin O'sin ¢ = cos(6 — @) — cos? ) < 1 — cos? ¢ = sin*¢. O
Next, for 0 < @ < 1, the points @, , of the numerical range ie

a[c2C?* + @ cCsS] + (1 — a)[s2S? + w cCsS]

lie in the convex hull of D(y, ) and D(i), ), where 1) is the cosine-geometric mean of £ —6 and % —¢. Thus

Theorem 4.4.
vik)= | J b= [ D)o
0<06<m/2 0<y<n/2
0<p<mn/2

The circles dD(6, @) and dD(y, ) lie as shown in Figure 2; and V(K), the union of the discs D(¢, ¢), is as in
Figure 3.

7 a
e
‘\ "‘/" AV ’/) '\ \S—F

Figure 2: dD(6, ¢) (red) & dD(¢, ) (blue)

Figure 3: V(K) = Up<g<n/2 D(6, 0)
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The envelope and cusp
The circumference of the disc D(i, 1) is [setting y = cos? 1]

=Y+ =20y =) =20+t
To find the envelope of the D(y, 1) solve this equation simultaneously with its y-derivative
2(x = yA)[-2y] =2y — 6y% + 4y°
to get
2x = 3y-1
2y = +(1-y)ly-1p

fort<y<Ll

cusp angle = /3

Figure 4: The cusp angle

5. The map «,, and its norm (m € C)

The map «,, is defined as

a b ma b
Km:=I+(n1—1)KiL(Cz)_’L(CZ):[C d]H[C d].

As a first estimate ||x,,|| = 1 and ||x,,|| = |m].

Figure 5: ||kl > max{1, |m|}

Since x,, attains its norm on the unit ball of L(C?), the convex hull of the unitaries (the Russo-Dye
theorem [BD, §38]), we next examine the values ||x,,u|| for unitary u. It will be more convenient to work
with the expression 2 il .

With ¢ = cos0,s =sin 0, and 0 < 0 < 11/2, consider a typical unitary

c w7 S
w1S —wW1wycC

u:=u(c) = a)o[
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where w; and w; are arbitrary unimodular complex numbers. Calculate:

o(kuu)?> = 2+ (mP -1)A

plon)t = 2 {4lm =17 + [(mf* = 12 - 4|m - 17]c}

Fu(c) = 2||7<mu”2

= (ki) + plicuu)

1
= 24 (mP -1+ c{4 Im = 1P +[(jmf? - 1)? -4 |m — 1|2]02}2

The w; and w; are now seen to be irrelevant, so, without loss of generality, take w1 = w, = 1.
Put
[=4|m-1P - (Imf - 1)%
Then

1
Fu(c) =2+ (Imf = 1) + c{4jm - 1P =T ¢} .

Note that
Fn(0) = 2,
Ful) = 2+0mP =1+ {(mf =17},
= 2max{L,|mP} [> F.(0)].
Thus

llcmll = max{1, [m]}

when F,, has no turning point in [0, 1].

The cardioid T’ = 0
The locus T = 0, that is, [m|* — 1 = 2 |m — 1|, is the cardioid shown in Figure 6.

Figure 6: [m|> — 1 = 2|m — 1]

In plane polar coordinates (r, ¢) the equation is 8r cos ¢ = 3 + 61> — 1%,
Outside the cardioid T =0

The function F,,(c) certainly increases on [0, 1] if I' < 0 (which forces |m| > 1) so ||kl = max{1, [m|} = |m|
outside the cardioid.
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Inside the cardioid I = 0
To find turning points differentiate with respect to c:

1
F,(c) 2(jmf - 1)c + {4m—1P -T2}

-1
2

-Té& {4|m 1P —rc2}

1
2

2(mf® = e +2{2pm - 17 =T} {4lm - 1P -T2}

Setting F;,(c) = 0 and squaring [so possibly introducing spurious solutions] leads to the equation
It —4m-1PE+m-17=0

for 2.
Note that if |m| = 1 [leaving m = 1 aside] the equation reduces to (1 - 2¢%)? = 0, and therefore x,, attains
its norm at [i _11], independently of arg m.
Otherwise the discriminant is
@m=1P)* = [4|m = 1P = (jm|* = 1)*]|m — 1
Im = 1P (Imf> = 1)> > 0

A

and the candidate solutions are

E 2|m — 1P £ |m = 1| (Im|* — 1)
S 2= 1= @mP - )] [20m = 11+ (mP - 1)]
jm 1

2|m =1 F (jmf* - 1)

It is straightforward to check that

—1P
Am-1P-TE = 'm2 £
C:t
2m =1 -T A& = F|m-1(mP-1).
Thus
_1
F(cs) = 2(mP-Dc+2{2pm-1P -1} {ajm-17 -1} *

2c, {[lmP - 1] = [jmP? - 1]},

which shows that c, alone is a possible turning point for F,,: but does c.. lie in [0, 1]?

The condition for this is that |m — 1| < 2|m — 1| — (|m|2 — 1) ie that
ImP? -1 <|m-1|.

The cardioidoid |[m|* — 1| = |m — 1|
The ‘edge locus’ Im|* — 1| = |m — 1|, which, for lack of another name I shall call a cardioidoid, bounds the
blue region in Figure 7.
In plane polar coordinates it has equation 2r cos ¢ = 31> — 1.
However, the set |m|2 —1 < |m — 1] includes the unit disc too: I refer to this set as the filled cardioidoid.
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Figure 7: The cardioidoid

Figure 8: Filled cardioidoid

Inside the filled cardioidoid
Suppose that m lies inside the filled cardioidoid, so that c; € [0, 1].
Then

_ o (m =11+ 1) — pmp?

Focy) = )
m(ce) 2lm—1]+1 - |mP
Next
2 |m—1p
Fulcl)—-2 = >0
nlcs) 2m—1]+1 = |mP
and
2(jmf? =1 = |m — 1])?
Fu(cy) = 2imP = >
mlcs) 20m—1]+1 - |mP
SO
Fy,(cy) = Fiu(1) = F,(0).
Therefore

(m = 1] + 1)% — |mf*
2im=1]+1—|m]?

2
llemll” =

for m inside the filled cardioidoid. When m is real, within these limits, this expression reduces to

To sum up:

33
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Theorem 5.1.

|m| outside

(m=1]+1)2|m* insid . .
[l = TR msiae the filled cardioidoid.
A\ — on real axis inside

Graph of ||k for m real
For real m inside the filled cardioidoid, ie —2 < m < 1, we have

el = A/ =
"TN3rm”

The graph of norm «,, is shown in Figure 9.

Figure 9: ||k || is continuous for all m but is not differentiable at 1, even as a function of a real variable

6. An inequality
The inequalities
llemAll < llcmll [|A

(for complex 2 x 2 matrices A) are hardly transparent when written out explicitly. However, for m = 0, the
simplest case, we have || — K]| = [|xol| = 2/ V3 so, for any real numbers 4, b, ¢, d, we have

307+ 2+ + (12 + 2+ P - 4122)

<4(@+ 07+ E+d+ @2+ 52+ 2+ d2)? — 4(ad £ be)?)
or, on rewriting,

30+ +d+ V(b - )2 + ][(b + ) + 2]

<4(@+ 0+ +d+ Vi@—d2 + O F opll@+d? + (b= c)]).
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