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Abstract. An analytic characterization of hypo-EP operator is given. Using this characterization it is
proved that sum of hypo-EP operators and restriction of hypo-EP operator are again hypo-EP under some
conditions.

1. Introduction

A square matrix A over the complex field is said to be an EP matrix if ranges of A and A∗ are equal. The
EP matrix was defined by Schwerdtfeger [14]. But it did not get any greater attention until Pearl [13] gave
characterization through Moore-Penrose inverse. LetH be a complex Hilbert space. A bounded operator
A with closed range is said to be an EP operator (hypo-EP) if AA† = A†A (A†A−AA† is a positive operator).
Here A† denotes the Moore-Penrose inverse of A. EP matrices and operators have been studied by many
authors [3–5, 7, 9, 11]. Hypo-EP operator was defined by Masuo Itoh and it has been studied in [8, 12].
In this paper we have given a characterization of hypo-EP operator. Using this characterization we give
necessary and sufficient conditions for sum of hypo-EP operators to be hypo-EP and under some conditions
restriction of hypo-EP operator to be hypo-EP.

Throughout this paper, B(H1,H2) denotes the set of all bounded linear operators fromH1 intoH2 and
we write B(H ,H) = B(H). The class Bc(H) denotes the set of all operators in B(H) having closed range.
For any operator A ∈ B(H1,H2), R(A) and N(A) denote the range and kernel of A respectively. A ∈ B(H)
is said to be positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H . A is said to be invertible if its inverse exists and bounded.

2. Preliminaries

We start with some known characterizations of hypo-EP operators.

Theorem 2.1. [8] Let A ∈ Bc(H). Then the following are equivalent:

2010 Mathematics Subject Classification. Primary 47A05, 47B20.
Keywords. Hypo-EP operator; EP operator; Moore-Penrose Inverse.
Received: 13 September 2016; Accepted: 10 January 2017
Communicated by Dijana Mosić
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1. A is hypo-EP.
2. R(A) ⊆ R(A∗).
3. N(A) ⊆ N(A∗).
4. A = A∗C, for some C ∈ B(H).

Example 2.2. Let A : ℓ2 → ℓ2 be defined by A(x1, x2, x3, . . .) = (0, x1, x2, . . .) (the right shift operator). Then
A∗(x1, x2, x3, . . .) = (x2, x3, x4, . . .). Here R(A) ⊆ R(A∗) and R(A) is closed. Hence A is a hypo-EP operator.

Remark 2.3. The class of all hypo-EP operators contains the class of all EP operators. Hence it contains all normal,
self-adjoint and invertible operators having closed range. In the case of finite dimensional, EP and hypo-EP are same.

Theorem 2.4 (Douglas’ Theorem). [6] Let H1,H2,H be Hilbert spaces and let A ∈ B(H1,H),B ∈ B(H2,H).
Then the following are equivalent:

1. A = BC, for some C ∈ B(H1,H2).
2. ∥A∗x∥ ≤ k∥B∗x∥, for some k > 0 and for all x ∈ H .
3. R(A) ⊆ R(B).

3. Characterizations of Hypo-EP Operators

Several characterizations of hypo-EP operators available in literature are algebraic in nature. The
following is a characterization for a bounded closed range operator to be hypo-EP which does not involve
A† and A∗.

Theorem 3.1. Let A ∈ Bc(H). Then A is hypo-EP if and only if for each x ∈ H , there exists k > 0 such that

|⟨Ax, y⟩| ≤ k∥Ay∥, for all y ∈ H . (1)

Proof. Suppose A is hypo-EP. Let x ∈ H such that Ax = 0, then the result is trivial. Let x ∈ H such that
Ax , 0. Then Ax ∈ R(A) ⊆ R(A∗). Therefore there exists a non-zero z ∈ H such that A∗z = Ax. Then for all
y ∈ H ,

|⟨Ax, y⟩| = |⟨A∗z, y⟩| = |⟨z,Ay⟩| ≤ ∥z∥∥Ay∥.

Taking k = ∥z∥, we get |⟨Ax, y⟩| ≤ k∥Ay∥, for all y ∈ H .
Conversely, assume that for each x ∈ H , there exists k > 0 such that |⟨Ax, y⟩| ≤ k∥Ay∥ for all y ∈ H .

Let x ∈ H be fixed. Then for all y ∈ H , k∥Ay∥ ≥ |⟨x,A∗y⟩| = | fx(A∗y)| setting fx(A∗y) = ⟨A∗y, x⟩. Hence
|(A f ∗x )∗y| ≤ k∥(A∗)∗y∥ for some k > 0, for all y ∈ H . By Douglas’ theorem, A f ∗x = A∗D, D ∈ B(C,H). Taking
adjoint on both sides gives fxA∗ = 1xA where 1x = D∗ ∈ B(H ,C). By Riesz representation theorem, there
exists x′ ∈ H such that 1x(Az) = ⟨Az, x′⟩ for all z ∈ H . Hence for z ∈ H , fxA∗z = 1xAz implies that
⟨A∗z, x⟩ = ⟨Az, x′⟩. Therefore for each x ∈ H there exists x′ ∈ H such that Ax = A∗x′. Thus R(A) ⊆ R(A∗).

There is an example in [1] for a bounded operator A in Bc(H) such that A2 < Bc(H). But we prove that
if A is hypo-EP, then A2 has closed range always. Moreover any natural power of A has closed range. The
following characterization for closed range operator is used to prove the results.

Theorem 3.2. [2] Let A ∈ B(H). A has closed range if and only if there is a positive δ such that ∥Ax∥ ≥ δ∥x∥ for all
x ∈ N(A)⊥.

Theorem 3.3. If A is hypo-EP, then An has closed range for any n ∈N.
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Proof. Suppose that A is hypo-EP. Then for any m,n ∈N with m ≤ n,

Am[N(An)⊥] ⊆ Am[N(A)⊥] ⊆ R(A) ⊆ R(A∗) = N(A)⊥. (2)

As A has closed range, there exists k > 0 such that ∥Ax∥ ≥ k∥x∥, for all x ∈ N(A)⊥. Let x ∈ N(An)⊥. Then by
(2),

∥Anx∥ = ∥A(An−1x)∥ ≥ k∥An−1x∥ ≥ · · · ≥ kn∥x∥.

Thus An has closed range, for any n ∈N.

We proved that if A is hypo-EP, then it is redundant that R(An) is closed for any n ∈ N. It is observed
that the right shift operator A on ℓ2 is hypo-EP, but R(A) , R(An) for any n > 1.

If we start with any A ∈ B(H), the null spaces of An are growing in nature along with increasing values
of n. But interestingly, all null spaces are same when A is hypo-EP.

Theorem 3.4. If A is hypo-EP, thenN(An) = N(A), for each n ∈N. Moreover, if A is nilpotent, then A = 0.

Proof. It is enough to prove thatN(An) = N(An+1) for each n ∈N. Let z ∈ H be fixed. If we apply Theorem
3.1 to an element x = An−1z, there exists k > 0 such that

|⟨A(An−1z), y⟩| ≤ k∥Ay∥, for all y ∈ H .

In particular taking y = Anz, we get |⟨Anz,Anz⟩| ≤ k∥An+1z∥. If z ∈ N(An+1), then z ∈ N(An). Hence
N(An) = N(An+1) for each n ∈N. ThusN(An) = N(A), for each n ∈N.

Remark 3.5. The condition N(A) = N(An), for each n ∈ N is necessary for A to be hypo-EP. It is not a sufficient

condition for A to be hypo-EP. For example, the matrix A =
[

1 1
0 0

]
is not hypo-EP, but N(An) = N(A) for each

n ∈N.

Theorem 3.6. If A is hypo-EP, then An is hypo-EP, for any n ∈N.

Proof. Suppose that A is hypo-EP. Then for any n ∈ N, N(An) = N(A) ⊆ N(A∗) ⊆ N(AA(n−1)∗), so
N(AA(n−1)∗)⊥ ⊆ N(An)⊥. Since R(An∗) is closed and R(A(n−1)A∗) ⊆ R(A(n−1)A∗), R(A(n−1)A∗) ⊆ R(An∗). Then
by Douglas’ theorem

∥AA(n−1)∗x∥ ≤ ℓ∥Anx∥, for some ℓ > 0, for all x ∈ H and n ∈N.

By Theorem 3.1, for each x ∈ H , there exists k > 0 such that

|⟨Anx, y⟩| = |⟨Ax,A(n−1)∗y⟩| ≤ k∥AA(n−1)∗y∥ ≤ kℓ∥Any∥, for all y ∈ H and n ∈N.

Thus for any natural number n, An is hypo-EP.

Remark 3.7. Theorems 3.3, 3.4, 3.6 have been observed by Patel [12], but our characterization given in Theorem 3.1
was used to prove the results.

4. Sum of Hypo-EP Operators

In general the sum two hypo-EP operators is not necessarily hypo-EP.

Example 4.1. Let A =
[

1 1
0 1

]
, B =

[
−1 0
0 −1

]
. Then A and B are hypo-EP, but A + B =

[
0 1
0 0

]
is not

hypo-EP.
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Meenakshi [10] discussed results on sum of EP matrices. The next theorem gives a sufficient condition
for the sum of hypo-EP operators to be a hypo-EP operator.

Theorem 4.2. Let A,B be hypo-EP operators such that A + B has closed range. If

∥Ax∥ ≤ k∥(A + B)x∥, for some k > 0 and for all x ∈ H , (3)

then A + B is hypo-EP.

Proof. From (3), for all x ∈ H ,

∥Bx∥ ≤ ∥(A + B)x∥ + ∥Ax∥ ≤ ∥(A + B)x∥ + k∥(A + B)x∥ ≤ (k + 1)∥(A + B)x∥.

Since A and B are hypo-EP, for each x ∈ H there exist k1, k2 > 0 such that |⟨Ax, y⟩| ≤ k1∥Ay∥ and |⟨Bx, y⟩| ≤
k2∥By∥ for all y ∈ H .

|⟨(A + B)x, y⟩| ≤ |⟨Ax, y⟩| + |⟨Bx, y⟩|
≤ k1∥Ay∥ + k2∥By∥
≤ k1k∥(A + B)y∥ + k2(k + 1)∥(A + B)y∥.

Thus |⟨(A + B)x, y⟩| ≤ [k1k + k2(k + 1)] ∥(A + B)y∥. Hence A + B is hypo-EP.

Corollary 4.3. Let A,B be hypo-EP operators such that A + B has closed range. If A∗B + B∗A = 0, then A + B is
hypo-EP.

Proof. The assumption A∗B + B∗A = 0 gives (A + B)∗(A + B) = A∗A + B∗B. Then

∥(A + B)x∥2 = ⟨(A + B)x, (A + B)x⟩ = ⟨(A∗A + B∗B)x, x⟩ ≥ ∥Ax∥2

From Theorem 4.2, A + B is hypo-EP.

Remark 4.4. In the above theorem the condition (3) is equivalent to “N(A + B) ⊆ N(A)”. But the condition (3) is

not necessary for the sum of A and B to be hypo-EP. For example, let A =
[

1 0
0 −1

]
and B =

[
1 0
0 1

]
. Then A,B

and A + B are hypo-EP. ButN(A + B) * N(A).

Suppose A and B are hypo-EP. Then by Douglas’ theorem A∗ = DAA and B∗ = DBB for some operators
DA,DB ∈ B(H). The next theorem shows that the condition (3) is both necessary and sufficient condition
for the sum to be hypo-EP under the assumption that DA −DB is invertible.

Theorem 4.5. Let A,B ∈ Bc(H) be hypo-EP operators such that A + B has closed range and DA −DB be invertible
where DA,DB as defined above. Then A + B is hypo-EP if and only if ∥Ax∥ ≤ k∥(A + B)x∥ for some k > 0 and for all
x ∈ H .

Proof. Assume A + B is hypo-EP. Then A∗ + B∗ = (A + B)∗ = E(A + B) for some E ∈ B(H). Hence
DAA +DBB = E(A + B) which implies that (DA − E)A = (E −DB)B.

Taking K = DA − E,L = E −DB, we have KA = LB and (K + L)A = L(A + B). Then A = (K + L)−1L(A + B),
since K + L = DA − DB is invertible. Hence ∥Ax∥ ≤ k∥(A + B)x∥ for all x ∈ H , where k = ∥(K + L)−1L∥. The
converse follows from Theorem 4.2.
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5. Restriction of Hypo-EP Operators

Let A ∈ B(H). A closed subspaceM ofH is said to be an invariant subspace for A if A(M) ⊆ M. M is
said to be a reducing subspace for A if bothM andM⊥ are invariant subspaces for A. In this section we
discuss restriction of hypo-EP operator. For A ∈ B(H) the restriction to an invariant subspaceM for A is
denoted by A|M. The adjoint of A|M is denoted by (A|M)∗ and defined by (A|M)∗ = PA∗|M where P is the
orthogonal projection ontoM. The restriction operator A|M coincides with the following properties as in
the operator A ∈ B(H). The proof of the following proposition are obvious from the definition.

Proposition 5.1. Let A,B ∈ B(H) andM be an invariant subspace for both A and B. Then

1. (A|M)∗∗ = A|M.
2. (AB|M)∗ = (B|M)∗(A|M)∗.

From the definition of hypo-EP operator, for any A ∈ B(H), we say A|M is hypo-EP if R(A|M) is closed
and R(A|M) ⊆ R((A|M)∗).

Theorem 5.2. Let A ∈ B(H) andM be an invariant subspace for A such that A|M has closed range. Then A|M is
hypo-EP if and only if for each x ∈ M there exists k > 0 such that

|⟨A|Mx, y⟩| ≤ k∥A|My∥, for all y ∈ M.

Proof of this theorem is direct using Theorem 3.1 and Proposition 5.1.

Corollary 5.3. Let A be a hypo-EP operator andM be an invariant subspace for A such that A|M has closed range.
Then A|M is hypo-EP.

Remark 5.4. There are sufficient conditions available in literature that range of A|M is closed when A ∈ Bc(H). In
[1] Barnes gave a sufficient condition that “R(A|M) = R(A) ∩M”. The following example tells that the condition is
not necessary.

Example 5.5. Let A be the right shift operator on ℓ2 andM = R(A). Then A|M is hypo-EP operator, but R(A|M) (
R(A) ∩M.

Theorem 5.6. Let A ∈ Bc(H) and R(A) be a reducing subspace for A. If A|R(A) is hypo-EP, then A is hypo-EP.

Proof. Let x ∈ H . Then x can be expressed as x = x1 + x2 such that x1 ∈ R(A) and x2 ∈ R(A)⊥. For all y ∈ H ,
|⟨Ax, y⟩| = |⟨Ax, y1⟩ + ⟨Ax, y2⟩| where y1 ∈ R(A), y2 ∈ R(A)⊥. Since A|R(A) is hypo-EP, there exists k > 0 such
that |⟨Ax, y⟩| = |⟨Ax, y1⟩| ≤ k∥Ay1∥. Since R(A) is a reducing subspace for A, ∥Ay∥2 = ∥Ay1∥2 + ∥Ay2∥2, so
∥Ay1∥ ≤ ∥Ay∥. Hence A is hypo-EP.
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