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Abstract. In this paper, we establish some weak convergence results of modified S-iteration process to
converge to common fixed points involving two nearly asymptotically nonexpansive non-self mappings
in the framework of uniformly convex Banach space under the following conditions (i) the Banach space
E satisfying Opial condition and (ii) the dual E∗ of E has the Kadec-Klee property. Our results extend and
improve many known results from the existing literature.

1. Introduction

Let C be a nonempty subset of a Banach space and T : C → C a nonlinear mapping. We denote the set
of all fixed points of T by F(T). The set of common fixed points of two mappings S and T will be denoted
by F = F(S) ∩ F(T) andN denotes the set of all positive integers.

The mapping T is said to be Lipschitzian [1, 13] if for each n ∈N, there exists a constant kn > 0 such that

∥Tnx − Tny∥ ≤ kn∥x − y∥

for all x, y ∈ C.

A Lipschitzian mapping T is said to be uniformly k-Lipschitzian if kn = k for all n ∈N and asymptotically
nonexpansive [7] if kn ≥ 1 for all n ∈N with limn→∞ kn = 1.

Remark 1.1. It is easy to observe that every nonexpansive mapping T (i.e., ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C) is
asymptotically nonexpansive with constant sequence {1} and every asymptotically nonexpansive mapping is uniformly
k-Lipschitzian with k = supn∈N{kn}.

In 2005, Sahu [13] introduced the class of nearly Lipschitzian mappings as an important generalization
of the class of Lipschitzian mappings.
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Let C be a nonempty subset of a Banach space E and fix a sequence {an} ⊂ [0,∞) with limn→∞ an = 0. A
mapping T is said to be nearly Lipschitzian with respect to {an} if for each n ∈N, there exist constants kn ≥ 0
such that

∥Tnx − Tny∥ ≤ kn(∥x − y∥ + an) (1)

for all x, y ∈ C.

The infimum of constants kn for which the above inequality holds is denoted by η(Tn) and is called
nearly Lipschitz constant.

A nearly Lipschitzian mapping T with sequence {an, η(Tn)} is said to be

(i) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈N and limn→∞ η(Tn) = 1 and

(ii) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈N.

Example 1.2. (See [13]) Let E = R, C = [0, 1] and T : C→ C be a mapping defined by

T(x) =
{

1
2 , if x ∈ [0, 1

2 ],
0, if x ∈ ( 1

2 , 1].

Clearly T is discontinuous and a non-Lipschitzian mapping. However, it is a nearly nonexpansive mapping and
hence nearly asymptotically nonexpansive mapping with sequence {an, η(Tn)} = { 1

2n , 1}. Indeed, for a sequence {an}
with a1 =

1
2 and an → 0 as n→∞, we have

∥Tx − Ty∥ ≤ ∥x − y∥ + a1 for all x, y ∈ C

and

∥Tnx − Tny∥ ≤ ∥x − y∥ + an for all x, y ∈ C and n ≥ 2,

since

Tnx =
1
2

for all x ∈ [0, 1] and n ≥ 2.

A subset C of a Banach space E is called a retract of E if there exists a continuous mapping P : E → C
(called a retraction) such that P(x) = x for all x ∈ C. Every closed convex subset of a uniformly convex
Banach space is a retract. A mapping P : E → C is said to be a retraction if P2 = P. It follows that if P is a
retraction then Py = y for all y in the range of P.

In 2003, Chidume et al. [3] defined non-self asymptotically nonexpansive mappings as follows.

Let C be a nonempty subset of a real Banach space E and let P : E → C be a nonexpansive retraction of
E onto C. A non-self mapping T : C → E is called asymptotically nonexpansive if there exists a positive
sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

∥T(PT)n−1(x) − T(PT)n−1(y)∥ ≤ kn∥x − y∥ (2)

for all x, y ∈ C and n ∈N.

Also T is called uniformly k-Lipschitzian if for some k > 0 such that

∥T(PT)n−1(x) − T(PT)n−1(y)∥ ≤ k∥x − y∥ (3)

for all x, y ∈ C and n ∈N.
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In 2007, Zhou et al. [21] introduced the following definition.

(1) A non-self mapping T : C→ E is called asymptotically nonexpansive with respect to P if there exists
a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

∥(PT)n(x) − (PT)n(y)∥ ≤ kn∥x − y∥ (4)

for all x, y ∈ C and n ∈N.

(2) T is said to be uniformly L-Lipschitzian with respect to P if there exists a constant L > 0 such that

∥(PT)n(x) − (PT)n(y)∥ ≤ L∥x − y∥ (5)

for all x, y ∈ C and n ∈N.

Remark 1.3. ([21]) If T : C → E is asymptotically nonexpansive in light of (2) and P : E → C is a nonexpansive
retraction, then PT : C→ C is asymptotically nonexpansive in light of ∥Tnx − Tny∥ ≤ kn∥x − y∥ for all x, y ∈ C and
n ∈N. Indeed by definition (2), we have

∥(PT)nx − (PT)ny∥ = ∥PT(PT)n−1x − PT(PT)n−1y∥
≤ ∥T(PT)n−1x − T(PT)n−1y∥
≤ kn∥x − y∥ (6)

for all x, y ∈ C and n ∈N. Conversely, it may not be true.

Now, we define the following.
For a sequence {an} ⊂ [0,∞) with limn→∞ an = 0, then a non-self mapping T : C → E is said to be nearly

Lipschitzian with respect to {an} and P if for each n ∈N, there exists a constant kn ≥ 0 such that

∥(PT)n(x) − (PT)n(y)∥ ≤ kn(∥x − y∥ + an) (7)

for all x, y ∈ C and n ∈N. The infimum of constants kn for which the above inequality holds is, denoted by
η((PT)n) and is called nearly Lipschitz constant.

A nearly Lipschitzian mapping T with sequence {an, η((PT)n)} is said to be nearly asymptotically nonex-
pansive if η((PT)n) ≥ 1 for all n ∈N and limn→∞ η((PT)n) = 1.

In 2007, Agarwal et al. [1] introduced the following iteration process:

x1 = x ∈ C,
xn+1 = (1 − αn)Tnxn + αnTnyn,

yn = (1 − βn)xn + βnTnxn, n ≥ 1 (8)

where {αn} and {βn} are sequences in (0, 1). They showed that this process converge at a rate same as that of
Picard iteration and faster than Mann for contractions and also they established some weak convergence
theorems using suitable conditions in the framework of uniformly convex Banach space.

Chidume et al. [3] studied the following iteration process for non-self asymptotically nonexpansive
mappings:

x1 = x ∈ C,
xn+1 = P(αnT(PT)n−1xn + (1 − αn)xn), n ≥ 1, (9)

where {αn} is a sequence in (0, 1).
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Recently, Khan [9] introduced and studied the following iteration scheme for non-self nearly asymptot-
ically nonexpansive mappings defined as:

x1 = x ∈ C,
xn+1 = P(αnT(PT)n−1xn + (1 − αn)T(PT)n−1yn)

yn = P((1 − βn)xn + βnT(PT)n−1xn), n ≥ 1, (10)

where {αn} and {βn} are sequences in (0, 1) and established some weak convergence theorems under suitable
conditions for said mappings in the framework of uniformly convex Banach spaces.

In the light of above we proposed and study the following iteration scheme for two nearly asymptotically
nonexpansive non-self mappings S,T : C→ E defined as:

x1 = x ∈ C,
xn+1 = P((1 − αn)(PT)nxn + αn(PS)nyn)

yn = P((1 − βn)xn + βn(PT)nxn), n ≥ 1, (11)

where {αn} and {βn} are sequences in (0, 1).

The asymptotic fixed point theory has a fundamental role in nonlinear functional analysis (see [2]). A
branch of this theory related to asymptotically nonexpansive self and non-self mappings have been devel-
oped by many authors (see, e.g., [2]-[3],[5],[7],[8],[11]-[12],[14]-[16],[20],[21]) in Banach spaces with suitable
geometric structure.

The purpose of this paper is to prove some weak convergence theorems of iteration scheme (11) for
two nearly asymptotically nonexpansive non-self mappings in the framework of uniformly convex Banach
spaces.

2. Preliminaries

Let E be a Banach space with its dimension greater than or equal to 2. The modulus of convexity of E is
the function δE(ε) : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{
1 − ∥1

2
(x + y)∥ : ∥x∥ = 1, ∥y∥ = 1, ε = ∥x − y∥

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].

We recall the following.

Let S = {x ∈ E : ∥x∥ = 1} and let E∗ be the dual of E, that is, the space of all continuous linear functionals
f on E.

The space E has Opial condition [10] if for any sequence {xn} in E, xn converges to x weakly it follows that
lim supn→∞ ∥xn − x∥ < lim supn→∞ ∥xn − y∥ for all y ∈ E with y , x. Examples of Banach spaces satisfying
Opial condition are Hilbert spaces and all spaces lp(1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p , 2
fail to satisfy Opial condition.

Definition 2.1. A mapping T : K→ K is said to be demiclosed at zero, if for any sequence {xn} in K, the condition xn
converges weakly to x ∈ K and Txn converges strongly to 0 imply Tx = 0.

Definition 2.2. A Banach space E has the Kadec-Klee property [17] if for every sequence {xn} in E, xn → x weakly
and ∥xn∥ → ∥x∥ it follows that ∥xn − x∥ → 0.
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Next we state the following useful lemmas to prove our main results.

Lemma 2.3. ([18]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of nonnegative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀ n ≥ 1.

If
∑∞

n=1 βn < ∞ and
∑∞

n=1 rn < ∞, then
(i) limn→∞ αn exists;
(ii) In particular, if {αn}∞n=1 has a subsequence which converges strongly to zero, then limn→∞ αn = 0.

Lemma 2.4. ([15]) Let E be a uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for all n ∈N. Suppose further
that {xn} and {yn} are sequences of E such that lim supn→∞ ∥xn∥ ≤ a, lim supn→∞ ∥yn∥ ≤ a and limn→∞ ∥tnxn + (1−
tn)yn∥ = a hold for some a ≥ 0. Then limn→∞ ∥xn − yn∥ = 0.

Lemma 2.5. ([17]) Let E be a real reflexive Banach space with its dual E∗ has the Kadec-Klee property. Let {xn} be
a bounded sequence in E and p, q ∈ ww(xn) (where ww(xn) denotes the set of all weak subsequential limits of {xn}).
Suppose limn→∞ ∥txn + (1 − t)p − q∥ exists for all t ∈ [0, 1]. Then p = q.

Lemma 2.6. ([17]) Let K be a nonempty convex subset of a uniformly convex Banach space E. Then there exists a
strictly increasing continuous convex function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that for each Lipschitzian
mapping T : C→ C with the Lipschitz constant L,

∥tTx + (1 − t)Ty − T(tx + (1 − t)y)∥ ≤ Lϕ−1
(
∥x − y∥ − 1

L
∥Tx − Ty∥

)
for all x, y ∈ K and all t ∈ [0, 1].

3. Main Results

In this section, we prove some weak convergence theorems for two nearly asymptotically nonexpansive
non-self mappings in the framework of uniformly convex Banach spaces. First, we shall need the following
lemmas.

Lemma 3.1. Let E be a uniformly convex Banach space and C be a nonempty closed convex subset of E. Let P : E→ C
is a nonexpansive retraction of E onto C and S,T : C → E be two nearly asymptotically nonexpansive non-self
mappings with sequences {a′n, η((PS)n)} and {a′′n , η((PT)n)} such that

∑∞
n=1 an < ∞ and

∑∞
n=1

[
η((PS)n)η((PT)n)−1

]
<

∞. Let {xn} be the iteration scheme defined by (11), where {αn} and {βn} are sequences in [δ, 1 − δ] for all n ∈ N and
for some δ ∈ (0, 1). If F = F(S) ∩ F(T) , ∅ and q ∈ F, then limn→∞ ∥xn − q∥ exists.

Proof. Let q ∈ F. For the sake of simplicity, set

Dn(x) = P((1 − βn)x + βn(PT)nx)

and

Rn(x) = P((1 − αn)(PT)nx + αn(PS)nDnx).

Then yn = Dnxn and xn+1 = Rnxn. Moreover, it is clear that q is a fixed point of Rn for all n. Let
η = supn∈N η((PS)n) ∨ supn∈N η((PT)n), an = max{a′n, a′′n } for all n, λ1 = η((PS)n) and λ2 = η((PT)n).
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Consider

∥Dnx −Dny∥ = ∥P((1 − βn)x + βn(PT)nx)
−P((1 − βn)y + βn(PT)ny)∥

≤ ∥(1 − βn)x + βn(PT)nx
−(1 − βn)y + βn(PT)ny∥

= ∥(1 − βn)(x − y) + βn[(PT)nx − (PT)ny]∥
≤ (1 − βn)∥x − y∥ + βn∥(PT)nx − (PT)ny∥
≤ (1 − βn)∥x − y∥ + βn[η((PT)n)(∥x − y∥ + a′′n )]
≤ (1 − βn)∥x − y∥ + βn[η((PT)n)(∥x − y∥ + an)]
= (1 − βn)∥x − y∥ + βnη((PT)n)∥x − y∥
+βnη((PT)n)an

≤ (1 − βn)η((PT)n)∥x − y∥ + βnη((PT)n)∥x − y∥
+βnη((PT)n)an

≤ η((PT)n)∥x − y∥ + η((PT)n)an

= λ2∥x − y∥ + λ2an. (12)

Choosing x = xn and y = q, we get

∥yn − q∥ ≤ λ2∥x − y∥ + λ2an. (13)

Now, consider

∥Rnx − Rny∥ = ∥P((1 − αn)(PT)nx + αn(PS)nDnx)
−P((1 − αn)(PT)ny + αn(PS)nDny)∥

≤ ∥(1 − αn)(PT)nx + αn(PS)nDnx
−(1 − αn)(PT)ny + αn(PS)nDny∥

= ∥(1 − αn)[(PT)nx − (PT)ny]
+αn[(PS)nDnx − (PS)nDny]∥

≤ (1 − αn)∥(PT)nx − (PT)ny∥
+αn∥(PS)nDnx − (PS)nDny∥

≤ (1 − αn)[η((PT)n)(∥x − y∥ + a′′n )]
+αn[η((PS)n)(∥Dnx −Dny∥ + a′n)]

≤ (1 − αn)[η((PT)n)(∥x − y∥ + an)]
+αn[η((PS)n)(∥Dnx −Dny∥ + an)]

= (1 − αn)λ2∥x − y∥ + αnλ1∥Dnx −Dny∥
+(1 − αn)anλ2 + αnanλ1. (14)



G. S. Saluja / Funct. Anal. Approx. Comput. 10 (3) (2018), 1–13 7

Now, using (13) in (14), we get

∥Rnx − Rny∥ ≤ (1 − αn)λ2∥x − y∥
+αnλ1[λ2∥x − y∥ + λ2an]
+(1 − αn)anλ2 + αnanλ1

≤ [(1 − αn) + αn]λ1λ2∥x − y∥
+[(1 − αn) + αn]λ1λ2an

= λ1λ2∥x − y∥ + λ1λ2an

= [1 + (λ1λ2 − 1)]∥x − y∥ + λ1λ2an

≤ [1 + (λ1λ2 − 1)]∥x − y∥ + anη
2

= [1 + tn]∥x − y∥ +mn (15)

where tn = (λ1λ2−1) =
(
η((PS)n)η((PT)n)

)
−1 and mn = anη2. Since by hypothesis

∑∞
n=1

[
η((PS)n)η((PT)n)−1

]
<

∞ and
∑∞

n=1 an < ∞, it follows that
∑∞

n=1 tn < ∞ and
∑∞

n=1 mn < ∞.
Choosing x = xn and y = q in (15), we get

∥xn+1 − q∥ = ∥Rnxn − q∥
≤ [1 + tn]∥xn − q∥ +mn. (16)

Applying Lemma 2.3 in (16), we have limn→∞ ∥xn − q∥ exists. This completes the proof.

Lemma 3.2. Let E be a uniformly convex Banach space and C be a nonempty closed convex subset of E. Let P : E→ C
is a nonexpansive retraction of E onto C and S,T : C → E be two nearly asymptotically nonexpansive non-self
mappings with sequences {a′n, η((PS)n)} and {a′′n , η((PT)n)} such that

∑∞
n=1 an < ∞,

∑∞
n=1

[
η((PS)n)η((PT)n)−1

]
< ∞

and F = F(S) ∩ F(T) , ∅. Let {xn} be the iteration scheme defined by (11), where {αn} and {βn} are sequences in
[δ, 1 − δ] for all n ∈N and for some δ ∈ (0, 1). Then limn→∞ ∥xn − Sxn∥ = 0 and limn→∞ ∥xn − Txn∥ = 0.

Proof. By Lemma 3.1, limn→∞ ∥xn−q∥ exists for all q ∈ F and therefore {xn} is bounded. Thus there exists a real
number r > 0 such that {xn} ⊆ K = Br(0)∩C, so that K is a closed convex subset of C. Let limn→∞ ∥xn− q∥ = c.
Then c > 0 otherwise there is nothing to prove.

Now (13) implies that

lim sup
n→∞

∥yn − q∥ ≤ c. (17)

Also

∥(PT)nxn − q∥ ≤ η((PT)n)[∥xn − q∥ + a′′n ]
≤ η((PT)n)[∥xn − q∥ + an],

for all n = 1, 2, . . . and

∥(PS)nxn − q∥ ≤ η((PS)n)[∥xn − q∥ + a′n]
≤ η((PS)n)[∥xn − q∥ + an],

for all n = 1, 2, . . . , so

lim sup
n→∞

∥(PT)nxn − q∥ ≤ c. (18)

lim sup
n→∞

∥(PS)nxn − q∥ ≤ c. (19)
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Next

∥(PS)nyn − q∥ ≤ η((PS)n)[∥yn − q∥ + a′n]
≤ η((PS)n)[∥yn − q∥ + an]

gives by virtue of (17) that

lim sup
n→∞

∥(PS)nyn − q∥ ≤ c. (20)

Since

c = lim
n→∞
∥xn+1 − q∥

= lim
n→∞
∥(1 − αn)(PT)nxn + αn(PS)nyn − q∥

= lim
n→∞
∥(1 − αn)[(PT)nxn − q] + αn[(PS)nyn − q]∥

and Lemma 2.4 that

lim
n→∞
∥(PT)nxn − (PS)nyn∥ = 0. (21)

From (11) and (21), we have

∥xn+1 − (PT)nxn∥ = αn∥(PT)nxn − (PS)nyn∥
≤ (1 − δ)∥(PT)nxn − (PS)nyn∥
→ 0 as n→∞. (22)

Hence

∥xn+1 − (PS)nyn∥ ≤ ∥xn+1 − (PT)nxn∥
+∥(PT)nxn − (PS)nyn∥
→ 0 as n→∞. (23)

Next

∥xn+1 − q∥ ≤ ∥xn+1 − (PS)nyn∥ + ∥(PS)nyn − q∥
≤ ∥xn+1 − (PS)nyn∥ + η((PS)n)[∥yn − q∥ + a′n]
≤ ∥xn+1 − (PS)nyn∥ + η((PS)n)[∥yn − q∥ + an] (24)

which gives from (23) that

c ≤ lim inf
n→∞

∥yn − q∥. (25)

From (17) and (25), we obtain

c = lim
n→∞
∥yn − q∥

= lim
n→∞
∥(1 − βn)xn + βn(PT)nxn − q∥

= lim
n→∞
∥(1 − βn)[xn − q] + βn[(PT)nxn − q]∥

and it follows from Lemma 2.4 that

lim
n→∞
∥xn − (PT)nxn∥ = 0. (26)
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Again note that

∥yn − xn∥ = ∥(1 − βn)xn + βn(PT)nxn − xn∥
= βn∥xn − (PT)nxn∥
≤ (1 − δ)∥xn − (PT)nxn∥
→ 0 as n→∞. (27)

Also, from (21) and (26), we obtain

∥xn+1 − xn∥ ≤ ∥P((1 − αn)(PT)nxn + αn(PS)nyn) − P(xn)∥
≤ ∥(1 − αn)(PT)nxn + αn(PS)nyn − xn∥
= ∥xn − (PT)nxn∥ + αn∥(PT)nxn − (PS)nyn∥
≤ ∥xn − (PT)nxn∥ + (1 − δ)∥(PT)nxn − (PS)nyn∥
→ 0 as n→∞. (28)

Thus, from (27) and (28), we obtain

∥xn+1 − yn∥ ≤ ∥xn+1 − xn∥ + ∥xn − yn∥
→ 0 as n→∞. (29)

Furthermore, we have

∥xn+1 − (PT)nyn∥ ≤ ∥xn+1 − xn∥ + ∥xn − (PT)nxn∥
+∥(PT)nxn − (PT)nyn∥

≤ ∥xn+1 − xn∥ + ∥xn − (PT)nxn∥
+η((PT)n)[∥xn − yn∥ + a′′n ]

≤ ∥xn+1 − xn∥ + ∥xn − (PT)nxn∥
+η((PT)n)[∥xn − yn∥ + an]. (30)

Using (26), (27), (28) and an → 0 as n→∞ in (30), we get

lim
n→∞
∥xn+1 − (PT)nyn∥ = 0. (31)

Finally, we make use of the fact that every nearly asymptotically nonexpansive mapping is nearly k-
Lipschitzian, we have

∥xn − Txn∥ ≤ ∥xn − (PT)nxn∥ + ∥(PT)nxn − (PT)nyn−1∥
+∥(PT)nyn−1 − Txn∥

= ∥xn − (PT)nxn∥ + ∥(PT)nxn − (PT)nyn−1∥
+∥(PT)(PT)n−1yn−1 − (PT)xn∥

≤ ∥xn − (PT)nxn∥ + η((PT)n)[∥xn − yn−1∥ + a′′n ]
+k∥(PT)n−1yn−1 − xn∥

≤ ∥xn − (PT)nxn∥ + η((PT)n)[∥xn − yn−1∥ + an]
+k∥(PT)n−1yn−1 − xn∥. (32)

Using (26), (29), (30) and an → 0 as n→∞ in (32), we get

lim
n→∞
∥xn − Txn∥ = 0. (33)

Similarly, we can prove that

lim
n→∞
∥xn − Sxn∥ = 0. (34)

This completes the proof.
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Theorem 3.3. Let E be a uniformly convex Banach space satisfying Opial’s condition and C be a nonempty closed
convex subset of E. Let P : E → C is a nonexpansive retraction of E onto C and S,T : C → E be two nearly
asymptotically nonexpansive non-self mappings with sequences {a′n, η((PS)n)} and {a′′n , η((PT)n)} such that

∑∞
n=1 an <

∞,
∑∞

n=1

[
η((PS)n)η((PT)n)−1

]
< ∞ and F = F(S)∩F(T) , ∅. Let {xn} be the iteration scheme defined by (11), where

{αn} and {βn} are sequences in [δ, 1− δ] for all n ∈N and for some δ ∈ (0, 1). If the mappings I − S and I −T, where I
denotes the identity mapping, are demiclosed at zero, then {xn} converges weakly to a common fixed point of S and T.

Proof. Let q ∈ F, from Lemma 3.1 the sequence {∥xn − q∥} is convergent and hence bounded. Since E
is uniformly convex, every bounded subset of E is weakly compact. Thus there exists a subsequence
{xnk } ⊂ {xn} such that {xnk } converges weakly to q∗ ∈ C. From Lemma 3.2, we have

lim
k→∞
∥xnk − Sxnk∥ = 0 and lim

k→∞
∥xnk − Txnk∥ = 0.

Since the mappings I−S and I−T are demiclosed at zero, therefore Sq∗ = q∗ and Tq∗ = q∗ which means q∗ ∈ F.
Finally, let us prove that {xn} converges weakly to q∗ ∈ F. Suppose on contrary that there is a subsequence
{xn j} ⊂ {xn} such that {xn j } converges weakly to p∗ ∈ C and q∗ , p∗. Then by the same method as given above,
we can also prove that p∗ ∈ F. From Lemma 3.1 the limits limn→∞ ∥xn − q∗∥ and limn→∞ ∥xn − p∗∥ exist. By
virtue of the Opial condition of E, we obtain

lim
n→∞
∥xn − q∗∥ = lim

nk→∞
∥xnk − q∗∥

< lim
nk→∞

∥xnk − p∗∥

= lim
n→∞
∥xn − p∗∥

= lim
n j→∞

∥xn j − p∗∥

< lim
n j→∞

∥xn j − q∗∥

= lim
n→∞
∥xn − q∗∥

which is a contradiction, so q∗ = p∗. Thus {xn} converges weakly to a common fixed point of S and T. This
completes the proof.

It is well known that there exist classes of uniformly convex Banach spaces without the Opial condition
(e.g., Lp spaces p , 2). Therefore, Theorem 3.3 is not true for such Banach spaces. We now show that
Theorem 3.3 is valid if the assumption that E satisfies the Opial condition is replaced by the dual E∗ of E
has the Kadec-Klee property (KK-property).

Example 3.4. (Example 3.1, [6]) Let us take X1 = R2 with the norm denoted by ∥x∥ =
√
∥x1∥2 + ∥x2∥2 and X2 =

Lp[0, 1] with 1 < p < ∞ and p , 2. The Cartesian product of X1 and X2 furnished with the ℓ2-norm is uniformly
convex, it does not satisfy the Opial condition but its dual does have the Kadec-Klee property (KK-property).

Lemma 3.5. Under the assumptions of Lemma 3.2, for all p, q ∈ F, the limit

lim
n→∞
∥txn + (1 − t)p − q∥

exists for all t ∈ [0, 1], where {xn} is the sequence defined by (11).

Proof. By Lemma 3.1, limn→∞ ∥xn − z∥ exists for all z ∈ F and therefore {xn} is bounded. Letting

an(t) = ∥txn + (1 − t)p − q∥

for all t ∈ [0, 1]. Then limn→∞ an(0) = ∥p − q∥ and limn→∞ an(1) = ∥xn − q∥ exists by Lemma 3.1. It, therefore,
remains to prove the Lemma 3.5 for t ∈ (0, 1). For all x ∈ C, we define the mapping Rn : C→ C by:

Dn(x) = P((1 − βn)x + βn(PT)nx)
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and

Rn(x) = P((1 − αn)(PT)nx + αn(PS)nDn(x)).

Then it follows that xn+1 = Rnxn, Rnp = p for all p ∈ F and we have shown earlier in Lemma 3.1 that

∥Rn(x) − Rn(y)∥ ≤ (1 + tn)∥x − y∥ +mn

= µn∥x − y∥ +mn (35)

for all x, y ∈ C, where tn = (λ1λ2 − 1) =
(
η((PS)n)η((PT)n)

)
− 1 and mn = anη2 with

∑∞
n=1 tn < ∞,

∑∞
n=1 mn < ∞,

µn = 1 + tn and µn → 1 as n→∞. Setting

Un,m = Rn+m−1Rn+m−2 . . .Rn, m ≥ 1 (36)

and

bn,m = ∥Un,m(txn + (1 − t)p) − (tUn,mxn + (1 − t)Un,mq)∥.
From (35) and (36), we have

∥Un,m(x) −Un,m(y)∥ = ∥Rn+m−1Rn+m−2 . . .Rn(x) − Rn+m−1Rn+m−2 . . .Rn(y)∥
≤ µn+m−1∥Rn+m−2 . . .Rn(x) − Rn+m−2 . . .Rn(y)∥
+mn+m−1

≤ µn+m−1µn+m−2∥Rn+m−3 . . .Rn(x) − Rn+m−3 . . .Rn(y)∥
+mn+m−1 +mn+m−2

...

≤
( n+m−1∏

j=n

µ j

)
∥x − y∥ +

n+m−1∑
j=n

m j

= Ln∥x − y∥ +
n+m−1∑

j=n

m j (37)

for all x, y ∈ C, where Ln =
∏n+m−1

j=n µ j and Un,mxn = xn+m and Un,mz = z for all z ∈ F. Thus

an+m(t) = ∥txn+m + (1 − t)p − q∥
≤ bn,m + ∥Un,m(txn + (1 − t)p) − q∥

≤ bn,m + Lnan(t) +
n+m−1∑

j=n

m j. (38)

By using [ [6], Theorem 2.3], we have

bn,m ≤ φ−1(∥xn − u∥ − ∥Un,mxn −Un,mu∥)
≤ φ−1(∥xn − u∥ − ∥xn+m − u + u −Un,mu∥)
≤ φ−1(∥xn − u∥ − (∥xn+m − u∥ − ∥Un,mu − u∥))

and so the sequence {bn,m} converges uniformly to 0, i.e., bn,m → 0 as n → ∞. Since limn→∞ Ln = 1 and∑∞
n=1 mn < ∞, that is, limn→∞mn = 0, therefore from (38), we have

lim sup
n→∞

an(t) ≤ lim
n,m→∞

bn,m + lim inf
n→∞

an(t) + 0 = lim inf
n→∞

an(t).

This shows that limn→∞ an(t) exists, that is, limn→∞ ∥txn + (1 − t)p − q∥ exists for all t ∈ [0, 1]. This completes
the proof.

Now, we prove a weak convergence theorem for the spaces whose dual have Kadec-Klee (KK-property).
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Theorem 3.6. Let E be a uniformly convex Banach space such that the dual E∗ has the Kadec-Klee property and C
be a nonempty closed convex subset of E. Let P : E → C is a nonexpansive retraction of E onto C and S,T : C → E
be two nearly asymptotically nonexpansive non-self mappings with sequences {a′n, η((PS)n)} and {a′′n , η((PT)n)} such
that
∑∞

n=1 an < ∞,
∑∞

n=1

[
η((PS)n)η((PT)n) − 1

]
< ∞ and F = F(S) ∩ F(T) , ∅. Let {xn} be the iteration scheme

defined by (11), where {αn} and {βn} are sequences in [δ, 1 − δ] for all n ∈N and for some δ ∈ (0, 1). If the mappings
I−S and I−T, where I denotes the identity mapping, are demiclosed at zero, then {xn} converges weakly to a common
fixed point of S and T.

Proof. By Lemma 3.1, {xn} is bounded and since E is reflexive, there exists a subsequence {xn j} of {xn}which
converges weakly to some p ∈ C. By Lemma 3.2, we have

lim
j→∞
∥xn j − Sxn j∥ = 0 and lim

j→∞
∥xn j − Txn j∥ = 0

Since by hypothesis the mappings I−S and I−T are demiclosed at zero, therefore Sp = p and Tp = p, which
means p ∈ F. Now, we show that {xn} converges weakly to p. Suppose {xni } is another subsequence of {xn}
converges weakly to some q ∈ C. By the same method as above, we have q ∈ F and p, q ∈ Ww({xn}). By
Lemma 3.5, the limit

lim
n→∞
∥txn + (1 − t)p − q∥

exists for all t ∈ [0, 1] and so p = q by Lemma 2.5. Thus, the sequence {xn} converges weakly to p ∈ F. This
completes the proof.

Remark 3.7. ([4]) It is well known that duals of reflexive Banach spaces with Frěchet differentiable norm have the
Kadec-Klee property. However, it is worth mentioning that there exist uniformly convex Banach spaces which have
neither a Frěchet differentiable norm nor satisfy Opial’s condition but their dual do have the Kadec-Klee property.

Remark 3.8. The dual E∗ of E has the Kadec-Klee property, Theorem 3.6 generalizes Theorem 2.1 of Schu [16] to the
case of two non-self mappings and modified S-iteration scheme in Banach spaces that includes Lp-spaces (1 < p < ∞),
with Opial’s condition and boundedness of C dispensed with. Since duals of reflexive Banach spaces with Frěchet
differentiable norm have the Kadec-Klee property, Theorem 3.6 extends Theorem 3.1 of Tan and Xu [19] to the case of
non-self mappings which are nearly asymptotically nonexpansive and modified S-iteration scheme, with boundedness
of C dispensed with.

Example 3.9. Let E be the real line with the usual norm |.|, C = [0, 1] and P be the identity mapping. Assume that
S(x) = x and T(x) = x+1

2 for all x ∈ C. Let {a′n}n≥1 and {a′′n }n≥1 be two nonnegative real sequences defined by a′n =
1
2n

and a′′n =
1
3n for all n ≥ 1 with a′n → 0 and a′′n → 0 as n→∞. Then S and T are nearly nonexpansive mappings and

hence are nearly asymptotically nonexpansive mappings with common fixed point 1, that is, F = F(S) ∩ F(T) = {1}.

4. Concluding remarks

In this note, we establish some weak convergence theorems for newly defined modified two-step
iteration scheme for two nearly asymptotically nonexpansive non-self mappings, this class of mappings
is larger than the class of nonexpansive and asymptotically nonexpansive mappings, in the framework of
uniformly convex Banach spaces. The results presented in this note extend, generalize and improve the
previous works from the existing literature.
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