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Abstract. We consider left and right Fredholm-decomposably regular operators introduced in [23], and
the corresponding holomorphic versions. Using their results established by Zeng in [23], we give new
properties of these classes of operators. We introduce the concept of Weyl-decomposably regular operator
and the corresponding holomorphic version in the setting of L(X), where L(X) is the set of all bounded
operators from Banach space X to X, and we give various characterizations of this class of operators.

1. Introduction

Let X denote an infinite dimensional Banach space. We use L(X) to denote the set of all linear bounded
operators on X. Also, L0(X) denote the set of all compact operators on X. For A ∈ L(X) we use N(A)
and A(X), respectively, to denote the null-space and the range of A. The nullity, α(A), of A is defined as
the dimension of N(A) and the deficiency, β(A), of A is defined as the codimension of A(X) in X. The
hyper-range A∞(X) of A is defined by A∞(X) = ∩k≥1Ak(X). Let σ(A) denote the spectrum of A. Sets of upper
and lower Fredholm operators, respectively, are defined as

Φ+(X) = {A ∈ L(X) such that A(X) is closed in X and α(A) < ∞},
and

Φ−(X) = {A ∈ L(X) such that A(X) is closed in X and β(A) < ∞ }.

Opertors in Φ±(X) = Φ+(X) ∪Φ−(X) are called semi-Fredholm operators. For such
operators the index is defined by i(A) = α(A)−β(A). If A ∈ Φ+(X)\Φ(X) then i(A) = −∞ and if A ∈ Φ−(X)\Φ(X)
then i(A) = +∞. The set of Fredholm operators is defined as Φ(X) = Φ+(X) ∩Φ−(X).

An operator A ∈ L(X) is called Kato non-singular (see, [13, 16, 18]) if A(X) is closed andN(A) ⊆ A∞(X).
The Kato non-singular spectrum of A is defined by

σK(A) := {λ ∈ C such that A − λ is not a Kato non-singular}.
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An operator A ∈ L(X) is relatively regular if there exists B ∈ L(X) such that ABA = A. It is well-known that A
is relatively regular if and only if A(X) andN(A) are closed and complemented subspaces of X. In particular,
if X is a Hilbert space then A is relatively regular operator if and only if A(X) is closed (see [6, 9, 12, 14]).
Let R(X) denote the class of all relatively regular operators. A is called Fredholm-decomposably regular
operator if there is B ∈ Φ(X) such that ABA = A (see [10, 22]), if B is an invertible operator then A is said
decomposably regular operator. Let G(X) denote the set of all bounded invertible operators. The class of
all Fredholm-decomposably regular (resp. decomposably regular) operators is denoted by ΦR(X) (resp.
GR(X)). This class of operators was introduced and investigated in [8, 19]. In particular it is proved that

GR(X) = R(X) ∩ G(X) and ΦR(X) = R(X) ∩Φ(X).

In [5], El Bakkali introduced and studied the holomorphically Fredholm-decomposably regular resolvent
ρh f (A),where

ρh f (A) := {µ ∈ C : there are V a neighborhood of µ and F : V → L(X) analytic such that (A−λ)F(λ)(A−λ) =
A − λ and F(λ) ∈ Φ(X) for each λ ∈ V}.
An operator A ∈ L(X) is called holomorphically Fredholm-decomposably regular operator if 0 ∈ ρh f (A).
We denote HΦR(X) the class of all holomorphically Fredholm-decomposably regular operators.

We use Gl(X) and Gr(X), respectively, to denote the set of all left and right invertible operators on X. Sets of
left and right Fredholm operators, respectively, are defined as

Φl(X) = {A ∈ L(X) : A(X) is closed and complemented of X and α(A) < ∞}

and

Φr(X) = {A ∈ L(X) : N(A) is complemented of X and β(A) < ∞}.

In this paper, we introduce the concept of Weyl-decomposably regular operator and the corresponding
holomorphic version in the setting of L(X), and we give various characterizations of this class of operator.

We organise our paper in the following way: in Section 2 we gather some results and notions from
Fredholm theory connected with the sequel of the paper. The main results of section 3 is to prove that
for A ∈ L(X) where X be a direct sum of closed subspaces X1 and X2 which are A-invariant, A1 =
A|X1

: X1 → X1 and A2 = A|X2
: X2 → X2, if A1 and A2 are left (right) Fredholm-decomposably regular

operators then A is left (right) Fredholm-decomposably regular operator (see, Definition 2.6). A similar,
if A1 and A2 are left (right) holomorphically Fredholm-decomposably regular operators then A is left
(right) holomorphically Fredholm-decomposably regular operator. In Section 4, we present the class of
holomorphically Weyl-decomposably regular operators and we give various characterizations of this class
of operators. More precisely, let HWR(X) be the class of all holomorphically Weyl-decomposably regular
operators (see, Definition 4.3), then HWR(X) = S(X) ∩WR(X), where S(X) is the set of all Saphar operator
(see, Definition 2.1) and WR(X) is the class of Weyl-decomposably regular operators. Let A ∈ L(X). Then
A ∈ HWR(X) if and only if there exist R ∈ W(X) and sequence (Bn)n ⊂ G(X) and (An)n ⊂ WR(X) such that
ARA = A, ABn = BnA, (A− Bn)An(A− Bn) = A− Bn for all n ∈N and limn

(
∥Bn∥+ ∥An − R∥

)
= 0. Finally, in

section 5, we define a new spectrum σhw(A) said holomorphically Weyl-decomposably regular spectrum of
A ∈ L(X). Let ρhw(A) = C \ σhw(A).We prove that 0 ∈ ρhw(A) if and only if 0 ∈ C\σK(A) and A ∈WR(X).

2. Preliminary Results

In this section we recall some definitions and we give some lemmas that we will need in the sequel.
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Definition 2.1. Let X be a Banach space and let A ∈ L(X). The operator A is called Saphar operator if A is Kato
non-singular and A ∈ R(X).

We denote S(X) the set of all Saphar operators. This class of operators was studied by Saphar in [20].

Definition 2.2. Let X be a Banach space.

1) An operator A is said to be left (resp. right) decomposably regular operator if there exists B ∈ Gr(X) (resp. Gl(X))
such that ABA = A.
2) An operator A is said to be left (resp. right) Fredholm-decomposably regular operator if there exists B ∈ Φr(X) (resp.
Φl(X)) such that ABA = A.

We also denote classes of left decomposably regular operators, right decomposably regular operators,
left Fredholm-decomposably regular operators and right Fredholm-decomposably regular operators from
X to X by GlR(X), GrR(X), ΦlR(X) and ΦrR(X), respectively.

Let A ∈ L(X). Let

Com(A) := {B ∈ L(X) such that AB = BA}

the commutant of A and

Com−1(A) = Com(A) ∩ G(X)

the invertible commutant of A.

Definition 2.3. [10, Definition 8] Let A ∈ L(X).We say that A is consortedly regular if there are sequences (Bn)n

in Com−1(A) and (Ân)n, Â in L(X) for which

AÂA = A, ∥ Bn ∥ + ∥ Ân − Â ∥−→ 0 and A − Bn = (A − Bn)Ân(A − Bn).

Lemma 2.4. [17, Lemma 4, p. 131] Let A ∈ L(X) be a Saphar operator and let B ∈ L(X) satisfy ABA = A and let
n ∈N. Then AnBnAn = An. In particular, An is Saphar operator.

It is know in [15, Theorem 2.6] and [21, Theorem 1.4] that A ∈ S(X) if and only if there exist a neighborhood
U ⊆ C of 0 and a holomorphic function F : U→ L(X) such that

(A − λ)F(λ)(A − λ) = A − λ, for all λ ∈ U. (2.1)

In [22], Schmoeger introduced and studied the holomorphically decomposably regular operator HGR(X)
given by A ∈ HGR(X) if and only if there exist a neighborhood U ⊂ C of 0 and a holomorphic function
F : U −→ L(X) such that

F(x) ∈ G(X), (A − x)F(x)(A − x) = A − x

for all x ∈ U. It is clear that HGR(X) ⊂ HΦR(X).

Theorem 2.5. [10, Theorem 2.6] Let A ∈ L(X). If A is consortedly regular then A is holomorphically decomposably
regular.

To generalized these classes of operators Zeng (see, [23]), introduced the following concept:
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Definition 2.6. Let A ∈ L(X). Suppose that there exist a neighborhood U ⊆ C of 0 and a holomorphic function
F : U→ L(X) such that (A − λ)F(λ)(A − λ) = A − λ, for all λ ∈ U.
1) A is said to be left holomorphically decomposably regular (resp. Fredholm-decomposably regular), if F(λ) ∈
Gr(X) (resp. Φr(X)) for all λ ∈ U.
2) A is said to be right holomorphically decomposably regular (resp. Fredholm-decomposably regular), if F(λ) ∈
Gl(X) (resp. Φl(X)) for all ∀ λ ∈ U.

We denote HGlR(X), HGrR(X), HΦlR(X), and HΦrR(X) these class of operators.

Denote by L00(X) the ideal of (bounded) finite rank operators. Note that

L00(X) ⊆ L0(X) ⊆ L(X).

In the sequel we will recall the following important theorem (see, [2, Theorem 1.5]).

Theorem 2.7. Let X be a Banach space and A ∈ L(X). Then the following assertions are equivalent:
i) A ∈ Φl(X);
ii) there exist B ∈ L(X) such that I − BA ∈ L00(X);
iii) there exist B ∈ L(X) such that I − BA ∈ L0(X).
Analogously; the following assertions are equivalent:
iv) A ∈ Φr(X);
v) there exist B ∈ L(X) such that I − AB ∈ L00(X);
vi) there exist B ∈ L(X) such that I − AB ∈ L0(X).

Lemma 2.8. [17, Lemma 6, p. 132] Let A ∈ L(X). If A ∈ S(X), then there exists ε > 0 such that A − U has a
generalized inverse for every operator U ∈ L(X) commuting with A such that ∥ U ∥< ε.More precisely, if A is Kato
non-singular, ABA = A, UA = AU and ∥ U ∥≤∥ B ∥−1, then (A −U)B(I −UB)−1(A −U) = A −U.

In the next theorem we will recall some well-known properties of the decomposably regular and Fredholm
operators (see, [5, 23]).

Theorem 2.9. Let X be a Banach space.

1) GiR(X) = R(X) ∩ Gi(X), i = l, r.

2) ΦiR(X) = R(X) ∩Φi(X), i = l, r.

3) GR(X) = R(X) ∩ G(X).

4) ΦR(X) = R(X) ∩Φ(X).

5) HGiR(X) = S(X) ∩ Gi(X), i = l, r.

6) HΦiR(X) = S(X) ∩Φi(X), i = l, r.

Theorem 2.10. [4, Theorem 2.4] Let A, B ∈ L(X) such that AB = BA. If A, B ∈ HΦR(X) and if there exists
C, D ∈ L(X) such that AC +DB = I, then AB ∈ HΦR(X).

3. On left and right decomposably regular operators

We first prove the following theorem.

Theorem 3.1. Let A ∈ L(X) and let X be a direct sum of closed subspaces X1 and X2 which are A-invariant. If
A1 = A|X1

: X1 → X1 and A2 = A|X2
: X2 → X2,

1) If A1 ∈ ΦiR(X1) and A2 ∈ ΦiR(X2) then A ∈ ΦiR(X), i = l, r.

2) If A1 ∈ GiR(X1) and A2 ∈ GiR(X2) then A ∈ GiR(X), i = l, r.
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3) If A1 ∈ ΦR(X1) and A2 ∈ ΦR(X2) then A ∈ ΦR(X).

4) If A1 ∈ GR(X1) and A2 ∈ GR(X2) then A ∈ GR(X).

5) If A1 ∈ HΦiR(X1) and A2 ∈ HΦiR(X2) then A ∈ HΦiR(X), i = l, r.

6) If A1 ∈ HGiR(X1) and A2 ∈ HGiR(X2) then A ∈ HGiR(X), i = l, r.

7) If A1 ∈ HΦR(X1) and A2 ∈ HΦR(X2) then A ∈ HΦR(X).

8) If A1 ∈ HGR(X1) and A2 ∈ HGR(X2) then A ∈ HGR(X).

Proof. The operator A has the following matrix form with respect to the decomposition X = X1 ⊕ X2 :

A =
[

A1 0
0 A2

]
:
[

X1
X2

]
−→
[

X1
X2

]
.

1) Suppose that A1 ∈ ΦlR(X1) and A2 ∈ ΦlR(X2). Using Theorem 2.9, there exists B1 ∈ L(X1) and B2 ∈ L(X2)
such that

A1B1A1 = A1 and A2B2A2 = A2.

Let

B =
[

B1 0
0 B2

]
Therefore

ABA =
[

A1 0
0 A2

] [
B1 0
0 B2

] [
A1 0
0 A2

]

=

[
A1B1A1 0

0 A2B2A2

]

=

[
A1 0
0 A2

]
= A

This prove that A ∈ R(X). So, to find this proof it suffice to shaw that A ∈ Φl(X). Since A1 ∈ Φl(X1) and
A2 ∈ Φl(X2). Then there are (A1,n)n ⊂ Φl(X1) and (A2,n)n ⊂ Φl(X2) such that A1,n belong to A1 and A2,n belong
to A2. Let

An =

[
A1,n 0

0 A2,n

]
.

Then, we have

N(An) = N(A1,n) ⊕N(A2,n) and An(X) = A1,n(X1) ⊕ A2,n(X2).
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This shaw that (An)n ⊂ Φl(X). Since it is clear that An belong to A. So, A ∈ Φl(X). Finally, using Theorem 2.9
1) we infer that A ∈ ΦlR(X).
A similar reasoning as before, we prove that if A1 ∈ ΦrR(X1) and A2 ∈ ΦrR(X2) then A ∈ ΦrR(X).
Their assertions 2), 3) and 4) can be proved similarly.

5) Suppose that A1 ∈ HΦR(X1) and A2 ∈ HΦR(X2). Then A1 and A2 are Kato non-singular operators,
A1 ∈ ΦlR(X1) and A2 ∈ ΦlR(X2). Using 1), we can deduce that A ∈ ΦlR(X). So, it suffice to shaw that A is
Kato non-singular. By the decomposing X = X1 ⊕ X2,we have

N(A) = N(A1) ⊕N(A2) and An(X) = An
1(X1) ⊕ An

2(X2) for all n ∈N.

Since A1(X1), A2(X2) are closed, N(A1) ⊂ An
1(X1) and N(A2) ⊂ An

2(X2) for all n ∈ N. So, A(X) is closed and
N(A) ⊂ An(X) for all n ∈N.
A similar as before, we prove that if A1 ∈ HΦrR(X1) and A2 ∈ HΦrR(X2) then A ∈ HΦrR(X).

Their assertions 6), 7) and 8) can be proved similarly to 5).

Theorem 3.2. Let A ∈ L(X). Then for λ0 ∈ C\σ(A) and λ , λ0, we have

A − λ ∈ HΦR(X) if and only if (A − λ0)−1 − 1
λ−λ0

∈ HΦR(X).

Proof.
Since A ∈ L(X), then C\σ(A) is not empty. Let λ0 ∈ C\σ(A) and λ , λ0.We can write

(A − λ) = (λ0 − λ)
(
(A − λ0)−1 − 1

λ − λ0

)
(A − λ0) (3.1)

Suppose that A − λ ∈ HΦR(X). Then, by Eq. (3.1),(
(A − λ0)−1 − 1

λ−λ0

)
(A − λ0) ∈ HΦR(X).

Moreover(
(A − λ0)−1 − 1

λ−λ0

)
(A − λ0) = (A − λ0)

(
(A − λ0)−1 − 1

λ−λ0

)
and A − λ0 is invertible operator. So, by Lemma 2.10, we infer that (A − λ0)−1 − 1

λ−λ0
∈ HΦR(X).

Conversely, Suppose that (A−λ0)− 1
λ−λ0

∈ HΦR(X). Since A−λ0 is invertible operator, then A−λ0 ∈ HΦR(X).
Now, let

T′ = A − λ0 and S′ = (1 + λ − A)(A − λ0)−1.

It is easy to see that

(λ0 − λ)
(
(A − λ0)−1 − 1

λ−λ0

)
T′ + S′(A − λ0) = I.

Applying Lemma 2.10, we get (A − λ) ∈ HΦR(X).

4. Holomorphically Weyl-decomposably regular

Let X be a Banach space and A ∈ L(X). A is said to be a Weyl operator if A is Fredholm operator having
index 0 (see, [1, 3, 11]). Let W(X) be the class of all Weyl operators.
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Definition 4.1. An operator A ∈ L(X) is said to be Weyl-decomposably regular operator, in symbol A ∈ WR(X),
provided that there exist B ∈W(X) such that ABA = A.

Remark 4.2. Let A ∈ GR(X). Then, there exist B ∈ G(X) such that ABA = A. Cleary B ∈ Φ(X) and i(B) = 0. In
this way we see that

GR(X) ⊂WR(X) ⊂ ΦR(X).

Definition 4.3. Let A ∈ L(X). A is said to be holomorphically Weyl-decomposably regular if there exist a neighbor-
hood U ⊂ C of 0 and holomorphic function F : U −→ L(X) such that

F(x) ∈W(X) and (A − x)F(x)(A − x) = A − x

for all x ∈ U. Let HWR(X) be the class of all holomorphically Weyl-decomposably regular operators.

Theorem 4.4. Let X be a Banach space. Then HWR(X) = S(X) ∩WR(X).

Proof. Let A ∈ HWR(X). Then, there exist a neighborhood U ⊂ C of 0 and a holomorphic function
F : U −→ L(X) such that

F(x) ∈W(X) and (A − x)F(x)(A − x) = A − x (4.1)

for all x ∈ U. In particular, we have

F(0) ∈W(X) and AF(0)A = A.

This prove that A ∈ WR(X). By Eq.(4.1), we have A ∈ S(X). Now, it remains to prove that S(X) ∩WR(X) ⊂
HWR(X). Let A ∈ S(X) ∩WR(X), then there exist B ∈W(X) such that ABA = A. Let

F : D(0, ∥ B ∥−1) −→ L(X)

defined by F(x) = (I − xB)−1B for all x ∈ D(0, ∥ B ∥−1). It is clear that

F(x) ∈W(x) and i(F(x)) = i((I − xB)−1) + i(B) = 0.

So, we infer that F(x) ∈W(X) for all x ∈ D(0, ∥ S ∥−1). Using Lemma 2.8 we infer that

(A − x)F(x)(A − x) = A − x

for all x ∈ D(0, ∥ S ∥−1). In this way we see that A ∈ HWR(X).

Theorem 4.5. Let A ∈ L(X). Then A ∈ HWR(X) if and only if there exist R ∈ W(X), (Bn)n ⊂ G(X) and (An)n ⊂
W(X) such that ARA = A, ABn = BnA, (A−Bn)An(A−Bn) = A−Bn for all n ∈N and limn

(
∥Bn∥+∥An−R∥

)
= 0.

Proof. Let A ∈ HWR(X). Then there exist ε > 0 and a holomorphic function F : D(0, ε) −→ L(X) such that

F(x) ∈W(X) and (A − x)F(x)(A − x) = A − x

for all x ∈ D(0, ε). Let

Bn =
ε
2n I and An := F(

ε
2n )

for all n ∈N∗. Let R = F(0). In this way we see that

R ∈W(X), (Bn)n∈N∗ ⊂W(X), ABn = BnA, (A − Bn)An(A − Bn) = A − Bn
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and

lim
n

(
∥ Bn ∥ + ∥ An − R ∥

)
= 0.

Conversely, suppose there exist R ∈ W(X), (Bn)n ⊂ G(X) and (An)n ⊂ W(X) such that ARA = A, ABn =
BnA, (A − Bn)An(A − Bn) = A − Bn for all n ∈ N∗. It remain remain to prove that A ∈ S(X). Using Theorem
2.5, the result follow.

Theorem 4.6. Let X be a Banach space. Then WR(X) ⊂ R(X) ∩W(X).

Proof.
Let A ∈WR(X). Then there exist B0 ∈W(X) such that AB0A = A. Since Φ(X) = Φl(X)∩Φr(X) and B0 ∈ Φ(X),
we can be apply Theorem 2.7, we infer that there exist B1 ∈ L(X), K1 ∈ L0(X) and K2 ∈ L0(X) such that

B1B0 = I + K1 and B0B1 = I + K2. (4.2)

In this way we see that

AB0(B1 − AK2) = A

So, we can write A = PC, where C = B1 − AK2 ∈ L(X) and P = AB0 ∈ L(X) is an idempotent operator.
Again, using Eq.(4.2), we have

B1 − AK2 ∈ Φ(X) and i(B1B0) = 0 = i(B0) + i(B1) = i(B1).

Hence B1 − AK1 ∈W(X). Now, let

An :=
(
P +

I − P
n

)
C ∈ L(X), n ∈N∗.

It is clear that(
P +

I − P
n

)(
P + n(I − P)

)
=
(
P + n(I − P)

)(
P +

I − P
n

)
= I,

for all n ∈N∗. This prove that P +
I − P

n
∈ G(X) ⊂W(X) for all n ∈N∗. In this way we say that

An ∈W(X) and i(An) = i(P +
I − P

n
) + i(C) = 0.

Then, An ∈W(X) for all n ∈N∗. Since limn An = A, then A ∈W(X).

5. Holomorphically Weyl-decomposably regular spectrum

Let A ∈ L(X). Let σrr(A) = {x ∈ C : A− x < S(X)} the Saphar spectrum of A and ρrr(A) = C\σrr(A) its Saphar
resolvent set. It is know (see,[6, 10]) that x ∈ ρrr(A) if and only if there is U(x) a neighbourhood of x and there
is F : U(x) −→ L(X) such that F is analytic and (A−y)F(y)(A−y) = A−y for all y ∈ U(x).The holomorphically
decomposably regular resolvent set ρ1r(A) is given by: x ∈ ρ1r(A) if and only if there is V(x) a neighbourhood
of x and there is F : V(x) −→ L(X) such that F is analytic and (A− y)F(y)(A− y) = A− y, F(y) ∈ G(X) for all
y ∈ V(x). The holomorphically decomposably regular spectrum of A is defined by σ1r(A) = C\ρ1r(A).

The holomorphically Weyl-decomposably regular resolvent set of A is defined by

ρhw(A) =
{
x ∈ C : ∃U(x) a neighborhood of x and F : U(x) −→ L(X)
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analytic such that F(y) ∈W(X) and (A − y)F(y)(A − y) = A − y for all y ∈ U(x)
}

The holomorphically Weyl-decomposably regular spectrum of A is defined by

σhw(A) := C \ ρhw(A).

In this way we see that

σh f (A) ⊂ σhw(A) ⊂ σ1r(A) ⊂ σ(A).

Remark 5.1. Let A ∈ L(X). Then A ∈ HWR(X) if and only if 0 ∈ ρhw(A).

Proposition 5.2. Let A ∈ L(X). Then 0 ∈ σhw(A) if and only if 0 ∈ σK(A) or A <WR(X)

Proof. It remain to prove that A ∈ HWR(X) if and only if A is Kato non-singular and A ∈WR(X). Suppose
that A ∈ HWR(X). Then there exist an open disc D(0, r) ⊂ C and a holomorphic function F : D(0, r) −→ L(X)
such that F(x) ∈W(X) and (A − x)F(x)(A − x) = A − x, for all x ∈ D(0, r). In this way we see that 0 ∈ ρrr(A) ⊂
C\σK(A). Since AF(0)A = A and F(0) ∈ WR(X). So, A is Kato non-singular and A ∈ WR(X). Conversely,
suppose that A is Kato non-singular and there exist B ∈ W(X) such that ABA = A. Let 0 < r <∥ B ∥−1 and
F : D(0, r) −→ L(X) such that F(x) = (I − xB)−1B for all x ∈ D(0, r). It is clear that

(I − xB)−1B = B(I − xB)−1

for all x ∈ D(0, r) and F is analytic. By Lemma 2.8, we have

(A − x)F(x)(A − x) = A − x

for all x ∈ D(0, r). On the other hand, (I − xB)−1 ∈ G(X) for all x ∈ D(0, r). So, F(x) ∈ Φ(X) and i(F(x)) =
i(B) + i((I − xB)−1) = 0 for all x ∈ D(0, r). This proof is complete.

Corollary 5.3. Let A ∈ L(X) and n ∈N∗. Then If A ∈ HWR(X) then An ∈ HWR(X).

Proof. Let A ∈ HWR(X). Using Proposition 5.2, T is Kato non-singular and A ∈ WR(X). So, 0 ∈ ρK(A)
and there exist B ∈ W(X) such that ABA = A. Again we can apply Lemma 2.4, we have AnBnAn = An. In
particular, An is Kato non-singular. Since B ∈W(X), then

Bn ∈ Φ(X) and i(Bn) =
n∑

i=1

i(B) = ni(B) = 0.

In this way we see that An is Kato non-singular and An ∈WR(X). This proof is complete.

Corollary 5.4. Let A ∈ L(X) and B ∈ G(X) such that AB = BA. If AB ∈ HWR(X) then A ∈ HWR(X).

Proof. Suppose that AB ∈ HWR(X). By Proposition 5.2, AB is Kato non-singular and there exist C ∈ W(X)
such that ABCAB = AB. It is clear that AB(X) = A(X) and

N(A) = N(BA) = N(AB) ⊂ (AB)∞(X) ⊂ A∞(X).

In this way we see that, 0 ∈ C\σK(A). On the other hand, B ∈ G(X). Then ABCA = A, where BC ∈ Φ(X) and
i(BC) = i(B)+ i(C) = 0. So, we give A is Kato non-singular and A ∈WR(X).Again, we can apply Proposition
5.2, we have A ∈ HWR(X).
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