Functional Analysis, Approximation and Computation 11 (1) (2019), 53–60

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Porosity and the weighted *L*^{*p*}**–spaces**

F. Abtahi^a, M. Heidari^b, F. Mirsanei^c

^a Department of Mathematics, University of Isfahan, Isfahan, Iran ^b Department of Mathematics, University of Isfahan, Isfahan, Iran ^c Isfahan, Iran

Abstract. Let *G* be a locally compact group, ω be a weight function on *G* and $1 < p, q < \infty$. Recently, it has been introduced some important $\sigma - c$ -lower porous subsets $L^p(G) \times L^q(G)$, where 1/p + 1/q < 1. Using these achievements, almost all available results connected to the existence of convolution of two functions belonging to $L^p(G)$ are obtained. In the present work these results will be extended for the weighted case. In fact for $2 , some important <math>\sigma - c$ -lower porous subsets $L^p(G, \omega) \times L^p(G, \omega)$ are introduced.

1. Introduction and Preliminaries

Throughout the paper, let *G* be a locally compact group with a fixed left Haar measure λ and $\omega : G \rightarrow (0, \infty)$ be a weight function on *G*; that is, a Borel measurable function on *G*. The weight function ω is called submultiplicative if

$$\omega(xy) \le \omega(x)\omega(y),$$

for all $x, y \in G$. We say ω is of moderate growth if

$$ess\sup_{y\in G}\frac{\omega(xy)}{\omega(y)}<\infty,\tag{1.1}$$

for all $x \in G$. For $1 \le p < \infty$, the space $L^p(G, \omega)$ with respect to λ is the set of all complex valued measurable functions f on G such that $f\omega \in L^p(G)$, as defined in [10]. Let us remark that

$$||f||_{p,\omega} := \left(\int_G |f(x)|^p \omega(x)^p d\lambda(x)\right)^{1/p} \qquad (f \in L^p(G,\omega)),$$

defines a norm on $L^{p}(G, \omega)$ under which it a Banach space. We denote this space by $\ell^{p}(G, \omega)$ when *G* is discrete.

²⁰¹⁰ Mathematics Subject Classification. Primary 43A15; Secondary 43A20.

Keywords. Porosity; Weight function; Weighted L^p -space.

Received: 31 March 2016; Accepted: 3 January 2019

Communicated by Dragan S. Djordjević

Email addresses: f.abtahi@sci.ui.ac.ir (F. Abtahi), mahshidh17@yahoo.com (M. Heidari), fatemehmir66@yahoo.com (F. Mirsanei)

For measurable functions f and g on G, the convolution

$$(f*g)(x) = \int_G f(y) \ g(y^{-1}x) \ d\lambda(y)$$

is defined at each point $x \in G$ for which the function $y \mapsto f(y) g(y^{-1}x)$ is λ -integrable. If f * g(x) is defined and finite for λ -almost all $x \in G$, then we say that the convolution of functions f * g exists as a function. The convolution f * g does not necessarily exist for all measurable functions f and g. So, it would be interesting to know does f * g exist for all functions f and g in a space X of measurable functions on G. If this is the case, then it is desirable to study the closedness of X under the convolution. It is well-known that $L^1(G)$ is always closed under the convolution. Saeki [13] proved that, for $1 , the space <math>L^p(G)$ is closed under the convolution if and only if G is compact. But the convolution of elements in $L^p(G)$ even does not exist in general. Several authors have been studied the existence of convolution on certain function spaces. In fact on a locally compact non-compact group G, the space $L^p(G)$ for 2 , contains functions <math>f and gwhose convolution is infinite on a set of positive measure; see [12] and also [1].

In a recent work, this result was strengthened by Glab and Strobin [8] and they proved a quantitative version of this result. Indeed, for $1 < p, q < \infty$, they considered the product $L^p(G) \times L^q(G)$ as a Banach space with a norm defined as the maximum of norms of coordinates, that is

$$||(f,g)|| = \max\{||f||_p, ||g||_q\}.$$

As a main result, they showed that if 1/p + 1/q < 1 then for each compact subset *K* of locally compact non-compact group *G*, the set E_K of pairs $(f,g) \in L^p(G) \times L^q(G)$ for which f * g is well-defined at some point of *K* (i. e. f * g(x) is finite or equal to ∞ or $-\infty$), satisfies a porosity condition as the following: every ball about a point of E_K contains balls that are disjoint from it. Such sets are nowhere dense and thus if 2 and*G* $is <math>\sigma$ -compact then the pairs of functions whose convolution is nowhere defined is residual in $L^p(G) \times L^q(G)$. Then [1, Theorem 1.1] can immediately be obtained by using this result. See also [5], as a work in this direction.

Before stating the aim of this paper, we will briefly describe some notions of porosity from [14]. Let *X* be a metric space. For positive number *R*, the open ball with a radius *R* centered at a point $x \in X$ will be denoted by B(x; R). Let $c \in (0, 1]$. We say that $M \subseteq X$ is c-lower porous if for each $x \in M$,

$$\lim\inf_{R\to 0^+}\frac{\gamma(x,M,R)}{R}\geq \frac{c}{2},$$

where

$$\gamma(x, M, R) = \sup\{r \ge 0 : \exists x \in X, B(z, r) \subseteq B(x; R) \setminus M\}$$

Equivalently, *M* is *c*-lower porous if and only if for each $x \in M$ and $0 < \beta < c/2$, there exits $R_0 > 0$ and $z \in X$ such that for each $0 < R < R_0$,

$$B(z,\beta R)\subseteq B(x;R)\setminus M;$$

see [14]. If *M* is a countable union of *c*-lower porous sets then we say that *M* is σ – *c*-lower porous. It can be easily seen that the *c*-lower porosity implies the nowhere density and hence the σ -lower porosity implies the meagerness. Thus if *X* is a complete space, then σ - porous sets are small subsets of *X*.

It has been done a lot of works connected to the L^p -spaces so far. See for example the first authors works such as [1], [2], [3], [4], [5] and also the work due to Hao., Guo, LI Rong-lu and Wu Jun-de [9], that for Banach spaces X and Y, it is characterized matrix transformations of $\ell^q(X)$ to $\ell^p(Y)$. Furthermore, most of the researches in the topics related to the Lebesgue spaces, have been generalized to the weighted case; see Kuznetsova's works such as [11], that is relevant to the present subject.

Recently, we investigated the existence of f * g as a function for every two function $f, g \in L^p(G, \omega)$, where ω is a submultiplicative weight function on G, and obtained some necessary or sufficient conditions for that the property holds [3]. Mainly, we proved that the σ -compactness of G is a necessary condition for the

existence of f * g, when f, g run into $L^p(G, \omega)$. Our purpose of the present work is to consider the Banach space $L^p(G, \omega) \times L^p(G, \omega)$, for 2 , under the norm

$$||(f,g)|| = \max\{||f||_{p,\omega}, ||g||_{p,\omega}\}.$$

We then mix some ideas and techniques from [8] and also our paper [3] to prove the following result, as a generalization of Theorems [3, Theorem 2.2] and also [8, Theorem 1.1] whenever p = q. In our debate, we use the notation $L^p_{\omega} \times L^p_{\omega}$ rather than $L^p(G, \omega) \times L^p(G, \omega)$, in convenience. Let us recall a symmetric weight function ω as $\omega(x) = \tilde{\omega}(x) = \omega(x^{-1})$, for all $x \in G$. Every symmetric and submultiplicative weight function ω is bounded below by the constant 1, obviously. We state here the main theorem of the present work.

Theorem 1.1. Let *G* be a locally compact non σ -compact group, $2 and <math>\omega$ be a symmetric and submultiplicative weight function on *G*. Then for every compact subset $K \subseteq G$, the set

$$E_K^{\omega} = \{ (f,g) \in L_{\omega}^p \times L_{\omega}^p : \exists x \in K \ |f| * |g|(x) < \infty \}$$

is $\sigma - c$ -lower porous for some c > 0.

2. THE PROOF OF THEOREM 1.1

The proof can be done by slightly modified techniques and methods used in [8, Theorem 1.1], [5, Theorem 2.4] and also [1, Theorem 1.1], as follows. It is easy to see that we can assume *K* is a compact symmetric neighborhood of the identity element of *G* with $\lambda(K) > 0$. Since $E_K^{\omega} = \bigcup_{n=1}^{\infty} E_n^{\omega}$, where

$$E_n^{\omega} = \{ (f, g) \in L_{\omega}^p \times L_{\omega}^p : \exists x \in K, \ |f| * |g|(x) < n \},\$$

thus we only have to show that for each $n \in \mathbb{N}$, the set E_n^{ω} is *c*-lower porous for some c > 0. Suppose that $n \in \mathbb{N}$ and $(f, g) \in E_n^{\omega}$ and let

$$S = \sup_{x \in K} \Delta(x).$$
(2.1)

Submultiplicativity of ω implies that it is bounded and bounded away from zero on every compact subset of *G* [6, Proposition 1.16]. It follows that there is the number $M \ge 1$ such that for each $x \in K$, $\omega(x) \le M$. Since $G = \bigcup_{m=1}^{\infty} \omega^{-1}([1, m])$ together with the fact that *G* is not σ -compact, thus there is $m \in \mathbb{N}$ such that $\omega^{-1}([1, m])$ does not contain in any compact subsets of *G*. Take $d \in (0, 1)$ with

$$\left(\frac{d}{1-d}\right)^p + \left(\frac{d}{1-d}\right)^p S \frac{\lambda(K^2)}{\lambda(K)} = 1$$

and let

$$c = \frac{d}{mM^2}.$$

For each $0 < \delta < c$ we have $0 < \delta m M^2 < d < 1$. It follows that

$$\left(\frac{\delta m M^2}{1-\delta m M^2}\right)^p + \left(\frac{\delta m M^2}{1-\delta m M^2}\right)^p S \frac{\lambda(K^2)}{\lambda(K)} < 1.$$

Continuity of the function θ defined by

$$\theta(x) = \left(\frac{\delta m M^2}{x}\right)^p \left(1 + S \frac{\lambda(K^2)}{\lambda(K)}\right)$$

on (0, 1), together with the fact that $\theta(1 - \delta m M^2) < 1$ yield that there is $0 < t < 1 - \delta m M^2$ such that $\theta(t) < 1$. Choosing $t < \eta < 1 - \delta$ and $D \in (0, 1)$ such that $t = \eta(1 - D)$ we obtain

$$P = 1 - \theta(\eta(1-D)) = 1 - \left(\frac{\delta m M^2}{\eta(1-D)}\right)^p - \left(\frac{\delta m M^2}{\eta(1-D)}\right)^p S \frac{\lambda(K^2)}{\lambda(K)} > 0.$$
(2.2)

We repeat the argument given in [1] to obtain the sequence (a_k) of $\omega^{-1}([1, m])$ such that for all $l, k \in \mathbb{N}$ with $l \neq k$

$$a_l K^2 \cap a_k K^2 = \emptyset \quad , \quad K a_l^{-1} \cap K a_k^{-1} = \emptyset \quad and \quad \Delta(a_k) \le 1.$$

$$(2.3)$$

Indeed, take $a_1 \in \omega^{-1}([1, m])$ with $\Delta(a_1) \leq 1$, by the symmetricity of ω . Assume that we have already defined a_1, \dots, a_k . Since ω is symmetric and $\omega^{-1}([1, m])$ is not contained in any compact subsets of *G*, so we can take

$$a_{k+1} \in \omega^{-1}([1,m]) \setminus \bigcup_{l=1}^{k} (a_l K^4 \cup K^4 a_l^{-1})$$

such that $\Delta(a_{k+1}) \leq 1$. Not that for each $x \in \bigcup_{k=1}^{\infty} a_k K^2 \cup K a_k^{-1}$ we have

$$1 \le \omega(x) \le mM^2. \tag{2.4}$$

Given R > 0 and set $Q = \frac{R}{mM^2}$, since $f, g \in L^p(G, \omega)$, there is $n_0 \in \mathbb{N}$ such that

$$\left(\int_{\bigcup_{k=n_0}^{\infty} Ka_k^{-1}} |f(x)|^p \omega(x)^p\right)^{1/p} \le (1-\delta-\eta)R$$
(2.5)

and

$$\left(\int_{\bigcup_{k=n_0}^{\infty} a_k K^2} |g(x)|^p \omega(x)^p\right)^{1/p} \le (1-\delta-\eta)R.$$
(2.6)

Choose $n_1 > n_0$ such that

$$(\lambda(K)(n_1 - n_0 + 1))^{1 - 2/p} > n \left(D^2 \eta^2 Q^2 S^{1/p - 1} \left(\frac{\lambda(K)}{\lambda(K^2)} \right)^{1/p} P \right)^{-1}$$
(2.7)

and let $A = \bigcup_{k=n_0}^{n_1} Ka_k^{-1}$ and $B = \bigcup_{k=n_0}^{n_1} a_k K^2$. Then

$$\lambda(A^{-1}) = (n_1 - n_0 + 1)\lambda(K) \quad and \quad \lambda(B) = (n_1 - n_0 + 1)\lambda(K^2)$$
(2.8)

and so

$$\frac{\lambda(B)}{\lambda(A^{-1})} = \frac{\lambda(K^2)}{\lambda(K)}.$$
(2.9)

So by (2.7) and (2.8) we obtain

$$\lambda(A^{-1})^{1-2/p} > n \left(D^2 \eta^2 Q^2 S^{1/p-1} \left(\frac{\lambda(K)}{\lambda(K^2)} \right)^{1/p} P \right)^{-1}.$$
(2.10)

Take the positive numbers M_1 and M_2 such that

$$M_1\lambda(A^{-1})^{1/p} = \eta Q$$
 and $M_2\lambda(B)^{1/p} = \eta Q.$ (2.11)

Next we define the functions \tilde{f} and \tilde{g} the same functions in [8, Theorem 1.1]; i.e. for each $x \in A$, set $\tilde{f}(x) = M_1 \Delta (x^{-1})^{1/p}$ and $\tilde{f}(x) = f(x)$ otherwise. Also for each $x \in B$, set $\tilde{g}(x) = M_2$ and $\tilde{g}(x) = g(x)$ otherwise. We use (2.4), (2.5) and (2.11) to obtain

$$||f - f||_{p,\omega} \le \eta R + (1 - \delta - \eta)R = (1 - \delta)R.$$

Similarly by (2.4), (2.6) and (2.11) we have

$$\|g - \widetilde{g}\|_{p,\omega} \le (1 - \delta)R.$$

It follows that

$$B((f, \tilde{g}), \delta R) \subseteq B((f, g), R).$$

We should prove that $B((\tilde{f}, \tilde{g}), \delta R) \cap E_n^{\omega} = \emptyset$. To that end, take $(h, s) \in B((\tilde{f}, \tilde{g}), \delta R)$ and let

$$A_1 = \{x \in A : |h(x)| \ge DM_1 \Delta (x^{-1})^{1/p}\}$$
 and $A_2 = A \setminus A_1$.

Also

$$B_1 = \{x \in B : |s(x)| \ge DM_2\} \quad and \quad B_2 = B \setminus B_1.$$

Then by (2.4) we have

$$\begin{split} \delta R &\geq \|h - \widetilde{f}\|_{p,\omega} \geq \left(\int_{A_2} |h(x) - M_1 \Delta(x^{-1})^{1/p}|^p \omega(x)^p d\lambda(x) \right)^{1/p} \\ &\geq \left(\int_{A_2} |M_1 \Delta(x^{-1})^{1/p} (1 - D)|^p \omega(x)^p d\lambda(x) \right)^{1/p} \\ &\geq M_1 (1 - D) \lambda (A_2^{-1})^{1/p} \end{split}$$

and (2.11) implies that

$$\lambda(A_2^{-1}) \le \lambda(A^{-1}) \left(\frac{\delta m M^2}{\eta(1-D)}\right)^p.$$
(2.12)

Similarly

$$\lambda(B_2) \le \lambda(A^{-1}) \frac{\lambda(K^2)}{\lambda(K)} \left(\frac{\delta m M^2}{\eta(1-D)} \right)^p.$$
(2.13)

Now let $y_0 \in K$ and put $F = (A_1^{-1}y_0) \cap B_1$ and $H = y_0F^{-1}$. Clearly $A^{-1}y_0 \subseteq B$, and thus $A_1^{-1}y_0 \subseteq B$. The implications (2.12) and (2.13) yield that

$$\begin{split} \lambda(H^{-1}) &= \lambda(Fy_0^{-1}) = \lambda(A_1^{-1}) - \lambda(A_1^{-1} \setminus (B_1y_0^{-1})) \\ &\geq \lambda(A_1^{-1}) - \lambda((B \setminus B_1)y_0^{-1}) = \lambda(A_1^{-1}) - \lambda(B_2y_0^{-1}) \\ &= \lambda(A^{-1}) - \lambda(A_2^{-1}) - \Delta(y_0^{-1})\lambda(B_2) \\ &\geq \lambda(A^{-1})P, \end{split}$$

where the last inequality is obtained by (2.2), (2.12) and (2.13). Also $H \subseteq A_1$, $F \subseteq B_1$ and $H^{-1}y_0 = F$. Furthermore, if $y \in A$ then $y = xa_n^{-1}$ for some $x \in K$ and $n \in \mathbb{N}$ with $n_0 \leq n \leq n_1$. Thus by (2.1) and (2.3),

$$\Delta(y^{-1}) = \Delta(a_n)\Delta(x^{-1}) \le S.$$

Finally we obtain by (2.8), (2.9), (2.10) and (2.11)

$$\begin{split} \int_{H} |h(y)||s(y^{-1}y_{0})|d\lambda(y) &\geq D^{2}M_{1}M_{2} \int_{H} \Delta(y^{-1})^{1/p} d\lambda(y) \\ &= D^{2}M_{1}M_{2} \int_{H} \Delta(y^{-1})^{1/p-1} \Delta(y^{-1}) d\lambda(y) \\ &\geq D^{2}M_{1}M_{2} \int_{H} S^{1/p-1} \Delta(y^{-1}) d\lambda(y) \\ &= D^{2}M_{1}M_{2}S^{1/p-1} \int_{H} \Delta(y^{-1}) d\lambda(y) \\ &= D^{2}M_{1}M_{2}S^{1/p-1} \lambda(H^{-1}) \\ &\geq D^{2}M_{1}M_{2}S^{1/p-1} \lambda(A^{-1})P \\ &= D^{2}\eta^{2}Q^{2} \left(\frac{\lambda(K)}{\lambda(K^{2})}\right)^{1/p} S^{1/p-1} \lambda(A^{-1})^{1-2/p}P \\ &> n. \end{split}$$

It follows that $|h| * |s|(y_0) > n$, for each $y_0 \in K$ and so $(h, s) \notin E_n^{\omega}$, as claimed.

Remarks 2.1. Let *G* be a locally compact group, ω be a submultiplicative weight function on *G* and 2 .

- (i) As we pointed out in the explanations before the theorem, if ω is symmetric and submultiplicative then $\omega(x) \ge 1$, for each $x \in G$. Thus $L^p(G, \omega) \subseteq L^p(G)$. It follows that Theorem 1.1 in the present paper is equivalent to [8, Corollary 2] and with some modifications in the proofs, each of them can be obtained independently from the other one.
- (ii) The assumption of non σ -compactness of G can not be replaced by the non compactness of G, whenever ω is not necessarily a constant function. Indeed, if f * g exists as a function for all $f, g \in L^p(G, \omega)$, then G is σ -compact and not necessarily compact. Namely take $G = \mathbb{Z}$, the additive group of integer numbers and define the weight function ω on \mathbb{Z} as the following

$$\omega(n) = (1 + |n|) \qquad (n \in \mathbb{Z}).$$

Since $1/\omega \in \ell^q(\mathbb{Z})$, it follows that f * g exists as a function for all $f, g \in \ell^p(\mathbb{Z}, \omega)$ [3, Proposition 2.7]. Whereas *G* is a σ -compact non-compact group.

Since $L^{p}(G, \omega) \times L^{p}(G, \omega)$ is a Banach space, the main results given in [3] are immediately obtained, with observing the proof of Theorem 1.1.

Corollary 2.2. [3, Theorem 2.2] Let G be a locally compact group, ω be a symmetric and submultiplicative weight function on G and 2 . If <math>f * g exists for all $f, g \in L^p(G, \omega)$, then $\omega^{-1}(F)$ is contained in a compact subset of G, for all compact subsets F of $[1, \infty)$,

Corollary 2.3. [3, Corollary 2.3] Let G be a locally compact group, ω be a symmetric and submultiplicative weight function on G and 2 . If <math>f * g exists for all $f, g \in L^p(G, \omega)$, then $\omega^{-1}([1, m])$ is contained in a compact subset of G, for all $m \in \mathbb{N}$.

Recall from [3] that for a submultiplicative weight function ω , the weight function $\omega^* = \omega \widetilde{\omega}$ is a symmetric and submultiplicative weight function on *G*. Now by using [3, Lemma 2.1] together with Corollary 2.3, the following result is provided.

Corollary 2.4. [3, Theorem 2.5] Let G be a locally compact group, ω be a submultiplicative weight function on G and 2 . If <math>f * g exists for all $f, g \in L^p(G, \omega)$, then G is σ -compact.

Note 2.5. Note that in the proof of [3, Theorem 2.5], it was used [3, Corollary 2.3] that the continuity of ω is assumed. But the theorem has been based for an arbitrary submultiplicative weight function. The reason is that every submultiplicative weight function ω is equivalent to a continuous weight function α [7, Theorem 2.7]; i.e. there are the positive constants C_1 and C_2 such that

$$C_1 \le \frac{\omega(x)}{\alpha(x)} \le C_2,$$

locally almost every where on *G*. It follows that $L^{p}(G, \omega) = L^{p}(G, \alpha)$ and so the result is concluded by replacing α instead of ω ; i.e.

$$G = \bigcup_{m=1}^{\infty} (\alpha^*)^{-1}([1,m]).$$

Although, one can get the result without considering this point. Indeed, by [3, Theorem 2.2] for every $m \in \mathbb{N}$, $(\omega^*)^{-1}([1, m])$ is contained in a compact subset of *G* and since $G = \bigcup_{m=1}^{\infty} (\omega^*)^{-1}([1, m])$ it follows that *G* is σ -compact.

Remarks 2.6. Let *G* be a locally compact group, ω be a weight function on *G* and 0 . Then

1. For 0 , with the arguments given in [15], we showed that <math>f * g exists as a function for all $f, g \in L^p(G)$ if and only if *G* is discrete [2]. Also recently we considered the complete metric space $L^p(G, \omega)$ and showed that if ω is of moderate growth then $L^p(G, \omega)$ is closed under convolution if and only if *G* is discrete and ω is quasi submultiplicative, that is with some constant C > 0,

$$\omega(xy) \le C\omega(x)\omega(y),$$

for all $x, y \in G$. Moreover, in the class of submultiplicative weight functions, we proved that f * g exists as a function for all $f, g \in L^p(G, \omega)$ if and only if *G* is discrete [3].

- 2. As a known result, f * g exits as a function where $f, g \in L^1(G)$. In the weighted case, $L^1(G, \omega)$ is closed under convolution just when ω is equivalent to a submultiplicative weight function [11, Theorem 3.1]. It follows that for such a weight function, f * g exists as a function for all $f, g \in L^1(G, \omega)$. Note that submultiplicativity of ω is not a necessary condition for the existence of convolution of every two functions belonging to $L^1(G, \omega)$. For example for every bounded below weight function ω , f * g exists as a function for all $f, g \in L^1(G, \omega)$.
- 3. For 2 , <math>f * g exists as a function for all $f, g \in L^p(G)$ if and only if G is compact. This subject first was considered by Richert [12]. In fact it was shown that if G is not compact, then for every compact, symmetric neighborhood K of the identity element of G, there exist functions $f, g \in L^p(G)$ such that $f * g(x) = \infty$, for each $x \in K$; see also [1].
- 4. If ω is submultiplicative, then the existence of f * g as a function for all $f, g \in L^p(G, \omega)$, where 2 , implies that*G* $is <math>\sigma$ -compact [3, Theorem 2.5]. Note that σ -compactness of *G* is not in general a necessary condition whenever ω is not submultiplicative or 1 ; see [3, Remark 2.6] and also [3, Proposition 2.7].

We end this work with the following example which describes Remark 2.6 for discrete groups.

Examples 2.7. Let *G* be a discrete group, ω be a submultiplicative weight function on *G* and 0 . Then

- (1) For 0 , <math>f * g exists as a function for all $f, g \in \ell^p(G, \omega)$, by [4, Theorem 2.5], [11, Theorem 3.1] and [3, Remark 2.6,(a)].
- (2) If 2 p</sup>(G, ω) if and only if ℓ^p(G, ω) ℓ^p(G, ω) ⊆ ℓ¹(G), where ω(x⁻¹), for all x ∈ G. (Note that there is a misprint in the reference [3, Proposition 2.9] and ℓ²(G) has been printed in stead of ℓ¹(G)).

References

- [1] Abtahi, F., Nasr Isfahani, R. and Rejali, A., On the L^p-conjecture for locally compact groups, Arch. Math. (Basel)., 89, (2007), 237-242.
- [2] Abtahi, F., Nasr Isfahani, R. and Rejali, A., *Convolution on L^p*-spaces of a locally compact group, Math. slovaca., **63**, (2013), no 2, 291-298.
- [3] Abtahi, F., Nasr Isfahani, R. and Rejali, A., *Convolution on weighted L^p-spaces of locally compact groups*, Proceedings of The Romanian Academy, Series A., **13/2**, (2012), 97-102.
- [4] Abtahi, F., Weighted L²-spaces on locally compact groups, Bull. Belg. Math. Soc. Simon Stevin., 19/2, (2012), 339-343.
- [5] Akbarbaglu, I. and Maghsoudi, S., An answer to a question on the convolution of functions, Arch. Math. 98, (2012), 545-553.
- [6] Edwards, R. E., The stability of weighted Lebesgue spaces, Trans. Amer. Math. Soc., 93, (1959), 369-394.
- [7] Feichtinger, H. G., Gewichtsfunktionen auf, lokalkompakten Gruppen, Sitzber. Österr. Akad. Wiss. Abt. II, 188/8-10, (1979), 451-471.
- [8] Glab, S. and Strobin, F., Porosity and the L^p-conjecture, Arch. Math., 95, (2010), 583592.
- [9] Hao., Guo, LI Rong-lu and Wu Jun-de., Matrix transformations of $\ell^q(X)$ to $\ell^p(Y)$, Appl. Math. J. Chinese Univ., 27/1, (2012), 78-86.
- [10] Hewitt, E. and Ross, K. A., Abstract Harmonic analysis, 2nd edn. I, Springer-Verlag, New York, (1970).
- [11] Kuznetsova, Yu. N., Invariant weighted algebras $L^p(G, \omega)$, Mat. Zametki., 84/4, (2008), 567-576.
- [12] Rickert, N. W., Convolution of L^p -functions, Proc. Amer. Math. Soc., 18, (1967), 762763.
- [13] Saeki, S., The L^p-conjecture and Young's inequality, Illinois J. Math., 34, (1990), 615-627.
- [14] Zajiček, L., On σ --porous sets in abstract spaces, Abstr. Appl. Anal., 5, (2005), 509-534.
- [15] Zelasko, W., On the algebras L^p of locally compact groups, Colloq. Math., 8/1 (1961), 112-120.