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Abstract. The purpose of this paper is to study modified two-step iteration process to converge to a
common fixed point for two nearly asymptotically nonexpansive mappings in the framework of uniformly
Banach spaces. Also we establish some weak convergence theorems for said mappings and iteration
scheme under the following assumptions on the space (i) E satisfies the Opial condition (ii) E has the
Fréchet differentiable norm and (iii) the dual E∗ of E has the Kadec-Klee property.

1. Introduction

Let C be a nonempty subset of a Banach space E and T : C→ C a nonlinear mapping. We denote the set
of all fixed points of T by F(T). The set of common fixed points of two mappings S and T will be denoted
by F = F(S)∩ F(T). The mapping T is said to be Lipschitzian [1, 17] if for each n ∈N, there exists a constant
kn > 0 such that

∥Tnx − Tny∥ ≤ kn∥x − y∥
for all x, y ∈ C.

A Lipschitzian mapping T is said to be uniformly k-Lipschitzian if kn = k for all n ∈N and asymptotically
nonexpansive [5] if kn ≥ 1 for all n ∈N with limn→∞ kn = 1.

It is easy to observe that every nonexpansive mapping T (i.e., ∥Tx − Ty∥ ≤ ∥x − y∥ for all x, y ∈ C) is
asymptotically nonexpansive with constant sequence {1} and every asymptotically nonexpansive mapping
is uniformly k-Lipschitzian with k = supn∈N kn.

In 2005, Sahu [17] introduced the class of nearly Lipschitzian mappings as an important generalization
of the class of Lipschitzian mappings.
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Let C be a nonempty subset of a Banach space E and fix a sequence {an} ⊂ [0,∞) with limn→∞ an = 0. A
mapping T is said to be nearly Lipschitzian with respect to {an} if for each n ∈N, there exist constants kn ≥ 0
such that

∥Tnx − Tny∥ ≤ kn(∥x − y∥ + an) (1)

for all x, y ∈ C.

The infimum of constants kn for which the above inequality holds is denoted by η(Tn) and is called
nearly Lipschitz constant.

A nearly Lipschitzian mapping T with sequence {an, η(Tn)} is said to be
(i) nearly asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈N and limn→∞ η(Tn) = 1;
(ii) nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈N;
(iii) nearly uniformly k-contraction if η(Tn) ≤ k < 1 for all n ∈N.

Example 1.1. (See [17]) Let E = R, C = [0, 1] and T : C→ C be a mapping defined by

T(x) =
{

1
2 , if x ∈ [0, 1

2 ],
0, if x ∈ ( 1

2 , 1].

Clearly, T is discontinuous and a non-Lipschitzian mapping. However, it is a nearly nonexpansive mapping and
hence nearly asymptotically nonexpansive mapping with sequence {an, η(Tn)} = { 1

2n , 1}. Indeed, for a sequence {an}
with a1 =

1
2 and an → 0, we have

∥Tx − Ty∥ ≤ ∥x − y∥ + a1 for all x, y ∈ C

and

∥Tnx − Tny∥ ≤ ∥x − y∥ + an for all x, y ∈ C and n ≥ 2,

since

Tnx =
1
2

for all x ∈ [0, 1] and n ≥ 2.

In 2007, Agarwal et al. [1] have studied modified S-iteration process defined as follows:

x1 = x ∈ C,
xn+1 = (1 − αn)Tnxn + αnTnyn,

yn = (1 − βn)xn + βnTnxn, n ≥ 1 (2)

where {αn} and {βn} are sequences in (0, 1) and they established some weak convergence theorems under
additional conditions for nearly asymptotically nonexpansive mappings in the framework of uniformly
convex Banach spaces.

The asymptotic fixed point theory has a fundamental role in nonlinear functional analysis (see, [2]). The
theory has been studied by many authors (see, e.g., [7], [8], [11], [13], [24]) for various classes of nonlinear
mappings (e.g., Lipschitzian, uniformly k-Lipschitzian and non-Lipschitzian mappings). A branch of this
theory related to asymptotically nonexpansive mappings has been developed by many authors (see, e.g., [3],
[5], [6], [9], [10], [12], [13], [15], [16], [18], [19], [21], [22]) in Banach spaces with suitable geometrical structure.
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The purpose of this paper to modify iteration scheme (2) for two mappings and establish some weak
convergence theorems of newly proposed iteration scheme for two nearly asymptotically nonexpansive
mappings in the framework of uniformly convex Banach spaces. The iteration scheme is as follows:

x1 = x ∈ C,
xn+1 = (1 − αn)Tnxn + αnSnyn,

yn = (1 − βn)Snxn + βnTnxn, n ≥ 1 (3)

where {αn} and {βn} are sequences in (0, 1).

If we put βn = 0 for all n ∈N and S = I where I is the identity mapping, then iteration scheme (3) reduces
to the modified Mann iteration scheme as follows:

x1 = x ∈ C,
xn+1 = (1 − αn)Tnxn + αnxn, n ≥ 1 (4)

where {αn} is a sequence in (0, 1).

2. Preliminaries

For the sake of convenience, we restate the following concepts and results.

Let E be a Banach space with its dimension greater than or equal to 2. The modulus of convexity of E is
the function δE(ε) : (0, 2]→ [0, 1] defined by

δE(ε) = inf
{
1 − ∥1

2
(x + y)∥ : ∥x∥ = 1, ∥y∥ = 1, ε = ∥x − y∥

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].

We recall the following:

Let S = {x ∈ E : ∥x∥ = 1} and let E∗ be the dual of E, that is, the space of all continuous linear functionals
f on E. The space E has:

(i) Gâteaux differentiable norm if

lim
t→0

∥x + ty∥ − ∥x∥
t

exists for each x and y in S.

(ii) Fréchet differentiable norm [23] if for each x in S, the above limit exists and is attained uniformly for
y in S and in this case, it is also well-known that

⟨h, J(x)⟩ + 1
2
∥x∥2 ≤ 1

2
∥x + h∥2

≤ ⟨h, J(x)⟩ + 1
2
∥x∥2 + b(∥x∥) (∗)

for all x, h ∈ E, where J is the Fréchet derivative of the functional 1
2∥.∥2 at x ∈ E, ⟨. .⟩ is the pairing between E

and E∗, and b is an increasing function defined on [0,∞) such that limt→0
b(t)

t = 0.
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(iii) Opial condition [14] if for any sequence {xn} in E, xn converges to x weakly it follows that
lim supn→∞ ∥xn − x∥ < lim supn→∞ ∥xn − y∥ for all y ∈ E with y , x. Examples of Banach spaces satis-
fying Opial condition are Hilbert spaces and all spaces lp(1 < p < ∞). On the other hand, Lp[0, 2π] with
1 < p , 2 fail to satisfy Opial condition.

A mapping T : K → K is said to be demiclosed at zero, if for any sequence {xn} in K, the condition xn
converges weakly to x ∈ K and Txn converges strongly to 0 imply Tx = 0.

A Banach space E has the Kadec-Klee property [20] if for every sequence {xn} in E, xn → x weakly and
∥xn∥ → ∥x∥ it follows that ∥xn − x∥ → 0.

Next we state the following useful lemmas to prove our main results.

Lemma 2.1. ([22]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of nonnegative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀ n ≥ 1.

If
∑∞

n=1 βn < ∞ and
∑∞

n=1 rn < ∞, then limn→∞ αn exists.

Lemma 2.2. ([18]) Let E be a uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for all n ∈N. Suppose further
that {xn} and {yn} are sequences of E such that lim supn→∞ ∥xn∥ ≤ a, lim supn→∞ ∥yn∥ ≤ a and limn→∞ ∥tnxn + (1−
tn)yn∥ = a hold for some a ≥ 0. Then limn→∞ ∥xn − yn∥ = 0.

Lemma 2.3. ([20]) Let E be a real reflexive Banach space with its dual E∗ has the Kadec-Klee property. Let {xn} be
a bounded sequence in E and p, q ∈ ww(xn) (where ww(xn) denotes the set of all weak subsequential limits of {xn}).
Suppose limn→∞ ∥txn + (1 − t)p − q∥ exists for all t ∈ [0, 1]. Then p = q.

Lemma 2.4. ([20]) Let K be a nonempty convex subset of a uniformly convex Banach space E. Then there exists a
strictly increasing continuous convex function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such that for each Lipschitzian
mapping T : K→ K with the Lipschitz constant L,

∥tTx + (1 − t)Ty − T(tx + (1 − t)y)∥ ≤ Lϕ−1
(
∥x − y∥ − 1

L
∥Tx − Ty∥

)
for all x, y ∈ K and all t ∈ [0, 1].

3. Main Results

In this section, we prove some weak convergence theorems of modified two-step iteration scheme for
two nearly asymptotically nonexpansive mappings in the framework of uniformly convex Banach spaces.
First, we shall need the following lemmas.

Lemma 3.1. Let E be a uniformly convex Banach space and C be a nonempty closed convex subset of E. Let
S, T : C → C be two nearly asymptotically nonexpansive mappings with sequences {a′n, η(Sn)} and {a′′n , η(Tn)} such
that
∑∞

n=1 an < ∞ and
∑∞

n=1

(
(η(Sn)η(Tn))2 − 1

)
< ∞. Let {xn} be the modified two-step iteration scheme defined by

(3), where {αn} and {βn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ ∈ (0, 1). If F = F(S) ∩ F(T) , ∅ and
q ∈ F, then limn→∞ ∥xn − q∥ exists.

Proof. Let q ∈ F. For the sake of convenience, set

Bnx = (1 − βn)Snx + βnTnx

and

Hnx = (1 − αn)Tnx + αnSnBnx.
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Then yn = Bnxn and xn+1 = Hnxn. Moreover, it is clear that q is a fixed point of Hn for all n. Let
η = supn∈N η(S

n) ∨ supn∈N η(T
n) and an = max{a′n, a′′n } for all n.

Consider

∥Bnx − Bny∥ = ∥((1 − βn)Snx + βnTnx) − ((1 − βn)Sny + βnTny)∥
= ∥(1 − βn)(Snx − Sny) + βn(Tnx − Tny)∥
≤ (1 − βn)η(Sn)(∥x − y∥ + a′n) + βnη(Tn)(∥x − y∥ + a′′n )
≤ (1 − βn)η(Sn)(∥x − y∥ + an) + βnη(Tn)(∥x − y∥ + an)
≤ (1 − βn)η(Sn)η(Tn)∥x − y∥ + βnη(Sn)η(Tn)∥x − y∥
+(1 − βn)anη(Sn)η(Tn) + βnanη(Sn)η(Tn)

= η(Sn)η(Tn)∥x − y∥ + anη(Sn)η(Tn). (5)

Choosing x = xn and y = q, we get

∥yn − q∥ ≤ η(Sn)η(Tn)∥xn − q∥ + anη(Sn)η(Tn). (6)

Now, consider

∥Hnx −Hny∥ = ∥((1 − αn)Tnx + αnSnBnx) − ((1 − αn)Tny + αnSnBny)∥
= ∥(1 − αn)(Tnx − Tny) + αn(SnBnx − SnBny)∥
≤ (1 − αn)η(Tn)(∥x − y∥ + a′′n ) + αnη(Sn)(∥Bnx − Bny∥ + a′n)
≤ (1 − αn)η(Tn)(∥x − y∥ + an) + αnη(Sn)(∥Bnx − Bny∥ + an)
≤ (1 − αn)η(Tn)∥x − y∥ + αnη(Sn)∥Bnx − Bny∥
+(1 − αn)anη(Tn) + αnanη(Sn). (7)

Now using (5) in (7), we get

∥Hnx −Hny∥ ≤ (1 − αn)η(Tn)∥x − y∥ + αnη(Sn)[η(Sn)η(Tn)∥x − y∥
+anη(Sn)η(Tn)] + (1 − αn)anη(Tn) + αnanη(Sn)

≤ (1 − αn)(η(Tn)η(Sn))2∥x − y∥ + αn(η(Tn)η(Sn))2∥x − y∥
+(1 − αn + αn)anη(Tn)η(Sn) + αnan(η(Tn)η(Sn))2

≤ (η(Tn)η(Sn))2∥x − y∥ + anη(Tn)η(Sn)
+an(η(Tn)η(Sn))2

≤ (η(Tn)η(Sn))2∥x − y∥ + anη
2 + anη

4

=
[
1 +
(
(η(Tn)η(Sn))2 − 1

)]
∥x − y∥ + anη

2(1 + η2)

= (1 + δn)∥x − y∥ + θn, (8)

where δn =
(
(η(Tn)η(Sn))2 − 1

)
and θn = anη2(1 + η2). Since by hypothesis

∑∞
n=1

(
(η(Sn)η(Tn))2 − 1

)
< ∞ and∑∞

n=1 an < ∞. It follows that
∑∞

n=1 δn < ∞ and
∑∞

n=1 θn < ∞.

Choosing x = xn and y = q in (8), we get

∥xn+1 − q∥ = ∥Hnxn − q∥ ≤ (1 + δn)∥xn − q∥ + θn. (9)

Applying Lemma 2.1 in (9), we have limn→∞ ∥xn − q∥ exists.

Lemma 3.2. Let E be a uniformly convex Banach space and C be a nonempty closed convex subset of E. Let
S, T : C → C be two nearly asymptotically nonexpansive mappings with sequences {a′n, η(Sn)}, {a′′n , η(Tn)} and
F = F(S) ∩ F(T) , ∅ such that

∑∞
n=1 an < ∞ and

∑∞
n=1

(
(η(Sn)η(Tn))2 − 1

)
< ∞. Let {xn} be the modified two-step
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iteration scheme defined by (3), where {αn} and {βn} are sequences in [δ, 1 − δ] for all n ∈ N and for some δ ∈ (0, 1).
If ∥x − Sx∥ ≤ ∥Tx − Sx∥ for all x ∈ C, then limn→∞ ∥xn − Sxn∥ = 0 and limn→∞ ∥xn − Txn∥ = 0.

Proof. By Lemma 3.1, limn→∞ ∥xn−q∥ exists for all q ∈ F. Let an = max{a′n, a′′n } for all n and set limn→∞ ∥xn−q∥ =
c. Then c > 0 otherwise there is nothing to prove.

Now (6) implies that

lim sup
n→∞

∥yn − q∥ ≤ c. (10)

Also

∥Tnxn − q∥ ≤ η(Tn)
(
∥xn − q∥ + a′′n

)
≤ η(Tn)

(
∥xn − q∥ + an

)
,

for all n = 1, 2, . . . , and

∥Snxn − q∥ ≤ η(Sn)
(
∥xn − q∥ + a′n

)
≤ η(Sn)

(
∥xn − q∥ + an

)
,

for all n = 1, 2, . . . , so

lim sup
n→∞

∥Tnxn − q∥ ≤ c. (11)

and

lim sup
n→∞

∥Snxn − q∥ ≤ c. (12)

Next,

∥Snyn − q∥ ≤ η(Sn)
(
∥yn − q∥ + a′n

)
≤ η(Sn)

(
∥yn − q∥ + an

)
gives by virtue of (10) that

lim sup
n→∞

∥Snyn − q∥ ≤ c. (13)

Since

c = ∥xn+1 − q∥ = ∥(1 − αn)(Tnxn − q) + αn(Snyn − q)∥.

It follows from Lemma 2.2 that

lim
n→∞
∥Tnxn − Snyn∥ = 0. (14)

From (3) and (14), we have

∥xn+1 − Tnxn∥ = αn∥Snyn − Tnxn∥
≤ ∥Snyn − Tnxn∥ → 0 as n→∞. (15)

Hence

∥xn+1 − Snyn∥ ≤ ∥xn+1 − Tnxn∥ + ∥Tnxn − Snyn∥
→ 0 as n→∞. (16)
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Now

∥xn+1 − q∥ ≤ ∥xn+1 − Snyn∥ + ∥Snyn − q|
≤ ∥xn+1 − Snyn∥ + η(Sn)

(
∥yn − q| + a′n

)
≤ ∥xn+1 − Snyn∥ + η(Sn)

(
∥yn − q| + an

)
(17)

which gives from (17) that

c ≤ lim inf
n→∞

∥yn − q∥. (18)

From (10) and (18), we obtain

c = ∥yn − q∥ = ∥(1 − βn)(Tnxn − q) + βn(Snxn − q)∥.

It follows from Lemma 2.2 that

lim
n→∞
∥Tnxn − Snxn∥ = 0. (19)

Now

∥Tnxn − xn∥ ≤ ∥Tnxn − Snxn∥ + ∥Snxn − xn∥
≤ ∥Tnxn − Snxn∥ + ∥Snxn − Tnxn∥
= 2∥Tnxn − Snxn∥ → 0 as n→∞, (20)

and

∥Snxn − xn∥ ≤ ∥Snxn − Tnxn∥ + ∥Tnxn − xn∥

by (19) and (20), we obtain

lim
n→∞
∥Snxn − xn∥ = 0. (21)

By (15) and (20), we have

∥xn+1 − xn∥ ≤ ∥xn+1 − Tnxn∥ + ∥Tnxn − xn∥
→ 0 as n→∞. (22)

Finally, we make use of the fact that every nearly asymptotically nonexpansive mapping is nearly k-
Lipschitzian, we have

∥xn − Txn∥ ≤ ∥xn − xn+1∥ + ∥xn+1 − Tn+1xn+1∥
+∥Tn+1xn+1 − Tn+1xn∥ + ∥Tn+1xn − Txn∥

≤ ∥xn − xn+1∥ + ∥xn+1 − Tn+1xn+1∥
+η(Tn+1)

(
∥xn+1 − xn∥ + a′′n+1

)
+k ∥Tnxn − xn∥

≤ ∥xn − xn+1∥ + ∥xn+1 − Tn+1xn+1∥
+η(Tn+1)

(
∥xn+1 − xn∥ + an+1

)
+k ∥Tnxn − xn∥. (23)

Using (20) and (22) in (23), we obtain

lim
n→∞
∥xn − Txn∥ = 0. (24)
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Similarly

∥xn − Sxn∥ ≤ ∥xn − xn+1∥ + ∥xn+1 − Sn+1xn+1∥
+∥Sn+1xn+1 − Sn+1xn∥ + ∥Sn+1xn − Sxn∥

≤ ∥xn − xn+1∥ + ∥xn+1 − Sn+1xn+1∥
+η(Sn+1)

(
∥xn+1 − xn∥ + a′n+1

)
+k ∥Snxn − xn∥

≤ ∥xn − xn+1∥ + ∥xn+1 − Sn+1xn+1∥
+η(Sn+1)

(
∥xn+1 − xn∥ + an+1

)
+k ∥Snxn − xn∥. (25)

Using (21) and (22) in (25), we obtain

lim
n→∞
∥xn − Sxn∥ = 0. (26)

This completes the proof.

Lemma 3.3. Assume that the conditions of Lemma 3.2 are satisfied. Then, for any p1, p2 ∈ F, limn→∞⟨xn, J(p1−p2)⟩
exists; in particular, ⟨p − q, J(p1 − p2)⟩ = 0 for all p, q ∈ ww(xn).

Proof. Suppose that x = p1 − p2 with p1 , p2 and h = t(xn − p1) in inequality (∗). Then, we get

t ⟨xn − p1, J(p1 − p2)⟩ + 1
2
∥p1 − p2∥2

≤ 1
2
∥txn + (1 − t)p1 − p2∥2

≤ t ⟨xn − p1, J(p1 − p2)⟩ + 1
2
∥p1 − p2∥2

+b(t∥xn − p1∥).

Since supn≥1 ∥xn − p1∥ ≤ K1 for some K1 > 0, we have

t lim sup
n→∞

⟨xn − p1, J(p1 − p2)⟩ + 1
2
∥p1 − p2∥2

≤ 1
2

lim
n→∞

∥txn + (1 − t)p1 − p2∥2

≤ t lim inf
n→∞

⟨xn − p1, J(p1 − p2)⟩ + 1
2
∥p1 − p2∥2

+b(tK1).

That is,

lim sup
n→∞

⟨xn − p1, J(p1 − p2)⟩

≤ lim inf
n→∞

⟨xn − p1, J(p1 − p2)⟩ + b(tK1)
tK1

K1.

If t→ 0, then limn→∞ ⟨xn − p1, J(p1 − p2)⟩ exists for all p1, p2 ∈ F; in particular, we have ⟨p− q, J(p1 − p2)⟩ = 0
for all p, q ∈ ww(xn). This completes the proof.
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Theorem 3.4. Let E be a uniformly convex Banach space satisfying Opial’s condition and C be a nonempty closed
convex subset of E. Let S, T : C→ C be two nearly asymptotically nonexpansive mappings with sequences {a′n, η(Sn)},
{a′′n , η(Tn)} and F = F(S) ∩ F(T) , ∅ such that

∑∞
n=1 an < ∞ and

∑∞
n=1

(
(η(Sn)η(Tn))2 − 1

)
< ∞. Let {αn} and {βn}

be sequences in [δ, 1 − δ] for some δ ∈ (0, 1). Let {xn} be the modified two-step iteration scheme defined by (3). If the
mappings I − S and I − T, where I denotes the identity mapping, are demiclosed at zero, then {xn} converges weakly
to a common fixed point of the mappings S and T.

Proof. Let q ∈ F, from Lemma 3.1 the sequence {∥xn − q∥} is convergent and hence bounded. Since E
is uniformly convex, every bounded subset of E is weakly compact. Thus there exists a subsequence
{xnk } ⊂ {xn} such that {xnk } converges weakly to q∗ ∈ C. From Lemma 3.2, we have

lim
k→∞
∥xnk − Sxnk∥ = 0 and lim

k→∞
∥xnk − Txnk∥ = 0.

Since the mappings I − S and I − T are demiclosed at zero, therefore Sq∗ = q∗ and Tq∗ = q∗, which means
q∗ ∈ F. Finally, let us prove that {xn} converges weakly to q∗. Suppose on contrary that there is a subsequence
{xn j} ⊂ {xn} such that {xn j } converges weakly to p∗ ∈ C and q∗ , p∗. Then by the same method as given above,
we can also prove that p∗ ∈ F. From Lemma 3.1, the limits limn→∞ ∥xn − q∗∥ and limn→∞ ∥xn − p∗∥ exist. By
virtue of the Opial condition of E, we obtain

lim
n→∞
∥xn − q∗∥ = lim

nk→∞
∥xnk − q∗∥

< lim
nk→∞

∥xnk − p∗∥

= lim
n→∞
∥xn − p∗∥

= lim
n j→∞

∥xn j − p∗∥

< lim
n j→∞

∥xn j − q∗∥

= lim
n→∞
∥xn − q∗∥

which is a contradiction so q∗ = p∗. Thus {xn} converges weakly to a common fixed point of the mappings S
and T. This completes the proof.

It is well known that there exist classes of uniformly convex Banach spaces with out the Opial condition
(e.g., Lp spaces, p , 2). Therefore, Theorem 3.4 is not true for such Banach spaces. We now show that
Theorem 3.4 is valid if the assumption that E satisfies the Opial condition is replaced by either (i) E has
Fréchet differentiable norm or (ii) E∗ has the Kadec-Klee property (KK-property).

Theorem 3.5. Let E be a real uniformly convex Banach space which has a Fréchet differentiable norm and C be a
nonempty closed convex subset of E. Let S, T : C → C be two nearly asymptotically nonexpansive mappings with
sequences {a′n, η(Sn)} and {a′′n , η(Tn)} such that

∑∞
n=1 an < ∞ and

∑∞
n=1

(
(η(Sn)η(Tn))2 − 1

)
< ∞. Let {αn} and {βn}

be sequences in [δ, 1 − δ] for some δ ∈ (0, 1). Let {xn} be the modified two-step iteration scheme defined by (3). If
F = F(S) ∩ F(T) , ∅, then {xn} converges weakly to a common fixed point of the mappings S and T.

Proof. By Lemma 3.3, ⟨p− q, J(p1 − p2)⟩ = 0 for all p, q ∈ ww(xn). Therefore ∥q∗ − p∗∥2 = ⟨q∗ − p∗, J(q∗ − p∗)⟩ = 0
implies q∗ = p∗. Consequently, {xn} converges weakly to a point in F. This completes the proof.

Lemma 3.6. Under the conditions of Lemma 3.2 and for any p, q ∈ F, limn→∞ ∥txn + (1 − t)p − q∥ exists for all
t ∈ [0, 1].

Proof. By Lemma 3.1, limn→∞ ∥xn − z∥ exists for all z ∈ F and therefore {xn} is bounded. Letting

an(t) = ∥txn + (1 − t)p − q∥
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for all t ∈ [0, 1]. Then limn→∞ an(0) = ∥p − q∥ and limn→∞ an(1) = ∥xn − q∥ exists by Lemma 3.1. It, therefore,
remains to prove the Lemma 3.6 for t ∈ (0, 1). For all x ∈ C, we define the mapping Hn : C→ C by:

Bnx = (1 − βn)Snx + βnTnx

and

Hnx = (1 − αn)Tnx + αnSnBnx.

Then it follows that xn+1 = Hnxn, Hnp = p for all p ∈ F and we have shown earlier in Lemma 3.1 that

∥Hnx −Hny∥ ≤ Ln∥x − y∥ + θn (27)

for all x, y ∈ C, where Ln = 1 + δn, δn =
(
(η(Tn)η(Sn))2 − 1

)
and θn = anη2(1 + η2) with

∑∞
n=1 δn < ∞,∑∞

n=1 θn < ∞ and Ln → 1 as n→∞. Setting

Rn,m = Hn+m−1Hn+m−2 . . .Hn, m ≥ 1 (28)

and

bn,m = ∥Rn,m(txn + (1 − t)p) − (tRn,mxn + (1 − t)Rn,mq)∥. (29)

From (30) and (31), we have

∥Rn,mx − Rn,my∥ = ∥Hn+m−1Hn+m−2 . . .Hnx −Hn+m−1Hn+m−2 . . .Hny∥
≤ Ln+m−1∥Hn+m−2 . . .Hnx −Hn+m−2 . . .Hny∥ + θn+m−1

≤ Ln+m−1Ln+m−2∥Hn+m−3 . . .Hnx −Hn+m−3 . . .Hny∥
+θn+m−1 + θn+m−2

...

≤
( n+m−1∏

j=n

L j

)
∥x − y∥ +

n+m−1∑
j=n

θ j

= Vn∥x − y∥ +
n+m−1∑

j=n

θ j (30)

for all x, y ∈ C, where Vn =
∏n+m−1

j=n L j and Rn,mxn = xn+m, Rn,mp = p for all p ∈ F. Thus

an+m(t) = ∥txn+m + (1 − t)p − q∥
≤ bn,m + ∥Rn,m(txn + (1 − t)p) − q∥

≤ bn,m + Vnan(t) +
n+m−1∑

j=n

θ j. (31)

By using [ [4], Theorem 2.3], we have

bn,m ≤ φ−1
(
∥xn − u∥ − ∥Rn,mxn − Rn,mu∥

)
≤ φ−1

(
∥xn − u∥ − ∥xn+m − u + u − Rn,mu∥

)
≤ φ−1

(
∥xn − u∥ −

(
∥xn+m − u∥ − ∥Rn,mu − u∥

))
and so the sequence {bn,m} converges uniformly to 0, i.e., bn,m → 0 as n → ∞. Since limn→∞Vn = 1 and∑∞

n=1 θn < ∞, that is, θn → 0 as n→∞, therefore from (31), we have

lim sup
n→∞

an(t) ≤ lim
n,m→∞

bn,m + lim inf
n→∞

an(t) + 0 = lim inf
n→∞

an(t).
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This shows that limn→∞ an(t) exists, that is, limn→∞ ∥txn + (1 − t)p − q∥ exists for all t ∈ [0, 1]. This completes
the proof.

Now we prove a weak convergence theorem for the spaces whose dual have Kadec-Klee property (KK-
property).

Theorem 3.7. Let E be a real uniformly convex Banach space such that its dual E∗ has the Kadec-Klee property and C
be a nonempty closed convex subset of E. Let S, T : C→ C be two nearly asymptotically nonexpansive mappings with
sequences {a′n, η(Sn)}, {a′′n , η(Tn)} and F = F(S)∩F(T) , ∅ such that

∑∞
n=1 an < ∞ and

∑∞
n=1

(
(η(Sn)η(Tn))2−1

)
< ∞.

Let {αn} and {βn} be sequences in [δ, 1 − δ] for some δ ∈ (0, 1). Let {xn} be the modified two-step iteration scheme
defined by (3). If the mappings I − S and I − T, where I denotes the identity mapping, are demiclosed at zero, then
{xn} converges weakly to a common fixed point of the mappings S and T.

Proof. By Lemma 3.1, we know that {xn} is bounded and since E is reflexive, there exists a subsequence {xn j }
of {xn}which converges weakly to some p ∈ C. By Lemma 3.2, we have

lim
j→∞
∥xn j − Sxn j∥ = 0 and lim

j→∞
∥xn j − Txn j∥ = 0.

Since by hypothesis the mappings I−S and I−T are demiclosed at zero, therefore Sp = p and Tp = p, which
means p ∈ F. Now, we show that {xn} converges weakly to p. Suppose {xni } is another subsequence of {xn}
converges weakly to some q ∈ C. By the same method as above, we have q ∈ F and p, q ∈ ww(xn). By Lemma
3.6, the limit

lim
n→∞
∥txn + (1 − t)p − q∥

exists for all t ∈ [0, 1] and so p = q by Lemma 2.3. Thus, the sequence {xn} converges weakly to p ∈ F. This
completes the proof.

4. Conclusion

In this paper, we study newly introduced modified two step iteration scheme which contains modified
Mann iteration scheme and establish some weak convergence theorems using Opial’s condition, Fréchet
differentiable norm and the dual of the space has Kadec-Klee property (KK-property) for more general class
of nonexpansive and asymptotically nonexpansive mappings. Our results extend and improve several
results from the existing literature.

References

[1] R. P. Agarwal, Donal O’Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive
mappings, Nonlinear Convex Anal. 8(1) (2007) 61–79.

[2] F. E. Browder, Nonlinear operators and nonlinear equations of evolution, Proc. Amer. Math. Symp. Pure Math. XVII, Amer. Math.
Soc., Providence, 1976.

[3] C. E. Chidume and B. Ali, Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings
in Banach spaces, J. Math. Anal. Appl. 330 (2007) 377–387.

[4] J. Garcia Falset; W. Kaczor; T. Kuczumow and S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings
and semigroups, Nonlinear Anal., TMA, 43(3) (2001) 377–401.

[5] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1) (1972)
171–174.

[6] J. Gornicki, Weak convergence theorems for asymptotically mappings in uniformly convex Banach spaces, Comment. Math.
Univ. Carolinae 30 (1989) 249–252.

[7] J. S. Jung, D. R. Sahu and B. S. Thakur, Strong convergence theorems for asymptotically nonexpansive mappings in Banach
spaces, Comm. Appl. Nonlinear Anal. 5 (1998) 53–69.

[8] J. S. Jung and D. R. Sahu, Fixed point theorem for non-Lipschitzian semigroups without convexity, Indian J. Math. 40(2) (1998)
169–176.



G. S. Saluja / FAAC 7 (3) (2015), 9–20 20

[9] S. H. Khan and W. Takahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math.
Jpn. 53(1) (2001) 143–148.

[10] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965) 1004–1006.
[11] W. A. Kirk, Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974)

339–346.
[12] W. A. Kirk, C. Martinez Yanez and S. S. Kim, Asymptotically nonexpansive mappings, Nonlinear Anal. 33 (1998) 1345–1365.
[13] T. C. Lim and H. Xu, Fixed point theorems for mappings of asymptotically nonexpansive mappings, Nonlinear Anal. 22 (1994)

1345–1355.
[14] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc.

73 (1967) 591–597.
[15] M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive

mappings, Math. and Computer Modelling 32 (2000) 1181–1191.
[16] B. E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1994) 118–120.
[17] D. R. Sahu, Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces, Comment. Math. Univ. Carolinae

46(4) (2005) 653–666.
[18] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1)

(1991) 153–159.
[19] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991) 407–413.
[20] K. Sitthikul and S. Saejung, Convergence theorems for a finite family of nonexpansive and asymptotically nonexpansive map-

pings, Acta Univ. Palack. Olomuc. Math. 48 (2009) 139–152.
[21] K. K. Tan and H. K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach space, Proc. Amer.

Math. Soc. 114 (1992) 399–404.
[22] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal.

Appl. 178 (1993) 301–308.
[23] W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in Banach spaces, Math. Japonoica 48(1)

(1998) 1–9.
[24] H. K. Xu, Existence and convergence for fixed points for mappings of asymptotically nonexpansive type, Nonlinear Anal. 16

(1991) 1139–1146.


