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Abstract. In this paper, we study on a Riemannian manifold Mn, isometrically immersed by a map
x : Mn → En+1

1 , in the Minkowski space En+1
1 , where the position map x satisfies the condition L2

1x = 0. This
condition, as an extended version of the biharmonicity (defined by ∆2x = 0), is called the L1-biharmonicity
condition, where L1 stands for the linearized operator of the first variation of 2-th mean curvature of Mn in
En+1

1 . A well-known conjecture of Bang-Yen Chen says that any biharmonic Euclidean submanifold has to
be minimal. We discuss an analog of the Chen conjecture, replacing the Laplace operator ∆ by L1. Having
assumed that Mn has at least three distinct principal curvatures and constant ordinary mean curvature, we
prove that it must be 1-maximal.

1. Introduction

The role of harmonic functions and equations in physics and mathematics, applied partial differential
equations, computational geometry and so on, make motivation for introducing the matter on surfaces.
Sometimes, it becomes very difficult to find harmonic maps whereas biharmonic ones make help us to
solve related differential equations. Since there exists no harmonic map from T2 into S2 (whatever the
metrics chosen) in the homotopy class of Brower degree ±1, it is worthwhile to find a biharmonic map
T2 → S2 (see in [9]). From physical points of view, biharmonic surfaces appears in applied physics,
especially in elasticity and fluid mechanics ([1], [15]). Also, biharmonic maps appear in the solutions of
some 4-order strongly elliptic semilinear equations and in computational geometry as the biharmonic Bezier
surfaces. The variational problem associated to the bienergy functional validation on the set of Riemannian
metrics for a domain resulted in the biharmonic stress-energy tensor. Obtaining proper-biharmonic maps
for the study of submanifolds with certain geometric properties like as pseudo-umbilical and parallel
submanifolds is practical. Bang-Yen Chen (in eighteen decade) has started to investigate the properties of
biharmonic submanifolds in the Euclidean spaces. He introduced some open problems and conjectures in
[7], among them, a longstanding conjecture says that every biharmonic submanifold in a Euclidean space is
minimal. Chen himself has proved the conjecture for surfaces in E3. Later on, I. Dimitrić ([8]) has verified
Chen conjecture in several different cases that satisfy the families of regular curves, submanifolds with
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constant mean curvatures, hypersurfaces with at most two distinct principal curvatures, pseudo-umbilical
submanifolds of dimension n , 4 and the finite type submanifolds. T. Hasanis and T. Vlachos in [11] verified
the conjecture for hypersurfaces in E4. Utilizing completeness, Akutagawa and Maeta ([2]) advanced the
result to the global version of Chen’s conjecture on biharmonic submanifolds in Euclidean spaces. Also,
Chen introduced a relation between the finite type hypersurfaces and biharmonic ones. The theory of finite
type hypersurfaces is a well-known subject interested by Chen and also L.J. Alias, S.M.B. Kashani and others
(see for instance, [7], [12], [16]). One can see main results in Chapter 11 of Chen’s book ([6]). In [12], Kashani
has introduced the notion of Lk-finite type hypersurfaces as an extension finite type ones in the Euclidean
space. In [10], it is proved that only biharmonic hypersurfaces with three distinct principal curvatures in
E5 are minimal ones, and then, the result is generalized in [17] to the L1-biharmonic hypersurfaces of E5.

Let Mn be an spacelike hypersurface in the pseudo-Euclidean spaceEn+1
1 . The Laplace operator∆ stands

for the linearized operator of the first variation of the mean curvature arising from normal variations of
Mn in En+1. The advanced operator Lk (where, L0 = ∆), which stands for the linearized operator of the
first variation of the (k + 1)-th mean curvature arising from normal variations of Mn in En+1, is defined
by the explicit formula Lk( f ) = tr(Pk ◦ ∇2 f ) for k = 0, 1, 2, · · · ,n − 1, and f ∈ C∞(M), where Pk denotes
the k-th Newton transformation associated to the second fundamental from of M and ∇2 f is the hessian
of f (see [19]). Recently, in [20], we have proved that every Lk-biharmonic spacelike hypersurface in E4

1
with three distinct principal curvatures is k-maximal. In this paper, we study L1-biharmonic spacelike
hypersurfaces isometrically immersed into the Lorentz-Minkowski space of arbitrary dimension, En+1

1 ,
having three distinct principal curvatures and constant mean curvature. Here are our main results.

Theorem 1.1. Let x : Mn → En+1
1 be an isometrically immersed spacelike hypersurface satisfying the L1-biharmonicity

condition, L2
1x = 0. If Mn has constant ordinary mean curvature and non-constant 2-th mean curvature, then it has

a non-constant principal curvature of multiplicity one.

Theorem 1.2. Every L1-biharmonic isometrically immersed spacelike hypersurface of the Minkowski spaceEn+1
1 with

constant mean curvature and three distinct principal curvatures is 1-maximal.

2. Preliminaries

In this section, we recall some prerequisites from [3], [5], [10], [14], [17], [18]. By Em
p , we mean the

Euclidean space Rm equipped with the scalar product < x, y >:= −Σp
i=1xiyi + Σ j>px jy j (where, 0 ≤ p < m).

Especially, Em
0 = E

m and Em
1 are the Euclidean and Minkowski spaces of dimension m, respectively.

Let x : Mn → En+1
1 be an isometric immersion of a Riemannian n-dimensional manifold M into the

Minkowski space En+1
1 . By the Weingarten formula we have ∇̄VW = ∇VW− < SV,W > N for every smooth

vector fields V and W on M, where, the symbols ∇ and ∇̄ denote the Levi-Civita connections on M andEn+1
1

(respectively) and S is the shape operator of M associated to a timelike unit normal (local) vector field N
on M. Since the induced metric on Mn is positive definite, the metric on M and the shape operator S can
be diagonalized simultaneously, and then, we can choose a local orthonormal frame field {ei}1≤i≤n+1 on Mn,
where e1, ..., en are eigenvectors of S and en+1 = N. As usual, we denote the eigenvalues of S (the principal
curvatures of M) by the functions λ1, ..., λn on M associated to e1, ..., en. The elementary symmetric function
is defined as sk :=

∑
1≤i1<...<ik≤n λi1 ...λik , so, the k-th mean curvature Hk of M is given by (n

k )Hk = (−1)ksk. The
hypersurface Mn in En+1

1 is called k-maximal, if its (k + 1)-th mean curvature Hk+1 is identically zero. A
0-maximal hypersurface is nothing but a maximal hypersurface in En+1

1 .
The classical Newton transformation Pk : χ(M) → χ(M) (for k = 0, 1, . . . ,n) is a linear operator on

the set of vector fields on M, inductively defined by P0 = I and Pk =
(n

k
)
HkI + S ◦ Pk−1 for k = 1, . . . ,n

where I denotes the identity transformation on χ(M). An explicit expression of Newton transformation as

Pk =
k∑

j=0

( n
k− j

)
Hk− jS j, for k = 0, 1, . . . ,n gives Pn = 0 (by using the Cayley-Hamilton theorem which says that

any operator is annihilated by its characteristic polynomial). According to definition of Pk, it is self-adjoint
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and commute with S, whose corresponding eigenvalues are given by

µi,k(p) = (−1)k
∑

1≤i1<···<ik≤n,i j,i

λi1 (p) · · ·λik (p), (2.1)

for i = 1, · · · ,n and k = 1, · · · ,n. We recall some useful formulae on Newton transformations from [5], [19].

tr(Pk) = ckHk,

tr(S ◦ Pk) = −ckHk+1,

tr(S2 ◦ Pk) =
(

n
k + 1

)
(nH1Hk+1 − (n − k − 1)Hk+2),

(2.2)

where ck = (n − k)
(n

k
)
= (k + 1)

( n
k+1

)
. Also, we recall the linearized operator Lk : C∞(M)→ C∞(M) defined by

Lk( f ) = tr(Pk ◦ ∇2 f ), (2.3)

where, ∇2 f : χ(M) → χ(M) denotes the self-adjoint linear operator metrically equivalent to the Hessian of
f defined by < ∇2 f (X),Y >:=< ∇X(∇ f ),Y >, where X,Y ∈ χ(M), ∇ f is the gradient of f . Based on the local
orthonormal frame {e1, . . . , en}, Lk( f ) is given by

Lk( f ) =
n∑

i=1

µi,k(eiei f − ∇ei ei f ). (2.4)

From now on, we concentrate on connected orientable isometrically immersed spacelike hypersurface in
the Minkowski space, x : Mn → En+1

1 , having three distinct principal curvatures and constant ordinary
mean curvature H. By definition, Mn is said to be L1-biharmonic, if its position vector field satisfies the con-
dition L2

1x = 0. By the equality Lkx = ckHk+1N from [19], [13], the condition L2
1x = 0 has another equivalent

expression as L1(H2N) = 0. Clearly, every 1-maximal hypersurface is L1-biharmonic. By formulae in [4],
[13], [19], for every integer k (where 0 ≤ k ≤ n − 1) we have

L2
1x = −2

(
n
2

)
[2P2 − 3

(
n
2

)
H2I]∇H2 + 2

(
n
2

)
[L1H2 −

(
n
2

)
H2(nHH2 + (n − 2)H3)]N. (2.5)

Hence, identifying the normal and tangent parts of (2.5), one obtains necessary and sufficient conditions
for Mn to be L1-biharmonic in En+1

1 , namely

(i) L1H2 =

(
n
2

)
H2(nHH2 + (n − 2)H3), (ii) P2∇H2 =

3
2

(
n
2

)
H2∇H2. (2.6)

3. Results

In order to prove Theorems 1.1 and 1.2, we state the following two auxiliary lemmas.

3.1. Auxiliary Lemmas
Lemma 3.1. Let x : Mn → En+1

1 be an L1-biharmonic spacelike hypersurface in the Minkowski (n + 1)-space with
three distinct principal curvatures, constant mean curvature and non-constant 2-th mean curvature. Then, with
respect to orthonormal (local) tangent frame {e1, . . . , en} of the principal directions on Mn, we have
(i) ∇e1 e1 = 0,
(ii) ∇ei e1 = αei, for i = 2, . . . ,n − 1, where, α := e1(λ)

λ1−λ ,

(iii) ∇en e1 = −βen, where β = e1(λ1+(n−2)λ)
(λ1−η) ,

(iv) ∇ei ei = −αe1 +
∑n−1

k=2,k,i ω
k
iiek +

en(λ)
nH+λ1+(n−1)λ en, for i = 2, 3, . . . , n − 1,
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(v) ∇ei e j =
∑n−1

k=2 ω
k
i jek, for i, j = 2, 3, . . . ,n − 1, where i , j,

(vi) ∇e1 en = 0,
(vii) ∇en en = βe1,
(viii) ∇ei en =

en(λ)
nH−λ1−(n−1)λ ei for i = 2, 3, . . . ,n − 1,

where ωi
ki = 0 and ω j

ki + ω
i
k j = 0, for i, j, k = 1, · · · ,n.

Proof. By assumption, there exists an open connected subset U of M, on which we have ∇H2 , 0. By (2.6(i)),
e1 := ∇H2

||∇H2 || is an eigenvector of P2 with the corresponding eigenvalue 3
4 n(n − 1)H2 on U. Without loss of

generality, we can assume that U =M and take a suitable orthonormal (local) basis {e1, · · · , en} for the tangent
bundle of Mn, consisting of the eigenvectors the shape operator S such that Sei = λiei and P2ei = µi,2ei, (for

i = 1, · · · ,n). Hence, µ1,2 =
3
4

n(n − 1)H2. We use the notation ∇ei e j =
∑n

k=1 ω
k
i jek for i, j = 1, . . . , n. By the

compatibility conditions ∇ek < ei, ei >= 0 and ∇ek < ei, e j >= 0, we have identities

(i) ωi
ki = 0, (ii) ω j

ki + ω
i
k j = 0, (3.1)

for i, j, k = 1, · · · ,n. Furthermore, it follows from the Codazzi equation that

ei(λ j) = (λi − λ j)ω
j
ji, (3.2)

(λi − λ j)ω
j
ki = (λk − λ j)ω

j
ik. (3.3)

Using the equality µ1,2 =
3
4

n(n − 1)H2 and the definition of H2,

H2 =
2

n(n − 1)

∑
1≤i< j≤n

λiλ j, (3.4)

we get

H2 =
4

n(n − 1)
λ1(λ1 + nH), (3.5)

and by differentiating along e1, we obtain

e1(λ1) , 0, ei(λ1) = 0 i = 2, . . . ,n. (3.6)

Using the decomposition ∇H2 =
∑n

i=1 ei(H2)ei, by assumption e1 =
∇H2
||∇H2 || , we have

e1(H2) , 0, ei(H2) = 0 i = 2, . . . ,n. (3.7)

One can compute that
[ei, e j](λ1) = 0, i, j = 2, . . . ,n,

which yields directly

ω1
i j = ω

1
ji, (3.8)

for i , j and i, j = 2, . . . ,n. Since Mn has three distinct principal curvatures, we can assume that λ2 = λ3 =
· · · = λn−1 = λ and λn , λ, hence λn = nH − λ1 − (n − 2)λ.

Now, for part (i), it is enough to show that ωk
11 = 0 for k = 1, . . . ,n. Taking j = 1 and i = 2, . . . , n in

the equality (3.2) and using (3.6), we obtain ω1
12 = ω

1
13 = · · · = ω1

1n = 0, which gives, by (3.1(ii)), the result
ωk

11 = 0 for k = 2, . . . ,n. So, it remains to see that ω1
11 = 0, which is given in (3.1(i)).
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For part (ii), it must to be proved that
ωk

i1 = {
α, (k=i)
0, (k,i)

for i = 2, · · · ,n − 1 and k = 1, 2, · · · ,n. For the cases k = i = 2, · · · ,n − 1, we use the equality (3.2) (by
interchanging i, j in (3.2) and then taking j = 1) to get e1(λ) = (λ1 − λ)ωi

i1, which gives ωi
i1 = α. For other

cases, fix an arbitrary integer i where 2 ≤ i ≤ n−1. we try to showωk
i1 = 0 for every integer k where 1 ≤ k ≤ n

and k , i. For k = 1 we have ω1
i1 = 0 by (3.1(i)). For other cases, we take k = 1 and 2 ≤ j , i ≤ n − 1 in (3.3)

to get ω j
i1 = 0 for j = 2, · · · ,n − 1. Finally, from (3.2) we get ωn

i1 = 0. So, the proof of part (ii) is complete.
For part (iii), we must show that ωk

n1 = 0 for k = 1, · · · , n − 1, and ωn
n1 = −β. For the case k = 1, by taking

i = n and k = 1 in (3.1(i)), we have ω1
n1 = 0. For k = 2, · · · ,n− 1, remember that in part (i) we had ωn

k1 = 0 for
k = 2, · · · ,n − 1 which, by (3.1(ii)) and (3.8), gives ωk

n1 = ω
1
nk = ω

1
kn = 0 for k = 2, · · · ,n − 1. Finally, for k = n,

by putting i = 1 and j = n in (3.2), we obtain ωn
n1 = −β.

For part (iv), we must show that ω1
ii = −α and ωi

ii = 0 for i = 2, · · · ,n − 1, and also ωn
ii =

−en(λ
λn

. For
first one, from part (ii) we have ωi

i1 = α which, by (3.1(ii)), gives ω1
ii = −α. Also, (3.1(ii)) gives ωi

ii = 0 for
i = 2, · · · ,n− 1. Finally, for the last result, from (3.2) we have ωi

in =
en(λ
λn−λ , for i = 2, · · · ,n− 1, which gives (by

(3.1(ii))) the result. Hence, the proof of part (ii) is complete.
For part (v), we have to show that ωk

i j = 0 for k = 1, n. It is enough to use (3.2) for special values of k (i.e.

k = 1,n) to get ω j
i1 = ω

j
in = 0 for i, j = 2, . . . ,n − 1 where i , j, which gives the result, by (3.8).

For part (vi), we show that ωk
1n = 0 for k = 1, · · · ,n. In the case k = 1,n, clearly, using (3.1(i))and (3.8) we

get the result. In remained cases that k = 2, · · · ,n − 1, from (3.3) we have (λn − λ)ωk
1n = (λ1 − λ)ωk

n1, which
by the final statement in the proof of part (iii) (i.e. ωk

n1 = 0) gives ωk
n1 = 0 for k = 2, · · · ,n − 1. Hence, the

proof of part (vi) is complete.
In part (vii), we have to show that

ωk
nn = {

β, (k=1)
0, (k=2,··· ,n).

For the case k = 1, we put i = 1 and j = n in the equality (3.2) to get e1(λn) = (λ1 − λn)ωn
n1 which gives, by

(3.1(ii)), ω1
nn = −ωn

n1 = β. Now, for k = 2, · · · ,n − 1, first, from (3.2), by taking i = k, j = 2, . . . ,n − 1 where
j , k, we get ek(λ) = 0 which together with ek(λ1) = 0 (from (3.6)) gives ek(λn) = 0 for k = 2, · · · ,n−1. Hence,
by (3.2) again, we obtain ωn

nk = 0 and then (by (3.1(ii))) we have ωk
nn = 0 for k = 2, · · · ,n − 1. Finally, the

result ωn
nn = 0 is given in (3.1(i)).

In the rest part (i.e. (viii)), we will see that

ωk
in = {

en(λ)
λn

, (k=i)
0, (k,i, k=1,··· ,n)

for i = 2, · · · ,n − 1. Fix an arbitrary integer i where 2 ≤ i ≤ n − 1. Now, for k = 1, the claim ω1
in = 0 is a

direct consequence of the result ωn
i1 = 0 in part (ii). For k = 2, · · · ,n − 1 where k , i, from part (v) we have

ωn
ik = 0 which, by (3.1(ii)), gives ωk

in = 0. For k = i, from part (iv) we have ωn
ii = −

en(λ)
λn

which, by (3.1(ii)),

gives ωi
in =

en(λ)
λn

. For k = n, it is a direct consequence of (3.1(ii)) that ωn
in = 0. So, the proof of part (viii) is

complete.

Lemma 3.2. Let Mn be an L1-biharmonic spacelike hypersurface in Lorentz-Minkowski space En+1
1 , with three

distinct principal curvatures, constant ordinary mean curvature and non-constant 2-th mean curvature. Then, there
exists a locally moving orthonormal tangent frame {e1, · · · , en} of principal directions on Mn with associated principal
curvatures λ1, λ2 = · · · = λn−1 = λ, λn = η, satisfying en(λ) = 0 and

e1(λ)e1(λ1 + (n − 2)λ) = λη(λ1 − λ)(λ1 − η). (3.9)

Proof. For convenience we use the notations α := e1(λ)
λ1−λ and β := e1(λ1+(n−2)λ)

(λ1−η) . By computing both of sides of
the Gauss curvature tensor formula

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, (3.10)



Firooz Pashaie / FAAC 9 (1) (2017), 43–52 48

by means of Lemma 3.1 and the well-known Gauss equation (see [18], ch.4, Theorem 5), we can obtain
different equalities on the moving tangent frame {e1, · · · , en} that was introduced in Lemma 3.1. We consider
three different cases as follow.
Case 1: Take X := e1, Y := e2 in (3.10). Putting Z := e1 and Z := en, respectively, we obtain two following
equalities

e1(α) + α2 = −λ1λ, (3.11)

e1

(
en(λ)
η + λ

)
+ α

en(λ)
η + λ

= 0. (3.12)

Case 2: Take Z := e1, Y := en in (3.10). Putting X := e1 and X := e3, respectively, we get the following
equalities

−e1(β) + β2 = −λ1η, (3.13)

en(α) + (α + β)
en(λ)
η + λ

= 0. (3.14)

Case 3: Putting X := Z := en, Y := e2 in (3.10), we get

−en

(
en(λ)
η + λ

)
+ αβ −

(
e4(λ)
η + λ

)2

= λη. (3.15)

Now, from condition (2.6), using (2.4) and Lemma (3.1), we get

(λ1 + nH)e1e1(H2) +
[¢
¢

(n − 2)(λ + nH)α + (λ1 + (n − 2)λ)β
]

e1(H2)

− n(n − 1)(n − 2)
2

H2(2HH2 −H3) = 0.
(3.16)

On the other hand, using equation (3.7) in the proof of Lemma (3.1), we have

eie1(H2) = 0, i = 2, . . . , n. (3.17)

Now, differentiating α and β along en, (using (3.6)) we get two equalities as follow

(λ1 − λ)en(α) − αen(λ) = ene1(λ),

(λ1 − η)en(β) + (n − 2)βen(λ) = (n − 2)ene1(λ),

which, comparing with each other (and eliminating ene1(λ)), give

(λ1 − η)en(β) = (n − 2)
[
(λ1 − λ)en(α) − (α + β)en(λ)

]
.

Putting the value of en(α) from (3.14) in the above equation, we find

en(β) =
en(λ)(n − 2)(α + β)(nλ − nH)

(λ1 − η)η
.

Differentiating (3.16) along en, using (3.17) and (3.14) and substituting the value en(β) in the result, we
get

(n − 2)en(λ)
[

(α + β)A
λ1 − η

e1(H2) −H2ηB
]
= 0. (3.18)
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where A := 4nHλ1 − 2λ1
2 − 2(n − 1)λλ1 + 2n(n − 1)Hλ − 2n2H2 and

B := n2H2 + 3λ2
1 + (3(n − 2)2 − 3)λ2 + (2n − 4n(n − 2))Hλ − 4nHλ1 + 6(n − 2)λλ1.

Now we claim that en(λ) = 0. If not, Having assumed en(λ) , 0, we have

(α + β)A
λ1 − η

e1(H2) −H2ηB = 0, (3.19)

By differentiating (3.19) along en, we have

(α + β)
[
A((n − 4)λ1 + 2(n − 2)2λ + (n − 2n(n − 2))H) + C

]
e1(H2)

(λ1 − η)2 +H2D = 0, (3.20)

where C := −(2n(n − 1)H + 2(n − 1)λ1)η(λ1 − η) and
D =: −η2[(6(n − 2)2 − 6)λ + (2n − 4n(n − 2))H + 6(n − 2)λ1] + (n − 1)ηB.
Finally, from (3.19) and (3.20) (by eliminating e1(H2)), we obtain

−AD(λ1 − η) = ηB[A((n − 4)λ1 + 2(n − 2)2λ + (n − 2n(n − 2))H) + C] (3.21)

After four times differentiating (3.21) along en, we get that nH = λ1, which is impossible since H is
assumed to constant but λ1 is non-constant. Consequently, our claim is proved (i.e. en(λ) = 0). Therefore,
(3.15) reduces to (3.9)

3.2. Main results

Now, we prove main theorems.
Proof of Theorem 1.1 . By assumption, there exists an open connected subset U of M, on which we

have ∇H2 , 0. We take e1 := ∇H2
||∇H2 || , which is an eigenvector of P2 with eigenvalue 3

4 n(n − 1)H2 on U, by the
equation (2.6)(i). Without loss of generality, we assume that U = M and then, we choose suitable principal
directions e2, · · · , en on M (other than e1) such that {e1, · · · , en} be an orthonormal tangent bundle on M. We
denote the principal curvatures of M by λ1, · · · , λn according to e1, · · · , en, respectively. Therefore, we have
Sei = λiei and then, by the equation 2.1, P2ei = µi,2ei, (for i = 1, · · · , n), and in special case, we note that

µ1,2 =
3
4

n(n − 1)H2. Clearly, equations (3.1)- (3.7) can be verified here. Using the notation ∇ei e j =
∑n

k=1 ω
k
i jek

for i, j = 1, . . . , n, from the compatibility conditions ∇ek < ei, ei >= 0 and ∇ek < ei, e j >= 0, we get

ωi
ki = 0, ω j

ki + ω
i
k j = 0, (3.22)

for i, j, k = 1, · · · ,n, where i , j. Furthermore, it follows from the Codazzi equation that

ei(λ j) = (λi − λ j)ω
j
ji, (3.23)

(λi − λ j)ω
j
ki = (λk − λ j)ω

j
ik. (3.24)

Having assumed λ j = λ1 for some integer j , 1. Taking i = 1, from (3.23) we obtain

0 = (λ1 − λ j)ω
j
j1 = e1(λ j) = e1(λ1),

which contradicts the first expression of (3.6). So, the main claim of lemma is verified. �
Proof of Theorem 1.2. By differentiating (3.5) along e1, and using the definition of β in Lemma 3.2, we

have

e1(H2) = −4(n − 2)
n(n − 1)

(2λ1 + nH)e1(λ) +
4

n(n − 1)
(λ1 − η)(2λ1 + nH)β, (3.25)
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which by differentiating (3.5) along e1 and using lemma (3.2) and equations (3.13) and (3.11) of Lemma 3.1,
we obtain

e1e1(H2) = P0,4 +

[
−nα + 3β + 2

(λ1 − η)β − (n − 2)(λ1 − λ)α
2λ1 + nH

]
e1(H2), (3.26)

where,

P0,4 :=
4(n − 2)
n(n − 1)

λ1λ(λ1 − λ)(2λ1 + nH) +
4

n(n − 1)
η(2λ1 + nH)((3n − 2)λ1λ + 2λ1

2 + 2nHλ + nHλ1).

Combining (3.16) with (3.26) gives

(P1,2α + P2,2β)e1(H2) = P3,6, (3.27)

where
P1,2 := (

2(n − 2)λ1

2λ1 + nH
− 3n + 4)(λ1 − λ) − 2(λ + nH),

P2,2 :=
−2λ1(λ1 − η)

2λ1 + nH
− 2η + (n − 2)λ + 3(2λ1 + nH)

and
P3,6 :=

−4(λ1 + nH)(2λ1 + nH)λλ1

n(n − 1)
[(n − 2)(λ1 − λ) + (3n − 2)η + 2nHλη + λ1η(2λ1 + nH)]

−1
2

n(n − 1)(n − 2)H2(2HH2 −H3)

are polynomials in terms of λ1,λ and η of degrees 2, 2 and 6, respectively.
Differentiating (3.27) along e1 and using (3.13), (3.11) and (3.27), we get following relation

P4,8α + P5,8β = P6,5e1(H2), (3.28)

where P4,8, P5,8 and P6,5 are polynomials in terms of λ and λ1 of degrees 8, 8 and 5 respectively.
Also, we have

e1(H2) =
4

n(n − 1)
(2λ1 + nH)

(
β(λ1 − η) − (n − 2)α(λ1 − λ)

)
. (3.29)

Combining (3.28) and (3.29), we obtain(
P4,8 +

4(n − 2)
n(n − 1)

P6,5(λ1 − λ)(2λ1 + nH)
)
α

+

(
P5,8 −

4
n(n − 1)

P6,5(λ1 − η)(2λ1 + nH)
)
β = 0.

(3.30)

On the other hand, combining (3.29) with (3.27), we find

P2,2(λ1 − η)(2λ1 + nH)β2 − P1,2(n − 2)(λ1 − λ)(2λ1 + nH)α2 = Φ, (3.31)

where Φ is given by

Φ := λη(2λ1 + nH)
(¢

¢
P2,2(n − 2)(λ1 − λ) − P1,2(λ1 − η)

)
+

n(n − 1)
4

P3,6. (3.32)

Using (3.30) and (3.31), we get

α2 =

4
n(n−1) P6,5(λ1 − η)(2λ1 + nH) − P5,8

P4,8 +
4(n−2)
n(n−1) P6,5(λ1 − λ)(2λ1 + nH)

λη, β2 =
− 4(n−2)

n(n−1) P6,5(λ1 − λ)(2λ1 + nH) − P4,8

P5,8 − 4
n(n−1) P6,5(λ1 − η)(2λ1 + nH)

λη
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.
Eliminating α2 and β2 from (3.31), we obtain

λη(2λ1 + nH)
[
P1,2(n − 2)(λ1 − λ)(P5,8 − 4

n(n−1) P6,5(λ1 − η)(2λ1 + nH))
2]

−λη(2λ1 + nH)
[
P2,2(λ1 − η)(P4,8 +

4(n−2)
n(n−1) P6,5(λ1 − λ)(2λ1 + nH))

2
]

= Φ(P5,8 −
4

n(n − 1)
P6,5(λ1 − η)(2λ1 + nH))(P4,8 +

4(n − 2)
n(n − 1)

P6,5(λ1 − λ)(2λ1 + nH)), (3.33)

which is a polynomial equation of degree 22 in terms of λ and λ1.
Now consider an integral curve of e1 passing through p = γ(t0) as γ(t), t ∈ I. Since ei(λ1) = ei(λ) = 0 for

i = 2, . . . , n and e1(λ1), e1(λ) , 0, we can assume t = t(λ) and λ1 = λ1(λ) in some neighborhood of λ0 = λ(t0).
Using (3.30), we have

dλ1

dλ
=

dλ1

dt
dt
dλ
=

e1(λ1)
e1(λ)

=
(λ1 − η)β − (n − 2)(λ1 − λ)α

(λ1 − λ)α

=

(
P4,8 +

4(n−2)
n(n−1) P6,5(λ1 − λ)(2λ1 + nH)

)
(λ1 − η)(

4
n(n−1) P6,5(λ1 − η)(2λ1 + nH) − P5,8

)
(λ1 − λ)

− (n − 2) (3.34)

Differentiating (3.33) with respect to λ and substituting dλ1
dλ from (3.34), we get

f (λ1, λ) = 0, (3.35)

another algebraic equation of degree 30 in terms of λ1 and λ.
We rewrite (3.33) and (3.35) respectively in the following forms

22∑
i=0

fi(λ1)λi,
30∑
i=0

1i(λ1)λi, (3.36)

where fi(λ1) and 1 j(λ1) are polynomial functions of λ1. We eliminate λ30 between these two polynomials
of (3.36) by multiplying 130λ8 and f22 respectively on the first and second equations of (3.36), we obtain a
new polynomial equation in λ of degree 29. Combining this equation with the first equation of (3.36), we
successively obtain a polynomial equation in λ of degree 28. In a similar way, by using the first equation of
(3.36) and its consequences we are able to gradually eliminate λ. At last, we obtain a non-trivial algebraic
polynomial equation in λ1 with constant coefficients. Therefore, we conclude that the real function λ1 must
be a constant, which is a contradiction. Hence H2 is constant on Mn. If H2 , 0, by using (2.6) we obtain
that H3 is constant. Therefore all the mean curvatures Hr are constant functions, this is equivalent to Mn

is isoparametric. An isoparametric spacelike hypersurface of Lorentz-Minkowski space can have at most
two distinct principal curvatures ([5]), which is a contradiction. So H2 = 0.
�
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