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Hermite collocation method for approximate solutions of fractional
linear differential equations from order 0 < α < 1
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Abstract. In this paper, approximate solutions of some fractional linear differential equations from order
0 < α < 1 were obtained by using Hermite collocation method. Three different examples were solved to
illustrate the accuracy and efficiency of the method. Obtained results were compared with exact solutions
and some results in literature.

1. Introduction

Fractional differential equations have been used to model in dynamical systems, control theory, signal
processing, diffusion wave, heat conduction and many areas of sciences [1]. The analytic results on existence
and uniqueness of solutions to fractional differential equations have been investigated by some authors
[2, 3]. Exact solutions of some fractional differential equations have been investigated by using modification
of He’s variational iteration method and Laplace transform [4, 5]. The general fractional linear differential
equation is given as the following form;

an(x)Dαn
c y(x) + an−1(x)Dαn−1

c y(x) + . . . + a0(x)Dα0
c y(x) = f (x) (1)

where Dαn
c is the derivative of y of order αn in the sense of Caputo fractional differential operator, y(x) is an

unknown function of the independent variable x.
Recently, many numerical methods have been used for solving fractional differential equations such as

sinc-galerkin method [6], fractional Adams-Bashforth-Moulton method [7], homotopy perturbation method
[8], fractional finite difference method [9], adomian decomposition method [10], homotpy analysis method
[11], variational iteration method [12], the tau method [13], Legendre operational matrix [14].

The main aim of this paper is to solve the fractional order linear differential equations numerically by
using Hermite Collocation Method (HCM). The given method converts the mentioned equations to the
linear algebraic systems of which unknowns are Hermite coefficients, by using collocation points. Since
expressing this algebraic systems by matrices and using matrix algebra solution of the algebraic system
can be obtained easily. Consequently, the numerical solutions of the fractional order linear equations are
obtained in terms of truncated Hermite series.
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2. Fractional Calculus

In this section, some important subjects of the fractional calculus which shall be used in this study are
given.

2.1. Gamma Function
The gamma function Γ(p) is defined by the improrer integral

Γ(p) =
∫
∞

0
xp−1e−xdx. (2)

Gamma function have proporties that

(i) convergent for p > 0
(ii) divergent for p ≤ 0

(iii) Γ(p + 1) = pΓ(p) for p > 0
(iv) Γ(n + 1) = n! for n = 0, 1, 2, · · · .

2.2. Beta Function
The beta function B(p, q) is defined by

β(p, q) =
∫ 1

0
xp−1(1 − x)q−1dx, (p ≥ 0, q ≥ 0). (3)

Beta function is

(i) convergent for p > 0 and q > 0
(ii) divergent for p ≤ 0 and q ≤ 0.

Beta function is written using the gamma function as follows

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

. (4)

2.3. Caputo Fractional Derivative
The Caputo fractional derivative is defined by

CDα f (x) =
1

Γ(m − α)

∫ x

a
(x − t)m−α−1 f (m)(t)dt, m − 1 < α < m (5)

for α ∈ R+, m ∈N+ and x ≥ 0.

3. Hermite Polynomials

The Hermite polynomials Hn(x) can be defined by

Hn(x) =
⌊n/2⌋∑
k=0

(−1)kn!(2x)n−2k

k!(n − 2k)!
, n = 0, 1, . . . . (6)

The Hermite polynomials Hn(x) are set of orthogonal polynomials over the domain (−∞,∞) with
weighting function e−x2

.
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The first few Hermite polynomials are given as follows

H0(x) = 1
H1(x) = 2x
H2(x) = 4x2

− 2
H3(x) = 8x3

− 12x
H4(x) = 16x4

− 48x2 + 12
H5(x) = 32x5

− 160x3 + 120x.

4. Implementation of the HCM

In this section, the approximate solutions of the truncated Hermite series form can be obtained as follow:

y(x) =
N∑

n=0

anHn(xα) (7)

of fractional linear differential equation

m∑
k=0

Pk(x)Dkα
c y(x) = 1(x) (8)

with conditions for ⌊m.α⌋ = t ∈N0, a ≤ x ≤ b

t−1∑
k=0

[a jk(x)Dkα
c y(a) + b jk(x)Dkα

c y(b)] = λ j, j = 0, 1, 2, · · · , t − 1. (9)

Here an are the unknown Hermite coefficients, N can be chosen any positive integer such that
N ≥ t, 0 < α ≤ 1.
To find a solution in (7) of the problem (8) with the conditions (9), the collocation points can be used by

xi = a +
(

b − a
N

)
i, i = 0, 1, · · · ,N, 0 < a ≤ x ≤ b. (10)

The matrix form of the approximate solution y(x) given by (7) can be written as

y(x) = H(xα)A (11)

where H(xα) = [H0(xα) H1(xα) · · · HN(xα)] and A = [a0 a1 · · · aN]T. Hermite polynomials given in (6)
according to the odd and even values of N, xα instead of x can be written as follows matrix form;
if N is odd


H0(xα)
H1(xα)
...

HN−1(xα)
HN(xα)

︸          ︷︷          ︸
HT(xα)

=



20 0 · · · 0 0
0 21

· · · 0 0
...

...
. . .

...
...

(−1)(
N−5

2 ) 20

0!
(N − 1)!(

N−1
2

)
!

0 · · · 2N−1 0

0 (−1)(
N−1

2 ) 21

1!
N!(

N−1
2

)
!
· · · 0 2N

︸                                                                             ︷︷                                                                             ︸
F


1
xα
...

xα(N−1)

xαN


,

︸        ︷︷        ︸
XT(xα)
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if N is even


H0(xα)
H1(xα)
...

HN−1(xα)
HN(xα)

︸          ︷︷          ︸
HT(xα)

=



20 0 · · · 0 0
0 21

· · · 0 0
...

...
. . .

...
...

0 (−1)(
N−2

2 ) 21

1!
(N − 1)!(

N−2
2

)
!
· · · 2N−1 0

(−1)(
N−4

2 ) 20

0!
N!(
N
2

)
!

0 · · · 0 2N

︸                                                                          ︷︷                                                                          ︸
F


1
xα
...

xα(N−1)

xαN


.

︸        ︷︷        ︸
XT(xα)

The given matrix form is briefly expressed as

HT(xα) = FXT(xα) (12)

or

H(xα) = X(xα)FT. (13)

Substitution of equation (13) into (11) yields

y(x) = X(xα)FTA. (14)

Now, the kα-th order Caputo fractional derivative of equation (14) is written as

Dkα
c y(x) = Dkα

c X(xα)FTA (15)

or equivalently:

Dkα
c X(xα) = X(xα)(BT)k (16)

where the matrix B is defined as follow:

B =



0 0 0 · · · 0 0 0
Γ(α + 1) 0 0 · · · 0 0 0

0
Γ(2α + 1)
Γ(α + 1)

0 · · · 0 0 0

...
...

. . .
...
...

0 0 0 · · · 0
Γ(Nα + 1)

Γ((N − 1)α + 1)
0


.

If, we substitute equation (16) into equation (15) we have:

Dkα
c y(x) = X(xα)(BT)kFTA. (17)

For the collocation points x = xi, i = 0, 1, 2, · · · ,N, equation (8) is rewritten as follows

m∑
k=0

Pk(xi)Dkα
c y(xi) = 1(xi). (18)
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The matrix form of equation (18) is given as follows
Pk(x0) 0 · · · 0

0 Pk(x1) · · · 0
...

...
. . .

...
0 0 · · · Pk(xN)

︸                                    ︷︷                                    ︸
Pk


Dkα

c y(x0)
Dkα

c y(x1)
...

Dkα
c y(xN)

︸          ︷︷          ︸
Ykα

=


1(x0)
1(x1)
...

1(xN)

 .︸      ︷︷      ︸
G

Therefore, the matrix form is equivalent to

m∑
k=0

PkYkα = G. (19)

In equtaion (17), x = xi is written for obtaining of the matrix Ykα, equation (20) is found by

Dkα
c y(xi) = X(xαi )(BT)kFTA. (20)

The matrix form of this equation can be written as follows
Dkα

c y(x0)
Dkα

c y(x1)
...

Dkα
c y(xN)

︸          ︷︷          ︸
Ykα

=


X(xα0 )
X(xα2 )
...

X(xαN)

︸      ︷︷      ︸
Xα

[
(BT)kFTA

]
. (21)

Equation (21) is rewritten as

Ykα = Xα(BT)kFTA. (22)

Then, by writing equation (22) in equation (19), the following equation is obtained

m∑
k=0

PkXα(BT)kFTA = G. (23)

In addition, denoting

W = [wpq] =
m∑

k=0

PkXα(BT)kFT, p, q = 0, 1, 2, · · · ,N (24)

equation (23) is briefly written by

WA = G or [W; G] = A. (25)

The augmented matrix of equation (25) is written as follows:

[W; G] =


w00 w01 · · · w0N ; 1(x0)
w10 w11 · · · w1N ; 1(x1)
...

...
...

... ;
...

w(N−1)0 w(N−1)1 · · · w(N−1)N ; 1(xN−1)
wN0 wN1 · · · wNN ; 1(xN)


(N+1)x(N+1)
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Now, we have to establish the new form of equation (25) under the following initial conditions.

D j
cy(a) = λ j, j = 0, 1, 2, · · · , t − 1. (26)

Using equation (20) in condition equation (26), the following equation is found

Xα(a)(BT) jFTA = λ j. (27)

The matrix form of equation (27) is written as

U jA = λ j or
[
U j;λ j

]
, j = 0, 1, 2, · · · , t − 1 (28)

where

U j = Xα(a)(BT) jFT
≡

[
u j0 u j1 u j2 · · · u jN

]
. (29)

After the conditions were added, the formed augmented matrix can be written as follows:

[W̃; G̃] =



w00 w01 · · · w0N ; 1(x0)
w10 w11 · · · w1N ; 1(x1)
...

...
...

... ;
...

w(N−t−1)0 w(N−t−1)1 · · · w(N−t−1)N ; 1(xN−t−1)
w(N−t)0 w(N−t)1 · · · w(N−t)N ; 1(xN−t)

u00 u01 · · · u0N ; λ0
u10 u11 · · · u1N ; λ1
...

...
...

... ;
...

u(t−1)0 u(t−1)1 · · · u(t−1)N ; λt−1


This augmented matrix is briefly written as

W̃A = G̃ (30)

If det(W̃) , 0, A the matrix of Hermite coefficients which is solution of equation (30) is found by

A = (W̃)−1G̃. (31)

Finally, substitution of these coefficients into the truncated Hermite series gives the desired solution of the
form:

y(x) =
N∑

n=0

anHn(xα). (32)

5. Numerical Examples and Comparisons

In this section, three different examples of fractional linear differential equations were solved for values
0.3, 0.5, 0.75 of α by using HCM. Obtained results were compared with the exact solutions and some
numerical results in literature. All numerical computations were performed by using MatlabR2009b.
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5.1. Example 1:

As the first example, the following fractional linear differential equation was solved

CDαy(x) + y(x) =
2x2−α

Γ(3 − α)
−

x1−α

Γ(2 − α)
+ x2

− x, x ∈ [0, 1] (33)

with the initial condition

y(0) = 0 (34)

The exact solution was given by y(x) = x2
− x. The approximate solution was obtained by applying

Hermite collocation method. In calculations, N = 7 and α = 0.3 were used. Obtained numerical results
were compared with exact solutions in Table 1. In addition, absolute errors were calculated at the selected
points of the given interval. Graphs of exact and approximate solution were depicted in Figure 1.

Table 1 : Comparison of HCM solution with exact solution.
x HCM Exact Solution Absolute Error

0.1 -0.08998084 -0.09000000 1.92x10−5

0.2 -0.15999265 -0.16000000 7.35x10−6

0.3 -0.20999508 -0.21000000 4.92x10−6

0.4 -0.23999632 -0.24000000 3.68x10−6

0.5 -0.24999710 -0.25000000 2.90x10−6

0.6 -0.23999759 -0.24000000 2.41x10−6

0.7 -0.20999794 -0.21000000 2.06x10−6

0.8 -0.15999824 -0.16000000 1.76x10−6

0.9 -0.08999836 -0.09000000 1.64x10−6

1 0.00000204 0 2.04x10−6

0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

x

y

 

 

Exact Solution

HCM Solution

Figure 1: Graphs of exact and approximate solution graphs for Example 1

5.2. Example 2:

As the second example, the following fractional linear differential equation was solved

y′′(x) − xy′(x) +C D0.5y(x) = −3x3
− 2x2 + 6x + 2 +

1
Γ(0.5)

(2.67x1.5 + 3.2x2.5) (35)
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with the nonhomogeneous boundary conditions

y(0) = 0, y(1) = 2. (36)

The exact solution was given by y(x) = x3 + x2. First, the non-homogeneous boundary conditions must be
homogenized using the transformation u(x) = y(x) − 2x. In this case, above fractional linear differential
equation with the nonhomogeneous boundary conditions is written as

u′′(x) − xu′(x) +C D0.5u(x) = −3x3
− 2x2 + 8x + 2 +

1
Γ(0.5)

(2.67x1.5 + 3.2x2.5
− 4x0.5) (37)

with the homogeneous boundary conditions

u(0) = 0, u(1) = 0. (38)

The approximate solution was obtained by applying Hermite collocation method. In calculations, N = 6
and α = 0.5 were used. Obtained numerical results were compared with exact solutions in Table 2. In
addition, computed absolute errors were compared with absolute errors of Sinc-Galerkin Method [6] at
the selected points of the given interval. Graphs of exact and approximate solution were depicted in
Figure 2. It is seen that all calculated numerical results are in good agreement with the values of [6] and
exact solutions.

Table 2 : Comparison of HCM solution with exact solution.
x HCM Exact Solution Absolute Error SGM[6]

0.1 0.01162959 0.011 6.30x10−4 5.14x10−3

0.2 0.04876612 0.048 7.66x10−4 1.97x10−3

0.3 0.11780338 0.117 8.03x10−4 5.34x10−3

0.4 0.22478149 0.224 7.81x10−4 3.13x10−3

0.5 0.37571715 0.375 7.17x10−4 1.40x10−4

0.6 0.57661971 0.576 6.20x10−4 8.77x10−6

0.7 0.83349530 0.833 4.95x10−4 2.94x10−3

0.8 1.15234834 1.152 3.48x10−4 4.64x10−3

0.9 1.53918230 1.539 1.82x10−4 1.03x10−3
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Figure 2: Graphs of exact and approximate solution graphs for Example 2

5.3. Example 3:
As the third example, the following fractional linear differential equation was solved

CDαy(x) + y(x) = x3+α +
Γ[4 + α]

6
x3, x ∈ [0, 1] (39)

and initial condition

y(0) = 0 (40)

The exact solution was given by y(x) = x3+α. The approximate solution was obtained by applying Hermite
collocation method. In calculations, N = 10 and α = 0.75 were used. Obtained numerical results were
compared with exact solutions in Table 3. In addition, computed absolute errors were compared with
absolute errors of Fractional Adams-Bashforth-Moulton Method [7] at the selected points of the given
interval. Graphs of exact and approximate solution were depicted in Figure 3. It can be said that the
presented method gives numerical results with very high accuracy.

Table 3: Comparison of HCM solutions with exact solutions for α = 0.75.
x HCM Exact Solution Absolute Error FABMM[7]

0.0033333 5.13802767x10−10 5.13801414x10−10 1.35x10−15 3.74x10−10

0.0066667 6.91286266x10−9 6.91286027x10−9 2.39x10−15 1.40x10−9

0.0100000 3.16227800x10−8 3.16227766x10−8 3.41x10−15 2.97x10−9

0.0133333 9.30079952x10−8 9.30079907x10−8 4.48x10−15 5.07x10−9

0.0166667 2.14749827x10−7 2.14749821x10−7 5.35x10−15 7.67x10−9

0.0200000 4.25364678x10−7 4.25364672x10−7 6.31x10−15 1.08x10−8

0.0233333 7.58425539x10−7 7.58425532x10−7 7.02x10−15 1.44x10−8

0.0266667 1.25136138x10−6 1.25136137x10−6 7.88x10−15 1.85x10−8

0.0300000 1.94627726x10−6 1.94627725x10−6 8.32x10−15 2.31x10−8

0.0333333 2.88931769x10−6 2.88931768x10−6 8.98x10−15 2.82x10−8

6. Conclusion

Hermite collocation method was presented for approximate solutions of fractional linear differential
equations from order 0 < α < 1. The accuracy and efficiency of the method was illustrated by solving three
different examples of fractional linear differential equations for values 0.3, 0.5, 0.75 of α. According to
obtained numerical results, the presented method satisfied very highly acceptable results for the given
fractional linear differential equations.
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Figure 3: Graphs of exact and approximate solution graphs for Example 3
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