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Tensor approach to finding a basic feasible solution of the
transportation problem
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Abstract. A new metric tensor-based approach to transportation problem is used in this paper. We used
the North West Corner Rule and Minimum-cost Method with the application of tensor calculus to generalize
this problem. As a test example, we analyzed the 3×3 time-dependent transformation of prices with respect
to data transfer.

1. Introduction

One of the most common problems that company managers often encounter is the optimization: cost
minimization, productivity maximization, resource allocation optimization, etc. In general, it is the problem
of finding, under certain constraints, the maximum or minimum value of a function of several variables -
objective function. If the objective function as well as the functions describing the constraints, the process
of finding the optimal solution is called linear programming (LP). A general approach to formulating a
LP problem includes the following standard steps: understanding the problem, identification of decision
variables, determining the objective function as a linear combination of decision variables, formulation of
the objective function and all constraints as a linear combination of decision variables, and determining
both global upper and down limits of decision variables.

The transportation problem (TP), one of the basic problems of transport flow, is a special type of LP
problem used to minimize the transportation cost of distributing a single commodity from a number of
supply sources to a number of demand destinations obeying the supply limit and demand requirement.
Logistics and supply-chain management for reducing cost largely depend on transportation models that
can, in the case when cost coefficients and demand quantities are known, lead to efficient algorithms. One
of the pioneers of the TP (being a part of transshipment problem) is A. N. Tolstoí [11, 13] who wrote a paper
on finding minimal total kilometrage in cargo transportation in space published in a book on transportation
planning issued by the National Commissariat of Transportation of the Soviet Union. He presented and
explained several approaches for transportation cargo along the railway in the Soviet Union. The first
mathematical formulation of TP as it is now known, as well as the corresponding methods, originate from
F. L. Hitchcock [4], T. C. Koopmans [7], and in the form of the simplex method, G. B. Dantzig [2]. Later they
have been followed by a lot of papers implemented in the fields of industry and business. Although TP is
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quite old, there are still enough scientific works and discussions that deal with specific issues of practical
application of analytical methods for solving it [3, 5]. Moreover, apart from the original task, tasks in the
field of production, services, management, marketing (optimal placement of machines, auxiliary services,
warehouses, selection of the location of services or energy facilities, flow and storage of data, selection of
workers) are increasingly being formulated and solved in the form of TP.

The main purpose of this paper is to give a different, more general approach to the transportation
problem using an arbitrary metric tensor. In this way, it is possible to consider the influence of more factors
on finding the optimal solution to a practical problem than in the standard case.

2. Preliminaries

First, let us define transportation problem (TP).
Suppose that there are m sources, S1,S2, . . . ,Sm, of some goods and n demand destinations, D1,D2, . . . ,Dn.

Let ai represents the capacity of a source i, b j is demand of the destination j, while ci j correspond to cost of
transportation a unit of goods from source Si to destination D j. The tabular representation of these data is

D1 D2 . . . D j . . . Dn

S1 c11 c12 . . . c1 j . . . c1n a1

S2 c21 c22 . . . c2 j . . . c2n a2
...

...
...
. . .

...
. . .

...
...

Si ci1 ci2 . . . ci j . . . cin ai
...

...
...
. . .

...
. . .

...
...

Sm cm1 cm2 . . . cmj . . . cmn am

b1 b2 . . . b j . . . bn

The goal is to determine the optimal quantities of goods xi j transported from Si to D j so that the cost of
transportation is minimal.

The mathematical model of TP is [1, 12, 17]

Minimize Z =
m∑

i=1

n∑
j=1

ci jxi j

n∑
j=1

xi j = ai, i = 1, . . . ,m,

m∑
i=1

xi j = b j, j = 1, . . . ,n,

xi j ≥ 0, i = 1, . . . ,m, j = 1, . . . ,n.

(1)

It is known that vectors and matrices, the basic objects in TP, can be viewed as special cases of tensors
(tensors of the first and second order). Therefore, it is reasonable to consider TP in the tensor calculus
environment.

Riemannian spaces and metric tensors have been studied theoretically [9], but they are applied in
different subjects as well [14–16]. In this paper, we will recognize one more application of symmetric metric
tensors.

A manifold MN equipped with a symmetric metric tensor 1̂ which corresponds to matrix
[
1i j

]
N×N

,

1i j = 1 ji, is Riemannian space RN. We assume that matrix of tensor 1̂ is non-singular, i.e. det
[
1i j

]
, 0.

In tensor calculus, it has been used the Einstein summation convention with mute indices. For example,

aiαb jα =

N∑
p=1

aipb jp, (2)
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for tensors â and b̂ of the types (2, 0) and (0, 2), respectively. The Einstein summation convention applied
on tensors of the type (1, 1) is equivalent to obtaining separate elements of product of two matrices. For
simplicity, let u =

[
ui

j

]
and v =

[
vi

j

]
be matrices of the type N ×N.

If w = uv, then

w =
[
wi

j

]
=

 N∑
p=1

ui
pvp

j

 = [ui
αvαj
]
.

After comparing with the Einstein summation convention, the last expression is presented as
[
wi

j

]
=
[
ui
αvαj
]
,

with the mute index α.
Because of non-singularity of the matrix

[
1i j

]
, the components of metric tensor with upper indices are

defined as
[
1

i j
]
=
[
1i j

]−1
. According to the Einstein summation convention by mute indices α and because

of symmetries 1i j = 1 ji such as 1i j
= 1

ji, the next equalities hold

δi
j = 1

iα1 jα = 1
iα1α j = 1

αi1 jα = 1
αi1α j. (3)

The symmetric metric tensor with bottom indices has been used for lowering of indices, i.e. if Ui1...ip
j1... jq

is
a geometrical object of the type (p, q), the lowering of an index ir and the rising of an index js are realized
in the next manner

Ui1...ir−1.ir+1...ip
ir j1... js

= 1irαU
i1...ir−1αir+1...ip
j1... jq

and U jsi1...ip
j1... js−1. js+1... jq

= 1
jsβUi1...ip

j1... js−1β js+1... jq
. (4)

Finally, because matrix
[
1

i j
]

is symmetric, it generates an inner product of vectors in next manner:

u ·1 v =
[

u1 . . . uN

] 
111 . . . 11N

...
. . .

...
1N1 . . . 1NN




v1
...

vN

 =
 N∑

p=1

N∑
q=1

up1
pqvq

 ≡ [uα1αβvβ].
According to (4), because the previous product uαuβ with components 1αβ of metric tensor 1̂ corresponds

to the rising of index α in uα or index β in vβ, uα1
αβ
= uβ, 1αβvβ = vα, we get

uα1
αβvβ ≡ uαvα ≡ uβvβ.

In Euclidean space EN, the components of metric tensor are components of Kronecker delta-symbols
with bottom indices, 1i j = δi j. Hence, raising and lowering of any index in the tensor τ̂ does not change
value of the indexed object. In other words, with respect to the metric of Euclidean space EN, it is not
significant whether the indices in τi1...ip

j1... jq
are upper or lower ones. Components of a vector û in Euclidean

space may be written as ui or ui. Components of matrix w of the type N × N in space EN may be written
as wi

j, wi j, or wi j, equivalently. In an N-dimensional Riemannian space, it is important whether indices are
bottom or lowering ones. Positions of indices are important for transformation of indexed objects under
transformations of reference systems.

3. Basic feasible solution of transportation problem

Let us recall some terms and facts related to TP (1) [10, 11].

• A matrix X =
[
xi j

]
m×n

of non-negative individual allocations (xi j ≥ 0) which satisfies the row and
column conditions is feasible solution.
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• A feasible solution such that contains no more than m + n − 1 non-negative allocations is basic feasible
solution.

• A basic feasible solution which minimizes the total transportation cost is optimal solution.

It is known that TP has an optimal solution if and only if it is balanced, i.e. if
m∑

i=1

ai =

n∑
j=1

b j is valid. An

unbalanced TP can be made balanced by adding any dummy source if the supply is less than the demand,
or dummy destination otherwise, both with zero cost.

The process of solving the transport problem is usually done in two stages: finding of an initial basic
feasible solution and checking the optimality with improving the solution until it is optimal. There are a
few various methods for each stage. With the intention of giving a new, tensor based approach to the TP,
we will indicate two simple methods for determining the initial basic solution, North West Corner Rule
and Minimum-cost Method.

In the sequel, we explain these methods followed by an example.

Algorithm 3.1. [1, 6, 8, 17] North West Corner Rule Method (NWC Method)

Step 1: Balance the transportation problem if not originally by adding a dummy source or destination making∑m
i=1 ai =

∑n
j=1 b j, with zero transportation cost in added cells.

Start with the north west (upper left) corner (1, 1), i.e. put i = j = 1.
Step 2: Assign the value xi j = min{ai, b j} and reduce supply ai or demand b j accordingly.
Step 3: If ai is exhausted, go to one cell vertically down, i.e. put i := i + 1. If b j is exhausted, go to one cell

horizontally right, i.e. put j := j + 1.
Step 4: Repeat Steps 2 and 3 until available quantity is exhausted.

Algorithm 3.2. [1, 6, 8, 17] Minimum-cost Method (MC Method)

Step 1: Identify the cell (i, j) with the smallest cost ci j and allocate xi j = min{ai, b j}.
Step 2: If min{ai, b j} = ai, then cross out the ith row and decrease b j j by ai. If min{ai, b j} = b j, then cross out the

jth column and decrease ai j by b j. If min{ai, b j} = ai = b j, cross out only one of ith row or jth column.
Step 3: Repeat Steps 1 and 2 with uncrossed-out cells until available quantity is exhausted.

The example of working of the previous algorithms is the following one.

Example 3.3. There are three routs A, B, and C for data transfer and three auxiliary storage facilities P, Q, and R who
keep data before transferring it to the Federal cluster at the end of the day. The capacity of data on routes A, B, and C
are 80, 70, and 60 thousand of terabyte (TB) respectively, and daily capacity of storages 50, 110, and 50 thousand TB
respectively. The cost of transferring one TB of data from each route differs from each route to each storage, according
to distance, and can be represented as follows: route A: 16, 18 and 21; route B: 17, 19, and 14; route C: 32, 11, and
15 all to storages P, Q, and R respectively. The problem is how many thousands of TB is to be sent from each route to
find a basic feasible solution of the total cost of transfer.

Representing constraints in Table and applying Algorithm 1, we obtain

x11 = min{80, 50} = 50; x12 = min{80 − 50, 110} = 30;
x22 = min{70, 110 − 30} = 70; x32 = min{60, 110 − 30 − 70} = 10; x33 = 50,

P Q R

A 50 30 80
16 18 21

B 70 70
17 19 14

C 10 50 60
32 11 15

50 110 50 210
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The obtained basic feasible solution and corresponding total cost are

X =

50 30 0
0 70 0
0 10 50

 , Z = 16 · 50 + 18 · 30 + 19 · 70 + 11 · 10 + 15 · 50 = 3530.

The minimum-cost method finds a better starting solution by concentrating on the cheapest routes. The solution
is given by

min{ci j, i, j = 1, 2, 3} = 11 = c32, x32 = min{60, 110} = 60;
min{ci j, i = 1, 2, j = 1, 2, 3} = 14 = c23, x23 = min{50, 70} = 50;
min{ci j, i, j = 1, 2} = 16 = c11, x11 = min{50, 80} = 50;
min{ci2, i = 1, 2} = 18 = c12, x12 = min{110 − 60, 80 − 50} = 30; x22 = 20.

P Q R

A 50 30 80
16 18 21

B 20 50 70
17 19 14

C 60 60
32 11 15

50 110 50 210

X =

50 30 0
0 20 50
0 60 0

 , Z = 16 · 50 + 18 · 30 + 19 · 20 + 14 · 50 + 11 · 60 = 3080. (5)

4. Transportation problem and metric tensor

Let us TP (1) present in tensor notation. Suppose that m = n = N. If it is not satisfied, we can add some
dummy sources or destinations with zero components.

Vectors of supplies and demands are tensors of the first order in the Euclidean space EN:[
a1 a2 · · · aN

]T
= [ai]T,

[
b1 b2 · · · bN

]
= [b j], i, j ∈ {1, 2, . . . ,N}.

The cost matrix is a tensor of the second order
c11 c12 · · · c1N
c21 c22 · · · c2N

· · ·

cN1 cN2 . . . cNN

 = [ci j].

Decision variables are 
x11 x12 · · · x1N
x21 x22 · · · x2N

· · ·

xN1 xN2 . . . xNN

 = [xi j].

In that manner, TP (1), with respect to the Einstein summation convention as in (2), is equivalent to

Minimize Z = δαγδβδcαβxγδ,
δαβeαxiβ = ai,
δαβeαxβ j = b j,

xi j ≥ 0,
i, j = 1, . . . ,N,

(6)
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where δi j is Kronecker’s delta symbol with upper indices, and ei = 1.
As we have already mentioned, δi j are components of metric tensor of the Euclidean space EN. For this

reason, the tensor form of objective function Z given in (6) may be equivalently expressed as

Z = cαβxαβ or Z = cαβxαβ. (7)

If xi j is solution of transporting problem (7), the corresponding solution xi j with bottom indices is
obtained in the manner (4) as

xi j = δiαδ jβxαβ. (8)

We will generalize the transportation problem (6) with respect to m = n = N below. Instead of Kronecker
delta symbols with upper indices, we will use the symmetric metric tensor with upper indices. In that way,
the objective function becomes more general and permits impact of some new parameters.

In the general transportation problem with respect to symmetric metric tensor 1̂, the objective function
Z is expressed as

Z = 1
αγ
1
βδcαβxγδ.

The components of corresponding matrix of costs are

C
i j = 1

iγ
1

jδcγδ. (9)

The solution of this problem is presented in following theorem.

Theorem 4.1. Let
[
ci j

]
be a constant matrix and let

[
C

i j
]
, for Ci j = 1iα1

jβcαβ be the matrix of cost. The basic feasible
solution of transportation problem

MinimizeZ = 1αγ1βδcαβxγδ
δαβeαxiβ = ai
δαβeαxβ j = b j

xi j ≥ 0
i, j = 1, . . . ,N

(10)

is

xi j = 1αi1β jxαβ, (11)

where xαβ is the basic feasible solution of transportation problem

Minimize Z = δαγδβδcαβxγδ,
δαβeαxiβ = ai,
δαβeαxβ j = b j,

xi j ≥ 0,
i, j = 1, . . . ,N.

(12)

If G =
[
1i j

]
is matrix consisted of components of metric tensor and if X =

[
xi j
]

is matrix consisted of solutions
xi j = δiαδ jβxαβ of problem (12), the matrix of solutions of problem (10) is[

xi j

]
= GXG. (13)

Proof. The transportation problem (10) is equivalent to the problem

Z = cαβxαβ,
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where indices in xαβ are raised with respect to nonconstant metric tensor 1̂.
After applying some of the TP solving methods, we obtain the corresponding components of xαβ. The

solution of problem (10) is obtained after lowering indices from xαβ.
Because left indices in elements of matrices mi j denote the row, and the right ones denote the column

where the element is placed, the equation (13) holds directly from tensor expression of this solution.

Example 4.2. Let us consider problem presented in Example 1 with additional information on data transfer reliability.
Let 1i j denote special benefits if facility P,Q,R use routs A,B,C respectively.

In the case of 1i j
= δi j, the next equality holds

Z =
3∑

i=1

3∑
j=1

ci jxi j.

With respect to a symmetric metric tensor 1̂, whose components are 1i j, one obtains the following equation

Z =

3∑
i=1

3∑
j=1

di jxi j

for

d11 = c11(111)2 + c12111112 + c21111112 + c22(112)2

+ c13111113 + c31111113 + c23112113 + c32112113 + c33(113)2,

d12 = c11111112 + c21(112)2 + c31112113 + c12111122

+ c22112122 + c32113122 + c13111123 + c23112123 + c33113123,

d13 = c11111113 + c21112113 + c31(113)2 + c12111123

+ c22112123 + c32113123 + c13111133 + c23112133 + c33113133,

d21 = c11111112 + c12(112)2 + c13112113 + c21111122

+ c22112122 + c23113122 + c31111123 + c32112123 + c33113123,

d22 = c11(112)2 + c12112122 + c21112122 + c22(122)2

+ c13112123 + c31112123 + c23122123 + c32122123 + c33(123)2,

d23 = c11112113 + c21113122 + c12112123 + c31113123

+ c22122123 + c32(123)2 + c13112133 + c23122133 + c33123133,

d31 = c11111113 + c12112113 + c13(113)2 + c21111123

+ c22112123 + c23113123 + c31111133 + c32112133 + c33113133,

d32 = c11112113 + c12113122 + c21112123 + c13113123

+ c22122123 + c23(123)2 + c31112133 + c32122133 + c33123133,

d33 = c11(113)2 + c12113123 + c22(123)2

+ c13113133 + c31113133 + c23123133 + c32123133 + c33(133)2.

(14)

Suppose that he metric tensor 1̂ corresponds to matrix [1i j] = diag{K,L,M} and [1i j] = [1i j]−1 = diag{K−1,L−1,M−1
}.

The transformed matrix of cost is

C = Ci j = 1iα1
jβcαβ =

 16K−2 18(KL)−1 21(KM)−1

17(KL)−1 19L−2 14(LM)−1

32(KM)−1 11(LM)−1 15M−2

 .
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Solving transformed problem we have the solution that includes additional parameters. For example, for
K = 2,L = 10,M = 5, we have

C =

 4 0.9 2.1
0.85 0.19 0.28
3.2 0.22 0.6

 .
Applying MC method shown in Algorithm 3.2 we obtain basic feasible solution and corresponding total cost

X =

50 0 30
0 70 0
0 40 20

 , Z = 16 · 50 + 21 · 30 + 19 · 70 + 11 · 40 + 15 · 20 = 3500.

Note that total cost is worse then one obtained by MC method applied on non-transformed problem (5), but here choice
of solution includes offered benefits.

4.1. The generalized feasible solution of a Transportation problem
There are three routs A, B, and C for data transfer and three auxiliary storage facilities P, Q, and R who

keep data before transferring it to the Federal cluster at the end of the day. The capacity of data on routes
A, B, and C are 80, 70, and 60 thousand of terabyte (TB) respectively, and daily capacity of storages 50, 90,
and 70 thousand TR respectively. The cost of transferring one TB of data from each route differs from each
route to each storage, according to distance, and can be represented as follows: route A: A1(t), A2(t) and
A3(t); route B: B1(t), B2(t), and B3(t); route C: C1(t), C2(t), and C3(t) all to storages P, Q, and R respectively.
The problem is how many thousands of TB is to be sent in one hour interval (0 ≤ t ≤ 60) from each route to
minimize the total cost of transfer.

The costs functions and constraints are presented in Table

P Q R

A x11(t) x12(t) x13(t) a1(t)
A1(t) A2(t) A3(t)

B x21(t) x22(t) x23(t) a2(t)
B1(t) B2(t) B3(t)

C x31(t) x32(t) x33(t) a3(t)
C1(t) C2(t) C3(t)

b1(t) b2(t) b3(t)

(15)

for b3(t) = a1(t) + a2(t) + a3(t) − b1(t) − b2(t).
Applying NWC ethod, we get the values of a basic feasible solution [xi j].
With respect to a1(t) = 80, a2(t) = 70, a3(t) = 60, b1(t) = 50, b2(t) = 90, b3(t) = 70, and the functions

Ai = Ai(t), Bi = Bi(t), Ci = Ci(t), i = 1, 2, 3,

A1 =


−

2
3

t + 50, t ∈ [0, 45)

20, t ∈ [45, 55)
6t − 310, t ∈ [55, 60],

A2 =


−

7
45

t + 70, t ∈ [0, 45),

4
3

t − 50, t ∈ [45, 60]
A3 = −

1
6

t + 60, t ∈ [0, 60],

B1 =

 −
4
5

t + 80, t ∈ [0, 50)

t − 10, t ∈ [50, 60]
B2 =


−

8
9

t + 60, t ∈ [0, 45)

t − 25, t ∈ [45, 55)
4t − 190, t ∈ [55, 60]

B3 = −
3
4

t + 50, t ∈ [0, 60]

C1 = −t + 80, t ∈ [0, 60], C2 =

 −
6
5

t + 70, t ∈ [0, 50),

3t − 140, t ∈ [50, 60],
C3 =


−

4
9

t + 60, t ∈ [0, 45)

−2t + 130, t ∈ [45, 55)
−2t + 140, t ∈ [55, 60].

we obtain the next basic fesible solution

X =

50 30 0
0 60 10
0 0 60

 , Z(t) = 50 · A1(t) + 30 · A2(t) + 60 · B2(t) + 10 · B3(t) + 60 · C3(t).
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The total cost function is

Z(t) =



−
251
2

t + 12300, t ∈ [0, 45)

−
55
2

t + 6300, t ∈ [45, 55)

905
2

t − 19500, t ∈ [55, 60].

(16)

The graphical representation of this function is

Figure 1: Graphical representation of the function Z(t)

From Figure 1 one can see that function Z(t), representing information flow, is decreasing for t ∈ [0, 45],
also decreasing for t ∈ [45, 55], and at the last part, where t ∈ [55, 60] function Z(t) in increasing.

With respect to metric tensor 1̂, whose components are expressed as the following matrix

[
1i j

]
=

 f (t) 0 0
0 f 2(t) 0
0 0 f 3(t)

 , (17)

for a function f , f k(t) = f (t) · . . . · f (t),︸           ︷︷           ︸
k times

we obtain transformed cost function

Z(t) =


Z1(t), 0 ≤ x < 45
Z2(t), 45 ≤ x < 50
Z3(t), 50 ≤ x < 55
Z4(t), 55 ≤ x ≤ 60,

(18)



D. J. Simjanović / AMCS 7 (1) (2023), 25–35 34

where

Z1(t) = 50 ·
(
−

2
3

t + 50
)
· f 2(t) + 30 ·

(
−

7
45

t + 70
)
· f 3(t) + 60 ·

(
−

4
5

t + 80
)
· f 3(t)

+ 10 ·
(
−

8
9

t + 60
)
· f 4(t) + 60 ·

(
−

4
9

t + 60
)
· f 6(t),

Z2(t) = 50 · 20 · f 2(t) + 30 ·
(4
3

t − 50
)
· f 3(t) + 60 ·

(
−

4
5

t + 80
)
· f 3(t)

+ 10 · (t − 25) · f 4(t) + 60 · (−2t + 130) · f 6(t),

Z3(t) = 50 · 20 · f 2(t) + 30 ·
(4
3

t − 50
)
· f 3(t) + 60 · (t − 10) · f 3(t)

+ 10 · (t − 25) · f 4(t) + 60 · (−2t + 130) · f 6(t),

Z4(t) = 50 · (6t − 310) · f 2(t) + 30 ·
(4
3

t − 50
)
· f 3(t) + 60 · (t − 10) · f 3(t)

+ 10 · (4t − 190) · f 4(t) + 60 · (−2t + 140) · f 6(t).

With respect to the metric tensor 1̂ given by (17), one gets

G
−1 = [1i j] : 111 =

1
f (t)
, 122 =

1
f 2(t)
, 133 =

1
f 3(t)
, 1i j

= 0, i , j,

Z = 1
αγ
1
βδcαβxγδ

= 111111c11x11 + 1
11122c12x12 + 1

11133c13x13 + 1
22111c21x21 + 1

22122c22x22

+ 122133c23x23 + 1
33111c31x31 + 1

33122c32x32 + 1
33133c33x33

=
50A1(t)

f 2(t)
+

30A2(t)
f 3(t)

+
60B2(t)

f 4(t)
+

10C2(t)
f 5(t)

+
60C3(t)

f 6(t)
,

such as

X = [xi j] =

 50 30 0
0 60 0
0 10 60

 , X = [xi j] = G−1
XG

−1 =



50
f 2(t)

30
f 3(t)

0

0
60

f 4(t)
0

0
10

f 5(t)
60

f 6(t)


.

5. Conclusion

Matrix of costs used in the transportation problem (6) is constant. We generalized this approach by
defying the matrix of costs C given by (9). The matrix C is matrix-valued function. For this reason, it
generalizes the starting approach (1) with respect to different variables. Also, the tensor-based feasible
solution to transportation problem related to data transfer was presented. The standard transportation
problem (1) is related to inner product with unit matrix (Euclidean space). In this paper, using symmetric
matrix (metric tensor in the Riemannian space) instead of unit matrix, generalizes the TP approach. This
generalization enables consideration of TP with a external factors affection the goal function.
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D. J. Simjanović / AMCS 7 (1) (2023), 25–35 35

References

[1] G. M. Agpa, The Transportation problem and its variants, J. Oper. Res. Soc., Vol. 24 (1973), 79 – 99.
[2] G. B. Dancing, Application of the simplex method to a transportation problem, Activity analysis and production and allocation, T.C.,

Ed., John Willey and Sons, New York, 359–373, 1951.
[3] C. Gao, C. Yan, Z. Zhang, Y. Hu, S. Mahadevan, Y. Deng, An amoeboid algorithm for solving linear transportation problem, Physica A:

Statistical Mechanics and its Applications, Vol. 398 (2014) 179–186.
[4] F. L. Hitchcock, The distribution of a product from several sources to numerous localities, J. Math. Phys., Vol. 20 (1941), 224–230.
[5] Z.A.M.S. Juman, M.A. Hoque, An efficient heuristic to obtain a better initial feasible solution to the transportation problem, Appl. Soft

Comput., Vol. 34 (2015) 813–826.
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