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On the average value of a function of generalized mean
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Abstract. In this short note we find the exact formula for

lim
n→∞

(
[0,1]n

f (Mn,p(x1, . . . , xn)) dx1 . . . dxn,

where Mn,p(x1, . . . , xn), p ∈ [−∞,∞] is the generalized mean and f is an arbitrary continuous function.

1. Introduction and preliminaries

The Miklós Schweitzer competition is an annual Hungarian mathematics competition for university
students, established in 1949. It is named after Miklós Schweitzer, a young mathematician who died in the
Second World War. The competition consists of ten to twelve problems written by prominent Hungarian
mathematicians. Competitors are allowed ten days to come up with solutions and they can use any tools
and literature they want. The Schweitzer competition is one of the most unique in the world. Winners of
the contests have gone on to become world-class scientists. The contests serve as reflections of Hungarian
mathematical trends and as starting points for many interesting research problems in mathematics, [1]. In
1967 competition the following problem was given.

Problem 1.1. (See problem P.6 in [1].) Let f be a continuous function on the unit interval [0, 1]. Show that

lim
n→∞

(
[0,1]n

f
(x1 + · · · + xn

n

)
dx1 . . . dxn = f

(1
2

)
and

lim
n→∞

(
[0,1]n

f
(

n
√

x1 · · · xn

)
dx1 . . . dxn = f

(1
e

)
.

The problem is solved in [1] in two different ways. The first one uses some combinatorial arguments among
others, while the other one is based on the strong law of large numbers and Lebesgue’s theorem of dominant
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convergence. Our aim is to solve the problem in the most general case when the arithmetic (geometric)
mean is replaced by the generalized mean with exponent p ∈ [−∞,∞]. Our proof is quite elementary and
it is intended to be accessible to undergraduate students of mathematics.

Recall some definitions and notations. The generalized mean with exponent p ∈ [−∞,∞] of positive real
numbers x1, . . . , xn is defined by

Mn,p(x1, . . . , xn) =



(
xp

1+···+xp
n

n

)1/p
, p ∈ R \ {0}

n
√

x1 · · · xn, p = 0
min{x1, . . . , xn}, p = −∞
max{x1, . . . , xn}, p = ∞

. (1)

As we know, limp→0 Mn,p =Mn,0, limp→∞Mn,p =Mn,∞ and limp→−∞Mn,p =Mn,−∞

For k ∈N ∪ {0}, denote by pk the power function pk(x) = xk, p0(x) = 1, x ∈ R.
As usual, for a compact set K ⊂ R we denote by C(K) the Banach space of all real-valued continuous

functions f : K→ R with the supremum norm ∥ f ∥ = supx∈K | f (x)|.

2. Main result

We need the following result. Its proof is quite elementary and can be found in [3] Theorem 7.9 or in [2]
Lemma 8.14. Note that its converse is a consequence of the uniform boundedness principle.

Lemma 2.1. Let X be a normed space and Y be a Banach space and let M be a subset of X whose linear span is dense
in X. Suppose for a sequence (An)n∈N ⊂ B(X,Y) the following hold:

1. The sequence (∥An∥)n∈N is bounded.
2. For each x ∈M, limn Anx exists.

Then (Anx)n∈N converges for each x ∈ X and the map Ax := limn Anx belongs to B(X,Y).

Corollary 2.2. Let K ⊂ R be a compact set and let I be an interval of length one. For a sequence of continuous
functions φn : In

→ K, let An : C(K)→ R be the sequence of maps defined by

An f =
(

In
f (φn(x1, . . . , xn))dx1 . . . dxn, f ∈ C(K).

Suppose there is a constant c ∈ R such that limn Anpk = pk(c), for every k = 0, 1, 2, . . . . Then the map A f := limn An f
is well defined, A ∈ B(C(K),R) and A f = f (c) for every f ∈ C(K).

Proof. By Weierstrass approximation theorem we know that the set of polynomials span{pk : k ∈N ∪ {0}} is
dense in C(K). Since the length of interval I is equal to one we have

∥An f ∥ = |An f | ≤
(

In
| f (φn(x1, . . . xn))|dx1 . . . dxn

≤

(
In

sup
x∈K
| f (x)|dx1 . . . dxn = ∥ f ∥,

so ∥An∥ ≤ 1. Also,R, as a vector space overR, is a Banach space. We can now apply Lemma 2.1 to conclude
that the functional A f = limn An f is well defined and A ∈ B(C(K),R). Since An is linear and limn Anpk = pk(c),
we have Aq = limn Anq = q(c) for every polynomial q. For arbitrary f ∈ C(K) there exists a sequence of
polynomials ( fn)n such that fn → f in the supremum norm. By the continuity of A we obtain

A f = A(lim
n

fn) = lim
n

A fn = lim
n

fn(c) = f (c).
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Theorem 2.3. Let f : [0, 1]→ R be a continuous function and let Mn,p(x1, . . . , xn), −∞ ≤ p ≤ ∞ be the generalized
mean defined by (1). Then

lim
n→∞

(
[0,1]n

f
(
Mn,p(x1, . . . , xn)

)
dx1 . . . dxn

=


f (1), p = ∞
f
(

1
(p+1)1/p

)
, −1 < p < ∞, p , 0

f
(

1
e

)
, p = 0

f (0), −∞ ≤ p ≤ −1

. (2)

Proof. Depending on the value of the parameter p, we will divide the proof in five cases. In all cases we will
first prove the adequate formula for the power function pk : x→ xk and then we will apply Corollary 2.2.

p = 0: This case is quite simple. By Fubini’s theorem, we have

lim
n→∞

(
[0,1]n

(
n
√

x1 · · · xn

)k
dx1 . . . dxn

= lim
n→∞

(
[0,1]n

xk/n
1 · · · x

k/n
n dx1 . . . dxn = lim

n→∞

(∫ 1

0
xk/ndx

)n

= lim
n→∞

( 1
k/n + 1

)n

= lim
n→∞

1(
(1 + k/n)n/k

)k
=

1
ek
.

Let K = I = [0, 1], φn(x1, . . . , xn) = n
√

x1 · · · xn ∈ [0, 1], xi ∈ [0, 1], c = 1/e and

An f :=
(

[0,1]n
f
(

n
√

x1 · · · xn

)
dx1 . . . dxn, f ∈ C(K).

Then limn→∞ Anpk = pk(1/e), ∀k ∈ N ∪ {0}. The assumptions of Corollary 2.2 are satisfied, so it follows that
for every f ∈ C[0, 1], limn An f = f

(
1
e

)
.

p = ∞: Note that

[0, 1]n =
⋃
σ∈Sn

{
(x1, . . . , xn) ∈ [0, 1]n : 0 ≤ xσ1 ≤ xσ2 ≤ · · · ≤ xσn ≤ 1

}
, (3)

where Sn is the set of all permutations of {1, 2, , . . . , n}. Because the (n-dimensional Lebesgue) measure of
the intersection of any two sets on the right hand side of (3) is equal to zero, we have

In,k :=
(

[0,1]n
(max{x1, . . . , xn})

k dx1 . . . dxn

= n!
(

0≤x1≤···≤xn≤1
xk

ndx1 . . . dxn

= n!
∫ 1

0
xk

ndxn

∫ xn

0
dxn−1

∫ xn−1

0
dxn−2 · · ·

∫ x2

0
dx1.

By induction on n ≥ 2 it is easy to show that∫ xn

0
dxn−1

∫ xn−1

0
dxn−2 · · ·

∫ x2

0
dx1 =

xn−1
n

(n − 1)!
,

so we obtain

In,k = n!
∫ 1

0
xk

n
xn−1

n

(n − 1)!
dxn =

n
n + k

.
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Thus,

lim
n→∞

(
[0,1]n

(max{x1, . . . , xn})
k dx1 . . . dxn = 1 = 1k.

In the same way as in the previous case, let K = I = [0, 1], φn(x1, . . . , xn) = max{x1, . . . , xn} ∈ [0, 1],
xi ∈ [0, 1] and c = 1. The assumptions of Corollary 2.2 are satisfied, so for every f ∈ C[0, 1],

lim
n→∞

(
[0,1]n

f (max{x1, . . . , xn}) dx1 . . . dxn = f (1).

p = −∞: As in the previous case, we have

(
[0,1]n

(min{x1, . . . , xn})
k dx1 . . . dxn

= n!
(

0≤x1≤···≤xn≤1
xk

1dx1 . . . dxn

= n!
∫ 1

0
dxn

∫ xn

0
dxn−1 · · ·

∫ x3

0
dx2

∫ x2

0
xk

1dx1

= n!
∫ 1

0

k!
(n + k − 1)!

xk+n−1
n dxn =

n!k!
(n + k)!

.

Thus,

lim
n→∞

(
[0,1]n

(min{x1, . . . , xn})
k dx1 . . . dxn = 0 = 0k.

From the same reasons as in the case p = ∞, we conclude that

lim
n→∞

(
[0,1]n

f (min{x1, . . . , xn}) dx1 . . . dxn = f (0).

0 < p < ∞: Let

Ip(n, k) =
(

[0,1]n

xp
1 + · · · + xp

n

n

k

dx1 . . . dxn, k ∈N ∪ {0}.

We want to derive a recurrent relation for (Ip(n, k))k but in such a way that after passage to the limit as
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n→∞we obtain a useable relation. By the symmetry and the Fubini’s theorem, we have

Ip(n, k) :=
(

[0,1]n

xp
1 + · · · + xp

n

n

xp
1 + · · · + xp

n

n

k−1

dx1 . . . dxn

=
1
n

n∑
i=1

(
[0,1]n

xp
i

xp
1 + · · · + xp

n

n

k−1

dx1 . . . dxn

=

(
[0,1]n

xp
n

xp
1 + · · · + xp

n

n

k−1

dx1 . . . dxn

=

(
[0,1]n

xp
n

nk−1

k−1∑
i=0

(
k − 1

i

) (
xp

1 + · · · + xp
n−1

)i
(xp

n)k−1−i dx1 . . . dxn

=

k−1∑
i=0

(n − 1)i

nk−1

(
k − 1

i

)(
[0,1]n−1

xp
1 + · · · + xp

n−1

n − 1

i

dx1 . . . dxn−1 ·

∫ 1

0
xp(k−i)

n dxn

=

k−1∑
i=0

(n − 1)i

nk−1

(
k − 1

i

)
1

p(k − i) + 1
Ip(n − 1, i)

=
(n − 1

n

)k−1 1
p + 1

Ip(n − 1, k − 1) +
k−2∑
i=0

(n − 1)i

nk−1

(
k − 1

i

)
1

p(k − i) + 1
Ip(n − 1, i)

where in the last row we extracted the last term from the sum. Since 0 ≤ xi ≤ 1 we have 0 ≤ ((xp
1+· · ·+xp

n)/n)k
≤

1, so 0 ≤ Ip(n, k) ≤ 1, for every n ∈N and every k ∈N ∪ {0}. It follows that

lim
n→∞

k−2∑
i=0

(n − 1)i

nk−1

(
k − 1

i

)
1

p(k − i) + 1
Ip(n − 1, i) = 0

as limn(n − 1)i/nk−1 = 0, for i ∈ {0, 1, . . . k − 2}. Note that limn((n − 1)/n)k−1 = 1 and Ip(n, 0) = 1, for every
n ∈ N, thus, limn Ip(n, 0) = 1. It is now easy to show by induction on k ≥ 0 that the sequence (Ip(n, k))n is
convergent for every k and

lim
n→∞

Ip(n, k) =
1

(p + 1)k
, k ∈N ∪ {0}.

Let K = I = [0, 1], φn(x1, . . . , xn) = (xp
1 + · · · + xp

n)/n ∈ [0, 1], xi ∈ [0, 1] and c = 1/(p + 1). By Corollary 2.2, it
follows that for every 1 ∈ C[0, 1]

lim
n→∞

(
[0,1]n
1

xp
1 + · · · + xp

n

n

 dx1 . . . dxn = 1

(
1

p + 1

)
.

For arbitrary f ∈ C[0, 1], let 1 : x→ f (x1/p), x ∈ [0, 1]. We obtain the desired formula (2) for 0 < p < ∞.

−∞ < p < 0: The proof of the previous case is not applicable here because
∫ 1

0 xp(k−i) dx = ∞ when
p(k − i) + 1 ≤ 0. Let

Ip(n, k, ε) =
(

[ε,1+ε]n

xp
1 + · · · + xp

n

n

k

dx1 . . . dxn,
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where ε > 0 is an arbitrary positive real and k ∈N ∪ {0}. In the same way as in the case p > 0 we obtain

Ip(n, k, ε) =
(n − 1

n

)k−1 ∫ 1+ε

ε
xp dx · Ip(n − 1, k − 1, ε)

+

k−2∑
i=0

(n − 1)i

nk−1

(
k − 1

i

) ∫ 1+ε

ε
xp(k−i) dx · Ip(n − 1, i, ε).

Since ε ≤ xi ≤ 1 + ε and p < 0 we have (1 + ε)pk
≤

(
(xp

1 + · · · x
p
n)/n

)k
≤ εpk, so (1 + ε)pk

≤ Ip(n, k, ε) ≤ εpk, for
every p < 0, every k ∈N ∪ {0} and every n ∈N. It follows that

lim
n→∞

k−2∑
i=0

(n − 1)i

nk−1

(
k − 1

i

) ∫ 1+ε

ε
xp(k−i) dx · Ip(n − 1, i, ε) = 0.

Note that Ip(n, 0, ε) = 1, ∀n ∈ N, so limn Ip(n, 0, ε) = 1. We can now show by induction on k ≥ 0 that the
sequence (Ip(n, k, ε))n converges and that

lim
n→∞

Ip(n, k, ε) = (ap(ε))k,

where

ap(ε) =
∫ 1+ε

ε
xp dx =

 1
p+1

(
(1 + ε)p+1

− εp+1
)
, p < 0, p , −1

ln 1+ε
ε , p = −1

.

Let I = [ε, 1 + ε], K = [(1 + ε)p, εp] and c = ap(ε). Then φn(x1, . . . , xn) := (xp
1 + · · · + xp

n)/n ∈ K when xi ∈ I. Let

An f =
(

In
f

xp
1 + · · · + xp

n

n

 dx1 . . . dxn, f ∈ C(K).

We have proved that limn Anpk = ck for every k ∈N ∪ {0}. From Corollary 2.2, we conclude that limn An f =
f (c), for every f ∈ C(K). In the special case when f (x) = xk/p we obtain

lim
n→∞

Jp(n, k, ε) = (ap(ε))
k
p , (4)

where

Jp(n, k, ε) =
(

[ε,1+ε]n

xp
1 + · · · + xp

n

n


k
p

dx1 . . . dxn.

Let us prove that the function Jp(n, k, ε) is increasing with respect to the argument ε > 0. Let 0 < ε1 ≤ ε2.
After the change of variables xi = ti + ε2 − ε1, i = 1,n, whose Jacobian is equal to one, we obtain

Jp(n, k, ε2) =
(

[ε1,1+ε1]n

(
(t1 + (ε2 − ε1))p + · · · + (tn + (ε2 − ε1))p

n

) k
p

dt1 . . . dtn

≥

(
[ε1,1+ε1]n

 tp
1 + · · · + tp

n

n


k
p

dt1 . . . dtn = Jp(n, k, ε1)

since the functions x→ xp and x→ xk/p are both decreasing when p < 0. For ε ≤ xi ≤ 1 + ε it is easy to see
that εk

≤ (Mn,p(x1, . . . , xn))k
≤ (1 + ε)k, so

εk
≤ Jp(n, k, ε) ≤ (1 + ε)k. (5)
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Also Jp(n, k, ε) is increasing in ε, so the limit

Jp(n, k, 0) := lim
ε→0+

Jp(n, k, ε) =
(

[0,1]n

xp
1 + · · · + xp

n

n


k
p

dx1 . . . dxn

exists,

0 ≤ Jp(n, k, 0) ≤ 1, (6)

by (5) and

Jp(n, k, 0) ≤ Jp(n, k, ε), ∀n ∈N. (7)

From (6) it follows that the sequence (Jp(n, k, 0))n has an accumulation point. Let a be an arbitrary one.
From (7) and (4) we conclude that

a ≤ lim
n→∞

Jp(n, k, ε) = (ap(ε))k/p.

This is valid for every ε > 0 so

0 ≤ a ≤ lim
ε→0+

(ap(ε))k/p. (8)

It is easy to show that

lim
ε→0+

(ap(ε))k/p =

 1
(p+1)k/p , −1 < p < 0

0, −∞ < p ≤ −1
.

Hence, a = 0 in the case −∞ < p ≤ −1. Therefore, for −∞ < p ≤ −1, the sequence (Jp(n, k, 0))n is convergent
and

lim
n

(
[0,1]n

xp
1 + · · · + xp

n

n


k
p

dx1 . . . dxn = 0. (9)

Suppose now that −1 < p < 0. Form (8) we have

a ≤
1

(p + 1)k/p
.

On the other hand, the function x → xk/p, (1 + ε)p
≤ x ≤ εp is convex, the set [ε, 1 + ε]n is of the measure

equal to one and the function (x1, . . . , xn) → (xp
1 + · · · + xp

n)/n, ε ≤ xi ≤ 1 + ε is continuous, so by Jensen’s
inequality we obtain

Jp(n, k, ε) ≥

(
[ε,1+ε]n

xp
1 + · · · + xp

n

n
dx1 . . . dxn


k
p

=

((
[ε,1+ε]n

xp
1 dx1 . . . dxn

) k
p

=
(
ap(ε)

)k/p
.

This is valid for every ε > 0, so

Jp(n, k, 0) ≥ lim
ε→0+

(
ap(ε)

)k/p
=

1
(p + 1)k/p

,
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and hence a ≥ 1/(p+1)k/p. It follows that a = 1/(p+1)k/p. Therefore, for −1 < p < 0, (Jp(n, k, 0))n is convergent
and

lim
n

(
[0,1]n

xp
1 + · · · + xp

n

n


k
p

dx1 . . . dxn =
1

(p + 1)k/p
. (10)

In the same way as before, let K = I = [0, 1], φn(x1, . . . , xn) =Mn,p(x1, . . . , xn) ∈ [0, 1], xi ∈ [0, 1] and

c =

0, −∞ < p ≤ −1
1/(p + 1)1/p, −1 < p < 0

.

The formula (2) follows from (9), (10) and Corollary 2.2.

We conclude this note with some remarks. We have proved the nontrivial extension of formula (2)
from the cases p = 1 and p = 0 to the general case p ∈ [−∞,∞]. We gave a proof based on elementary
facts. Theorem 2.3 also holds in the case when f is a complex-valued continuous function on [0, 1]. Indeed,
suppose that f (x) = u(x) + iv(x). Then we can apply Theorem 2.3 on functions u, v ∈ C([0, 1]). The claim
now follows from the linearity of the map

f → lim
n→∞

(
[0,1]n

f
(
Mn,p(x1, . . . , xn)

)
dx1 . . . dxn, f ∈ C([0, 1]).

Note that
lim

p→−1+

1
(p + 1)1/p = 0 and lim

p→0

1
(p + 1)1/p =

1
e
.

Let h(p) = (1 + p)1/p. Then

lim
p→∞

ln h(p) = lim
p→∞

ln(1 + p)
p

= lim
p→∞

1/(1 + p)
1

= 0,

so
lim
p→∞

1
(p + 1)1/p = 1.

It follows that for f ∈ C([0, 1]), the function

p→ lim
n→∞

(
[0,1]n

f
(
Mn,p(x1, . . . , xn)

)
dx1 . . . dxn, −∞ ≤ p ≤ ∞

is continuous.
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