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Abstract. This article is motivated essentially by several extensive developments on the familiar Laplace
and Hankel transforms as well as on their extensions and generalizations. Our main object here is to
present a number of (presumably new) properties and characteristics as well as inter-relationships among
each of such general families of integral transforms as Srivastava’s generalized Whittaker transform,
Hardy’s generalized Hankel transform and Srivastava’s ϵ-generalized Hankel transform. Many trivial and
inconsequential parametric and argument variations of the classical Laplace transform and its s-multiplied
version (or the Laplace-Carson transform), each of which unfortunately is being referred to as a “new”
integral transform in the present-day obviously amateurish-type amateurish-type literature, are pointed
out. The Srivastava-Panda multidimensional integral transformations involving their multivariable H-
function in the kernel as well as the potentially useful process of association of variables in the theory and
applications of the multidimensional Laplace transform are also considered with a view to encouraging
related further studies and revisits.

1. Introduction, Definitions and Motivation

Named after the French scholar and polymath, Pierre-Simon Laplace (1749–1827), the Laplace transform
is defined by

L{f (t) : s} :=

∫ ∞

0

e−st f (t) dt =: FL (s) , (1)
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provided that the integral exists. Indeed it happens to be one of the most widely-used and extensively-
investigated integral transformations. The s-multiplied version of the Laplace transform (or the Laplace-
Carson transform):

LC {f (t) : s} := s

∫ ∞

0

e−st f (t) dt =: FLC (s) , (2)

which is attributed to the American transmission theorist, John Renshaw Carson (1886–1940), has one
distinct advantage over the Laplace transform in the fact that the Laplace-Carson transform of a constant
is the same constant itself (see, for details, [14], [17], [27] and [59]).

In the vast literature on the the theory and applications of the Laplace transform (1), one can find a
number of its nontrivial extensions and generalizations including, for example, those by the Dutch mathe-
matician, Cornelis Simon Meijer (1904–1974) and the Indian mathematician, Rama Shankar Varma (1905–
1970). More recently, in the year 1968, by using the Whittaker Wκ,µ-function defined by (see [15, p. 264,
Eq. 6.9 (2)])

Wκ,µ(z) := e−
z
2 z

c
2 Ψ(a, c; z)

=
Γ(1− c)

Γ(a− c+ 1)
1F1

 a;

c;
z

+
Γ(c− 1)

Γ(a)
1F1

 a− c+ 1;

2− c;
z

 (3)

(
a :=

1

2
− κ+ µ; c := 2µ+ 1

)
,

the following generalized Whittaker transform was introduced and studied by Srivastava [38, p. 386, Eq.
(1.7)]:

Sρ,σ
q,κ,µ {f (t) : s} :=

∫ ∞

0

(st)σ−
1
2 e−

1
2 qst Wκ,µ(ρst) f (t) dt =: FS (s) (4)

(
min{ℜ([q + ρ]s− 2ϵ),ℜ(σ + δ′ ± µ+ 1)} > 0

)
,

where

f(t) =


O
(
tδ eϵt

)
(t→ 0+)

O
(
tδ

′)
(t→ ∞).

Here, and in what follows, we use the standard notation pFq for a generalized hypergeometric function
with p numerator parameters and q denominator parameters, where

p, q ∈ N0 := N ∪ {0} (N = {1, 2, 3, · · · }).

Indeed, here and in what follows, we use the general Pochhammer symbol or the shifted factorial (λ)ν , since

(1)n = n! (n ∈ N0),

which is defined (for λ, ν ∈ C) by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),
(5)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-quotient exists. Then, with
p numerator parameters αj ∈ C (j = 1, · · · , p) and q denominator parameters βj ∈ C \ Z−

0 (j = 1, · · · , q),
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the generalized hypergeometric function pFq is given by

pFq

 α1, · · · , αp;

β1, · · · , βq;
z

 :=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

=: pFq (α1, · · · , αp;β1, · · · , βq; z) , (6)

where, as usual, C denotes the complex plane and

Z−
0 := Z− ∪ {0} (Z− = {−1,−2,−3, · · · }).

The appropriate conditions for convergence of the infinite series in Eq. (6) are being recalled here as follows
(see, for details, [42, p. 3 et seq.]):

(i) converges absolutely for |z| <∞ if p ≦ q,
(ii) converges absolutely for |z| < 1 if p = q+ 1, and
(iii) diverges for all z (z ̸= 0) if p > q+ 1.

It is known for the Whittaker Wκ,µ-function that

W 1
2 ,±µ = zµ+

1
2 e−

1
2 z

and

W0,µ =

√
2z

π
Kµ(z),

where, for the modified Bessel (or the Macdonald) function Kµ(z), we have

K± 1
2
(z) =

√
π

2z
e−z.

Thus, clearly, the generalized Whittaker transform (4) would reduce to the following generalized Laplace
transforms:

Kν {f(t) : s} :=

√
2

π

∫ ∞

0

(st)
1
2 Kν(st) f (t) dt =: FMK (s) (7)

and

Mκ,µ {f(t) : s} :=

∫ ∞

0

(st)−κ− 1
2 e−

1
2 st Wκ+ 1

2 ,µ
(st) f (t) dt =: FMW (s) , (8)

which were introduced by Meijer (see [28] and [29]). Moreover, the generalized Whittaker transform (4) can
easily be seen to reduce also to the following generalizations of the Laplace transform by Varma (see [56]
and [57]):

VWκ,µ {f(t) : s} :=

∫ ∞

0

(2st)−
1
4 Wκ,µ(2st) f (t) dt =: FVW (s) (9)

and

VVκ,µ {f(t) : s} :=

∫ ∞

0

(st)µ−
1
2 e−

1
2 st Wκ,µ(st) f (t) dt =: FVV (s) . (10)

It should be remarked in passing that, in its special case when q = ρ = 1, Srivastava’s generalized Whittaker
transform (4) was considered earlier by Mainra [25].
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We turn now toward two generalizations of the Hankel transform given by

Hν{f(t) : s} :=

∫ ∞

0

t Jν(st) f(t) dt, (11)

where Jν(z) denotes the familiar Bessel function defined by (see, for details, [16] and [58])

Jν(z) :=

∞∑
n=0

(−1)n
(
1

2
z

)ν+2n

n! Γ(ν + n+ 1)
=

(
1

2
z

)ν

Γ(ν + 1)
0F1

 ;

ν + 1;
− 1

4
z2

 . (12)

The first generalization, which is due to the English mathematician, Godfrey Harold Hardy (1877–1947),
is defined by (see [19]; see also [16, p. 73])

H(λ)
ν {f(t) : s} :=

∫ ∞

0

t Fν(st) f(t) dt, (13)

where, in terms of the Lommel function sµ,ν(z), we have

Fν(z) :=
22−ν−2λ

Γ(λ)Γ(ν + λ)
sν+2λ−1,ν(z)

=

∞∑
n=0

(−1)n
(
1

2
z

)ν+2λ+2n

Γ(λ+ n+ 1)Γ(ν + λ+ n+ 1)

=

(
1

2
z

)ν+2λ

Γ(λ+ 1)Γ(ν + λ+ 1)
0F2

 ;

λ+ 1, ν + λ+ 1;
− 1

4
z2

 . (14)

Obviously, in its special case when λ = 0, Hardy’s transform (13) reduces immediately to the Hankel
transform (11).

With a view to introducing the aforementioned second generalization of the Hankel transform (11), we
recall the function ψν,λ,µ(z) defined, in terms of the Pochhammer symbol in (5), by (see, for details, [35],
[36] and [39])

ψν,λ,µ(z) :=
√
π

∞∑
n=0

(−1)n (ν + n+ 1)n

n! Γ
(
λ+ n+ 1

2

)
Γ
(
µ+ n+ 1

2

) (
1

4
z

) 1
2ν+n

. (15)

By applying the definition (15), the above-mentioned second generalization of the Hankel transform (11)
was introduced by Srivastava [36] as follows:

Ψ
(ν)
λ,µ{f(t) : s} :=

∫ ∞

0

t ψν,λ+ 1
2 ,µ

(
1

4
s2t2

)
f(t) dt, (16)

where the function f(t) as well as the parameters λ, µ and ν are so constrained that the integral in (16)
exists. Clearly, since

ψν, 12ν+
1
2 ,

1
2ν

(
z2
)
= Jν(2z),

in terms of the Bessel function defined by (12), a special case of the generalized Hankel transform (16) when

λ = µ =
1

2
ν

would yield the Hankel transform defined by (11).
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Each of the above-defined integral transforms has been investigated in the literature rather extensively
and systematically. For several interesting properties and characteristics of Srivastava’s generalized Whit-
taker transform (4), which was introduced in [38], the reader is referred to the subsequent works by (for
example) Srivastava et al. (see [37], [39], [40], [41], [45], [50] and [52]; see also [46, p. 289, Eq. 9.4
(53)]), Sinha [34], Munot and Padmanabham [30], Tiwari and Ko [54], Rao [31], Malgonde and Saxena [26],
Akhaury [2], and Carmichael and Pathak ([5] and [6]). Motivated essentially by these and other related
developments, which are based upon Srivastava’s generalized Whittaker transform (4), Hardy’s generalized
Hankel transform (13) and Srivastava’s generalized Hankel transform (16), we propose here to present several
(presumably new) properties and characteristics as well as inter-relationships among each of these general
families of integral transforms.

Our plan in this paper is summarized as follows. In the next section (Section 2), we present several
properties and characteristics, including the inversion theorems and the Parseval-Goldstein type theorems
for Srivastava’s generalized Whittaker transform (4) as well as for the generalized Hankel transforms (13)
and (16). In Section 3, we prove a theorem relating the generalized Hankel transforms defined by (13) and
(16). Section 4 establishes a general result which relates Hardy’s generalized Hankel transform (13) with
Srivastava’s generalized Whittaker transform (4). Finally, in the concluding section (Section 5), we first
briefly describe our findings in this paper and then point out many trivial and inconsequential parametric
and argument variations of the Laplace transform (1) and its aforementioned s-multiplied version (that
is, the Laplace-Carson transform), each of which unfortunately is being referred to as a “new” integral
transform in the present-day obviously amateurish-type literature. Here, in Section 5 itself, with a view to
encouraging and motivating related further studies and revisits, we briefly consider the Srivastava-Panda
multidimensional integral transformations involving their multivariable H-function in the kernel as well as
the potentially useful process of association of variables in the theory and applications of the multidimen-
sional Laplace transform.

2. Miscellaneous Properties and Characteristics of
the General Integral Transforms

We begin this section by presenting the following inversion theorem for Srivastava’s generalized Whittaker
transform (4).

Theorem 1. (see [38, p. 387, Theorem 1]) Let

Φ(x) =
1

2πi

c+i∞∫
c−i∞

x−ξ

Λ(1− ξ)
dξ, (17)

where

Λ(ξ) =
ρµ+

1
2 Γ(σ + µ+ ξ)Γ(σ − µ+ ξ)[

1
2 (q + ρ)

]σ+µ+ξ
Γ
(
σ − κ+ ξ + 1

2

)
· 2F1

 σ + µ+ ξ, µ− κ+ 1
2 ;

σ − κ+ ξ + 1
2 ;

q − ρ

q + ρ

 . (18)

Then the inversion formula for Srivastava’s generalized Whittaker transform (4) is given by

f(t) =

∫ ∞

0

Λ(st) Sρ,σ
q,κ,µ {f (t) : s} ds, (19)

provided that

s−c Sρ,σ
q,κ,µ {f (t) : s} ∈ L(0,∞) and tc−1 f(t) ∈ L(0, R0) (R0 > 0),

where ℜ(σ ± µ+ 1) > c > 0.
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We next recall an inversion theorem for Hardy’s generalized Hankel transform (13) as Theorem 2 below.

Theorem 2. (see [9]) In terms of the Bessel functions Jν(z) and Yν(z) of the first and the second kind, let

Gν,λ(z) = cos(λπ) Jν(z) + sin(λπ) Yν(z). (20)

Then the inversion formula for Hardy’s generalized Hankel transform (13) is given by

f(t) =

∫ ∞

0

s Gν,λ(st) H(λ)
ν {f(t) : s} ds, (21)

provided that

(a) ℜ(λ+ 1) > 0, ℜ(ν + λ+ 1) > 0, ℜ(ν + 2λ) < 3
2 , |ℜ(ν)| ≦ 3

2 ;
(b) tα f(t) ∈ L(0, R1)

(
α = min

{
ν + 2λ+ 1, 12

}
(R1 > 0)

)
;

(c) t
1
2 f(t) ∈ L(0, R2) (R2 > 0).

Finally, we state and prove the following inversion theorem for Srivastava’s ϵ-generalized Hankel transform
(16) in slightly modified form given by

Ψ
(ν,ϵ)
λ,µ {f(t) : s} :=

∫ ∞

0

t e−ϵst ψν,λ+ 1
2 ,µ

(
1

4
s2t2

)
f(t) dt, (22)

where the function f(t) as well as the parameters λ, µ, ν and ϵ are so constrained that the integral in (22)
exists. Obviously, we have

lim
ϵ→0

{
Ψ

(ν,ϵ)
λ,µ {f(t) : s}

}
= Ψ

(ν,ϵ)
λ {f(t) : s}. (23)

Theorem 3. Let

Θ(x) =
1

2πi

c+i∞∫
c−i∞

x−ξ

Ω(1− ξ)
dξ, (24)

where

Ω(ξ) =

√
π Γ(ν + ξ + 1)

22ν ϵν+ξ+1 Γ(λ+ 1)Γ
(
µ+ 1

2

)
· 3F3

 1
2ν +

1
2 ,

1
2ν + 1, 12ν +

1
2ξ +

1
2 ,

1
2ν +

1
2ξ + 1;

ν + 1, λ+ 1, µ+ 1
2 ;

− 1

4ϵ2

 . (25)

Then the inversion formula for the ϵ-generalized Hankel transform (22) is given by

f(t) =

∫ ∞

0

Θ(st) Ψ
(ν,ϵ)
λ,µ {f(t) : s} ds, (26)

provided that

s−c Ψ
(ν,ϵ)
λ,µ {f(t) : s} ∈ L(0,∞) and tc−1 f(t) ∈ L(0, R3) (R3 > 0),

where ℜ(ϵ) > 0 and ℜ(ν + 2) > c > 0.

Proof. Our demonstration of Theorem 3 would run parallel to that of Theorem 1, which is already detailed
in [38, p. 388]. Here, in this case, use is made of the de la Vallée Poussin’s theorem (see [3, p. 504]) for
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justifying the order of integration as well as the following known integral formula [17, p. 219, Entry 4.23
(17)]:

∫ ∞

0

tσ−1 e−st
pFq

 α1, · · · , αp;

β1, · · · , βq;
κt


=

Γ(σ)

sσ
p+1Fq

 α1, · · · , αp, σ;

β1, · · · , βq;

κ

s

 , (27)

provided that

ℜ(s) >

 0 (p < q)

ℜ(κ) (p = q)

Remark 1. By appropriately specializing the parameters λ, µ and ν, the limit case of Theorem 3 when
|ϵ| → 0 can be simplified considerably to yield an inversin theorem for the generalized Hankel transform
(16).

Remark 2. It is fairly straightforward to establish the Parseval-Goldstein type theorem for each of the
general families of integral transforms (see [18]; see also [39, p. 318, Theorem 2], [41, p. 266, Theorem 1]
and [50, Part I, p. 129, Theorem 3]). The details involved are being left as an exercise for the interested
reader.

3. Theorems Relating the Hardy Transform and Srivastava’s
ϵ-Generalized Hankel Transform

In this section, we state and prove two therems which relate the Hardy transform (13) with the ϵ-
generalized Hankel transform (22).

Theorem 4. Under the hypotheses of Theorem 3, let the function f(t) be given by

f(t) =

∫ ∞

0

Θ(st) Ψ
(δ,ϵ)
ζ,µ {f(t) : s} ds, (28)

where Θ(x) is defined by (25). Also let each of the following integrals:∫ R4

0

∣∣∣η1±ν H(λ)
ν {f(t) : η}

∣∣∣ dη (R4 > 0)

and ∫ ∞

R4

∣∣∣η 1
2 H(λ)

ν {f(t) : η}
∣∣∣ dη (R4 > 0)

be convergent. Then the following relationship holds true between the Hardy transform (13) with the ϵ-
generalized Hankel transform (22):

H(λ)
ν {g(t) f(t) : s} =

∫ ∞

0

Ψ
(δ,ϵ)
ζ,µ {f(τ) : η} · H(λ)

ν {Θ(ηt)g(t) : s} dη, (29)

provided that each member of (29) exists for a function g(t) constrained by

g(t) =

 O(tχ) (t→ 0+)

O
(
tτ eδt

)
(t→ ∞).
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Proof. Our demonstration of Theorem 4 is based upon the definitions (13) and (28) and would make use
of integral inversion which is justified by the de la Vallée Poussin’s theorem (see [3, p. 504]) under the
hypotheses of Theorem 4. We choose to omit the details involved.

In a manner analogous to our proofs of Theorem 4 above and Theorem 6 of Section 4, we can establish
the following result.

Theorem 5. Assuming that the hypotheses of Theorem 2 are satisfied, let the function f(t) be given by

f(t) =

∫ ∞

0

s Gν,λ(st) H(λ)
ν {f(t) : s} ds, (30)

where Gν,λ(x) is given by

Gν,λ(z) = cosec(νπ)
[
sin

(
(ν + λ)π

)
Jν(z)− sin(λπ)J−ν(z)

]
. (31)

Suppose also that each of the following integrals:∫ R5

0

∣∣∣η1±ν H(λ)
ν {f(t) : η}

∣∣∣ dη (R5 > 0)

and ∫ ∞

R5

∣∣∣η 1
2 H(λ)

ν {f(t) : η}
∣∣∣ dη (R5 > 0)

is convergent. Then the following relationship holds true between the Hardy transform (13) and Srivastava’s
ϵ-generalized Hankel transform (22):

Ψ
(δ,ϵ)
ζ,µ {g(t) f(t) : s} = cosec(νπ)

∫ ∞

0

η H(λ)
ν {f(t) : η}

·
[
sin

(
(ν + λ)π

)
Hν

(
g(t) Jν(ηt); s, η

)
− sin(λη) H−ν

(
g(t) J−ν(ηt); s, η

)]
dη, (32)

where

Hν

(
g(t); s, η

)
:= Ψ

(δ,ϵ)
ζ,µ {g(t) Jν(ηt) : s} (33)

and

g(t) =

 O(tχ) (t→ 0+)

O
(
tτ eδt

)
(t→ ∞),

it being tacitly assumed that each member of the relationship (32) exists.

We find it to be worthwhile to remark in passing that both Theorem 4 and Theorem 5 are sufficiently
general in nature. Each of these results can indeed be appropriately specialized to deduce a large number
of known or new relationships between various simpler integral transforms which we have considered in this
paper.

4. Relationship Between the Hardy Transform and Srivastava’s
Generalized Whittaker Transform

We first state our proposed relationship between the Hardy transform (13) and Srivastava’s generalized
Whittaker transform (4) as Theorem 6 below.
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Theorem 6. Under the hypotheses of Theorem 2, let the function f(t) be given by

f(t) =

∫ ∞

0

s Gν,λ(st) H(λ)
ν {f(t) : s} ds. (34)

Suppose also that each of the following integrals:∫ R6

0

∣∣∣η1±ν H(λ)
ν {f(t) : η}

∣∣∣ dη (R6 > 0)

and ∫ ∞

R6

∣∣∣η 1
2 H(λ)

ν {f(t) : η}
∣∣∣ dη (R6 > 0)

is convergent. If

ℜ
(
(ρ+ q)s

)
> 0 ℜ(χ+ σ + 1) > |ℜ(ν) + |ℜ(µ)|,

then the following relationship holds true:

S(ρ,σ)
q,κ,µ{g(t) f(t) : s} = cosec(νπ)

∫ ∞

0

η H(λ)
ν {f(t) : η}

·
[
sin

(
(ν + λ)π

)
hν

(
g(t) Jν(ηt); s, η

)
− sin(λη) h−ν

(
g(t) J−ν(ηt); s, η

)]
dη, (35)

where

hν
(
g(t); s, η

)
:= S(ρ,σ)

q,κ,µ{g(t) Jν(ηt) : s} (36)

and

g(t) =

 O(tχ) (t→ 0+)

O
(
tτ eδt

)
(t→ ∞).

Proof. First of all, since

Yν(z) = cosec(νπ)
[
Jν(z) cos(νπ)− J−ν(z),

it is easily seen from (20) that

Gν,λ(z) = cosec(νπ)
[
sin

(
(ν + λ)π

)
Jν(z)− sin(λπ)J−ν(z)

]
. (37)

Upon substituting for f(t) from (34), if we make use of the formula (37) and invert the order of integration
in the resulting double integrals, we obtain

sin(νπ) S(ρ,σ)
q,κ,µ{g(t) f(t) : s} = sin

(
(ν + λ)π

)
·
∫ ∞

0

η H(λ)
ν {f(t) : η} S(ρ,σ)

q,κ,µ{g(t) Jν(ηt) : s} dη

− sin(λπ)

∫ ∞

0

η H(λ)
ν {f(t) : η} S(ρ,σ)

q,κ,µ{g(t) J−ν(ηt) : s} dη. (38)

The above-mentioned inversion of the order of integration is justifiable by appealing to the de la Vallée
Poussin’s theorem (see [3, p. 504]) under the hypotheses of Theorem 6. The final result (35) would now
follow from (38) in light of the definition of hν

(
g(t); s, η

)
in (36).
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Remark 3. Since (see [38, p. 387, Eq. (1.13)])

hν
(
tχ; s, η

)
:= S(ρ,σ)

q,κ,µ{tχ Jν(ηt) : s} =
sσ+µ ρµ+

1
2

(
1
2η

)ν[
1
2 (ρ+ q)s

]χ+ν+σ+µ+1

·
∞∑

n=0

(−1)n Γ(χ+ ν + σ ± µ+ 2n+ 1)

n! Γ
(
χ+ ν + σ − κ+ 2n+ 3

2

)
Γ(ν + n+ 1)

(
η

(ρ+ q)s

)2n

· 2F1

 χ+ ν + σ + µ+ 2n+ 1, µ− κ+ 1
2 ;

χ+ ν + σ − κ+ 2n+ 3
2 ;

q − ρ

q + ρ

 , (39)

which holds true when

ℜ
(
(ρ+ q)s

)
> 0 and ℜ(χ+ ν + σ ± µ+ 1) > 0,

in its special case when g(t) = tχ, Theorem 6 would correspond to a known result [38, p. 389, Theorem 2].

5. Further Remarks and Observations

Our investigation in this article is motivated essentially by a number of extensive developments on
the familiar Laplace and Hankel transforms as well as on the extensions and generalizations of each of
these integral transforms. Here, in this article, we have presented several (presumably new) properties
and characteristics as well as inter-relationships among each of such general families of integral transforms
as Srivastava’s generalized Whittaker transform, Hardy’s generalized Hankel transform and Srivastava’s ϵ-
generalized Hankel transform. Some of our main results (especially Theorem 4, Theorem 5 and Theorem 6)
have been stated and proved here in a sufficiently general form. Each of these three results can indeed be
appropriately specialized to deduce a large number of known or new relationships between various simpler
integral transforms which we have considered in this paper.

We now turn to many trivial and inconsequential parametric and argument variations of the classical
Laplace transform (1) and its s-multiplied version (2). Unfortunately, all of these numerous trivial and in-
consequential parametric and argument variations of the classical Laplace transform (1) and its s-multiplied
version (2) are being claimed, by a number of obviously amateurish-type authors, to be a “new” integral
transform in the present-day literature. Some of these trivial and inconsequential parametric and argument
variations of the classical Laplace transform (1) and its s-multiplied version (2) are being listed below (see
also [43]):

I. The “Sumudu” Transform. The so-called Sumudu transform is an integral transform defined by

G (u) = S {f (t) ;u} :=

∫ ∞

0

e−t f (ut) dt (−τ1 < u < τ2) , (40)

which, when compared with the definitions in (1) and (2), leads us to the following straightforward relation-
ships with the Laplace transform and the Laplace-Carson transform:

G

(
1

s

)
= s FL (s) or G (u) =

1

u
FL

(
1

u

)
. (41)

and

G

(
1

s

)
= FLC (s) or G (u) = FLC

(
1

u

)
. (42)

II. The “Natural” (or N -) Transform. The so-called natural (or N -) transform is defined by (see [20])

R(u, s) = N{f(t) : u, s} :=

∫ ∞

0

e−st f(ut) dt, (43)
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which obviously reduces to the Laplace transform in (1) when u = 1 and the Sumudu transform in (40)
when s = 1. However, by the following rather trivial change of variable in (43):

t =
τ

u
and dt =

dτ

u

(
ℜ(u) > 0

)
,

one can easily see that

N{f(t) : u, s} =
1

u

∫ ∞

0

e−
sτ
u f(τ) dτ

=
1

u
L
{
f(τ) :

s

u

}
, (44)

which provides a direct (non-specialized) relationship with the classical Laplace transform in (1). Much
more trivially, we have

N{f(t) : u, s} = L{f (ut) : s}
(
min{ℜ(s),ℜ(u)} > 0

)
. (45)

Clearly, the equations (44) and (45) exhibit the fact that each and every usage of the classical Laplace
transform can be translated rather trivially in terms of the so-called natural (or N -) transform defined by
(43). Some of the recent usages of the natural (or N -) transform or its further inconsequential k-variation
can be found in [32], [33] and [55]. In particular, Sene and Srivastava [32] made use of the following k-version
of the natural (or N -) transform defined by (43):

Lk{f(t) : s} :=

∫ ∞

0

e−
stk

k f(t)
dt

t1−k
, (46)

which, under the change of the variable t as follows:

t = τ
1
k and dt =

1

k
τ

1
k−1 dτ (k > 0),

yields

Lk{f(t) : s} =
1

k

∫ ∞

0

e−
s τ
k f

(
τ

1
k

)
dτ

=
1

k
L
{
f
(
t

1
k

)
:
s

k

}
(k > 0) (47)

in terms of the classical Laplace transform (1) itself. On the other hand, Valizadeh et al. [55] and Shah et
al. [33] used, respectively, the versions (43) and (44) of the so-called natural transform.

III. The “Pathway” (or Pδ-Transform. The so-called pathway (or Pδ-) transform is defined, for a
function f(t) (t ∈ R), by (see [23]; see also [44] and [53])

Pδ{f(t) : s} = FP(s) :=

∫ ∞

0

[1 + (δ − 1)s]−
t

δ−1 f(t)dt (δ > 1), (48)

provided that the sufficient existence conditions are satisfied.)
Indeed, upon closely comparing the definitions in (48) and (1), it is easily observed that the so-called

Pδ-transform is essentially the same as the classical Laplace transform with the following rather trivial
parameter change in (1):

s 7−→ ln[1 + (δ − 1)s]

δ − 1
(δ > 1). (49)
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In fact, the following relationship holds true between the so-called Pδ-transform defined by (48) and the
classical Laplace transform given by (1):

Pδ {f(t) : s} = L

{
f(t) :

(
ln[1 + (δ − 1)s]

δ − 1

)}
(δ > 1) (50)

or, equivalently, by

L{f(t) : s} = Pδ

{
f(t) :

e(δ−1)s − 1

δ − 1

}
(δ > 1), (51)

which can indeed be applied reasonably simply to convert the table of the Laplace transforms into the cor-
responding table of the Pδ-transform and vice versa. However, in spite of the easy-to-use relationships (50)
and (51), the current literature on integral transforms, special functions and fractional calculus is flooded
by investigations claiming at least implicitly that the Pδ-transform Pδ{f(t) : s} defined by (48) is a gener-
alization of the classical Laplace transform defined by (1) (see, for example, [1]).

Other examples of several rather trivial and inconsequential parameter and argument variations of the
classical Laplace transform (with the kernel e−st) include the so-called Sadik transform (with the kernel
1
vβ e−vα t), which, for β = α, is simply the 1

s -multiplied Laplace transform when we replace the parameter
s trivially by vα. Thus, clearly, we have

Lvβ {f(t) : vα} :=
1

vβ

∫ ∞

0

e−vα t f(t) dt

=
1

vβ
L{f(t) : vα} (52)

in terms of the classical Laplace transform with s = vα and multiplied trivially by 1
vβ . In what sense, if at all,

does (52) define a nontrivial and obviously inconsequential generalization of the classical Laplace transform?

Such other rather trivial and inconsequential parameter and argument variations of the classical Laplace
transform in (1) or the Laplace-Carson transform (2) are known as the above-mentioned Sumudu transform
(when α = −1 and β = 1), the so-called Elzaki transform (when β = α = −1), the so-called Tang transform
(when α = −2 and β = 1), the so-called Kamal transform (when α + 1 = β = 0), the so-called Aboodh
transform (when α = β = 1), and so on. So far there are no convincing arguments as to why all these
rather trivial and inconsequential parameter and argument variations of the classical Laplace transform (1)
or the Laplace-Carson transform (2) are preferable in any way to the the classical Laplace transform in
(1) or the Laplace-Carson transform (2) themselves. Such unsubstantiated claims and attempts to simply
translate and repeat known theories and known applications of the classical Laplace transform in terms of
the above-mentioned (and possibly many other) obviously trivial and inconsequential parameter and ar-
gument variations of the classical Laplace transform (1) or the Laplace-Carson transform (2) ought to be
discouraged by all means.

Finally, we choose to reiterate the fact that the need for simultaneous operational calculus (based upon
multidimensional integral transformations) presents itself quite naturally when problems dependent on sev-
eral variables are to be treated operationally (see, for example, [4], [12] and [13]; see also [10]). Moreover,
since a wide variety of mathematical functions, which occur rather frequently in problems in applied math-
ematics and mathematical analysis, are special cases of the Srivastava-Panda H-function of several complex
variables (see, for details, [48] and [49]), a systematic further study of the Srivastava-Panda multidimensional
integral transformations involving their multivariable H-function in the kernel (see [50] and [51]) is believed
to lead to deeper, general and potentially useful results. We recall here a very specialized case, that is, the
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multidimensional Laplace transform defined by

Ln{f(t1, · · · , tn) : s1, · · · sn}

:=

∫ ∞

0

· · ·
∫ ∞

0

exp (−s1t1 − · · · − sntn) f(t1, · · · , tn) dt1 · · · dtn

=: FLn
(s1, · · · , sn) , (53)

which possesses the following inversion formula:

f(t1, · · · , tn) = L−1
n {FLn (s1, · · · , sn)} =

1

(2πi)n

σ1+i∞∫
σ1−i∞

· · ·
σn+i∞∫

σn−i∞

exp (s1t1 + · · ·+ sntn)

· FLn
(s1, · · · , sn) ds1 · · · dsn (min{σ1, · · · , σn} > 0) . (54)

Indeed, in some types of Systems Analysis, one needs to find the n-dimensional inverse Laplace transform
of the function FLn

(s1, · · · , sn), as given by (54), and then to evaluate it at t1 = · · · = tn = t, that is, to
find the function g(t) given by

g(t) := f(t, · · · , t) = L−1
n {FLn

(s1, · · · , sn)}
∣∣
t1=···=tn=t

. (55)

Thus, if

G(s) = L{g(t) : s} :=

∫ ∞

0

e−st g(t) dt, (56)

we say that G(s) is the associated transform of FLn
(s1, · · · , sn) (see, for details, [24]). Such processes of

association of variables in the theory and applications of the multidimensional Laplace transform (53) have
been investigated extensively (see, for example, [7], [8], [11], [21] and [22]) and seem to deserve further
studies and revisits.

Conflicts of Interest: The author declares that there is no conflict of interest.

References

[1] R. Agarwal, S. Jain and R. P. Agarwal, Solution of fractional Volterra integral equation and non-homogeneous time
fractional heat equation using integral transform of pathway type, Progr. Fract. Different. Appl. 1 (2015), 145–155.

[2] S. K. Akhaury, Some theorems for a distributional generalized Laplace transform, Jñānābha 16 (1986), 129–144.
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