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Abstract. The main aim of this paper is to introduce and analyze the notions of subspace almost pe-
riodicity and subspace weak almost periodicity for C-distribution semigroups and C-distribution cosine
functions in Banach spaces. We continue our previous research study of almost periodicity of abstract
Volterra integro-differential equations [13], focusing our attention on the abstract ill-posed Cauchy prob-
lems of first order.

1. Introduction and preliminaries

As mentioned in the abstract, we continue our previous research study [13] by enquiring into the basic
subspace almost periodic and subspace weak almost periodic properties of C-distribution semigroups and
C-distribution cosine functions in Banach spaces. The introduction of notions of subspace almost periodicity
and subspace weak almost periodicity is motivated by the fact that the integral generators of almost peri-
odic strongly continuous semigroups and almost periodic integrated C-semigroups explored in the existing
literature need to satisfy rather restrictive spectral conditions (since we primarily deal with semigroups and
cosine operator functions consisted of unbounded linear operators, the notion of subspace uniform almost
periodicity will not attract our attention here). On the other hand, a great number of chaotic or subspace
chaotic C-distribution semigroups and C-distribution cosine functions satisfying certain kinds of the Desch-
Schappacher-Webb criterion are subspace almost periodic, as well, with the subspace of almost periodicity
being generally dense in the initial Banach space. Because of that, we can freely say that the notion of
subspace almost periodicity is incredibly important considered from the application’s point of view.

The classes of (bounded) almost periodic distribution groups and cosine distributions were considered for
the first time by I. Cioranescu [4] in 1990. Six years later, in 1996, Q. Zheng and L. Liu [20] investigated the
class of almost periodic tempered distribution semigroups. Almost periodic distribution (semi-)groups and
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cosine distributions considered in [4] and [20] are exponential and have densely defined integral generators,
which is not the case with C-distribution semigroups and C-distribution cosine functions considered in this
paper. The reader with a little experience will easily observe that our approach is completely different
from those employed in [4] and [20]: speaking only in terms of global n-times integrated semigroups and
cosine functions, here we are interested in question whether n-th derivatives of such semigroups and cosine
functions exist and are almost periodic on a certain subspace Ẽ of the pivot space E (the main objective
in [4] and [20] is to analyze the almost periodicity of induced n-times integrated semigroups and cosine
functions, see e.g. [4, Theorem 1.1(ii)], which is very difficult to be satisfied in the case that n ∈ N). The
paper is consisted from two sections; in the first one, we collect some preliminaries concerning C-distribution
semigroups and C-distribution cosine functions, integrated C-semigroups and integrated C-cosine functions,
as well as vector-valued almost periodic functions, while in the second one we formulate and prove our main
structural results, proposing also some open problems we have not been able to solve.

We use the standard notation throughout the paper. Unless specifed otherwise, we shall always assume
henceforth that (E, ∥ · ∥) is a complex Banach space. If X and Y are general vector topological spaces over
the field of complex numbers, then L(X,Y ) designates the space of all continuous linear mappings from X
into Y ; L(E) ≡ L(E,E). If A is a closed linear operator acting on E, then the domain, kernel space and
range of A will be denoted by D(A), N(A) and R(A), respectively. Since no confusion seems likely, we will
identify A with its graph. The Banach space D(A) equipped with the graph norm ∥x∥[D(A)] := ∥x∥+ ∥Ax∥,
x ∈ D(A) will be denoted by [D(A)]. By E∗ we denote the dual space of E; C ∈ L(E) will be injective
and the inclusion CA ⊆ AC will be assumed. Set gζ(t) := tζ−1/Γ(ζ), t > 0 (ζ > 0), where Γ(·) denotes the
Gamma function.

Now we will recall the basic facts about vector-valued distribution spaces used henceforth. The Schwartz
spaces of test functions D = C∞

0 (R) and E = C∞(R) are equipped with the usual inductive limit topologies;
the topology of space of rapidly decreasing functions S defines the following system of seminorms pm,n(ψ) :=
supx∈R |xmψ(n)(x)|, ψ ∈ S, m, n ∈ N0. If ∅ ≠ Ω ⊆ R, then by DΩ we denote the subspace of D consisting
of those functions φ ∈ D for which supp(φ) ⊆ Ω; D0 ≡ D[0,∞). If φ, ψ : R → C are measurable functions,
the convolution products φ ∗ ψ and φ ∗0 ψ are defined by

φ ∗ ψ(t) :=
∞∫

−∞

φ(t− s)ψ(s) ds and φ ∗0 ψ(t) :=
t∫

0

φ(t− s)ψ(s) ds, t ∈ R.

If φ ∈ D and f ∈ D′, or φ ∈ E and f ∈ E ′, then we define the convolution f ∗ φ by (f ∗ φ)(t) := f(φ(t− ·)),
t ∈ R. For f ∈ D′, or for f ∈ E ′, define f̌ by f̌(φ) := f(φ(−·)), φ ∈ D (φ ∈ E). In general, the convolution
of two distributions f , g ∈ D′, denoted by f ∗ g, is defined by (f ∗ g)(φ) := g(f̌ ∗φ), φ ∈ D. It is well-known
that f ∗ g ∈ D′ and supp(f ∗ g) ⊆supp(f)+supp(g). For every t ∈ R, we define the Dirac distribution
centered at point t, δt for short, by δt(φ) := φ(t), φ ∈ D.

The space D′(E) := L(D, E) is consisted of all continuous linear functions D → E; D′
Ω(E) denotes

the subspace of D′(E) containing E-valued distributions whose supports are contained in Ω. Set D′
0(E) :=

D′
[0,∞)(E). If E = C, then the above spaces are also denoted by D′, D′

Ω and D′
0. For more details about

vector-valued distributions, we refer the reader to L. Schwartz [16]-[17]; the convolution of vector-valued
distributions will be taken in the sense of [14, Proposition 1.1].

Now we recall the definition of a C-distribution semigroup (see [10]):

Definition 1.1. Let G ∈ D′
0(L(E)) satisfy CG = GC. Then it is said that G is a C-distribution semigroup,

shortly (C-DS), iff G satisfies the following conditions:

(i) G(φ ∗0 ψ)C = G(φ)G(ψ), for any φ, ψ ∈ D.

(ii) N (G) :=
∩

φ∈ D0
N(G(φ)) = {0}.

A (C-DS) G is called dense iff, in addition to the above,

(iii) R(G) :=
∪

φ∈D0
R(G(φ)) is dense in E.
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Let G ∈ D′
0(L(E)) be a (C-DS) and let T ∈ E ′

0, i.e., T is a scalar-valued distribution with compact
support contained in [0,∞). Define

G(T ) :=
{
(x, y) ∈ E × E : G(T ∗ φ)x = G(φ)y for all φ ∈ D0

}
.

Then it can be easily seen that G(T ) is a closed linear operator commuting with C. We define the (in-
finitesimal) generator A of a pre-(C-DS) G by A := G(−δ′). We know that C−1AC = A as well as that the
following holds: Let S, T ∈ E ′

0, φ ∈ D0, ψ ∈ D and x ∈ E. Then we have:

A1. G(S)G(T ) ⊆ G(S ∗ T ) with D(G(S)G(T )) = D(G(S ∗ T )) ∩D(G(T )), and G(S) +G(T ) ⊆ G(S + T ).

A2. (G(ψ)x, G(−ψ′)x− ψ(0)Cx) ∈ A.

We denote by D(G) the set consisting of those elements x ∈ E for which x ∈ D(G(δt)), t ≥ 0 and the
mapping t 7→ G(δt)x, t ≥ 0 is continuous. By A1., we have that

D
(
G(δs)G(δt)

)
=D

(
G(δs ∗ δt)

)
∩D

(
G(δt)

)
=D

(
G(δt+s)

)
∩D

(
G(δt)

)
, t, s≥0,

which clearly implies G(δt)(D(G)) ⊆ D(G), t ≥ 0.
We refer the reader to [1], [5] and [10]-[11] for further information concerning fractionally integrated C-

semigroups and fractionally integrated C-cosine functions in Banach spaces, properties of their subgenerators
and integral generators.

Lemma 1.2. ([10]) A closed linear operator A is the generator of a (C-DS) G iff for every τ > 0 there exist
an integer nτ ∈ N and a local nτ -times integrated C-semigroup (Snτ (t))t∈[0,τ) with the integral generator A.
If this is the case, then the following equality holds:

G(φ)x = (−1)nτ

τ∫
0

φ(nτ )(t)Snτ (t)x dt, x ∈ E, φ ∈ D(−∞,τ).

Let us recall that the solution space for a closed linear operator A, denoted by Z(A), is defined as the set of

all x ∈ E for which there exists a continuous mapping u(·, x) ∈ C([0,∞) : E) satisfying
∫ t

0
u(s, x) ds ∈ D(A)

and A
∫ t

0
u(s, x) ds = u(t, x) − x, t ≥ 0. Throughout the paper, we will use the following important

characterization of space Z(A) : Assume A generates a (C-DS) G. Denote by D(G) the set of all x ∈∩
t≥0D(G(δt)) satisfying that the mapping t 7→ G(δt)x, t ≥ 0 is continuous. Then Z(A) = D(G). If

x ∈ Z(A), then u(t, x) = G(δt)x, t ≥ 0 and G(ψ)x =
∫∞
0
ψ(t)Cu(t, x) dt, ψ ∈ D0.

We need to recall the assertion of [10, Proposition 3.1.28(ii)] for later purposes.

Lemma 1.3. Assume that, for every τ > 0, there exists nτ ∈ N such that A is a subgenerator of a local
nτ -times integrated C-semigroup (Snτ (t))t∈[0,τ). Then the solution space Z(A) is the space which consists
exactly of those elements x ∈ E such that, for every τ > 0, Snτ (t)x ∈ R(C) and that the mapping t 7→
C−1Snτ (t)x, t ∈ [0, τ) is nτ -times continuously differentiable; if this is the case, then we have G(δt)x =
(dnτ /dtnτ )C−1Snτ (t)x, t ∈ [0, τ).

For any x ∈ Z(A), the function u(·, x) ∈ C([0,∞) : E) satisfying the above requirements is said to be a
mild solution of the abstract Cauchy problem

(ACP )1 :

 u ∈ C([0,∞) : [D(A)]) ∩ C1([0,∞) : E),
u′(t) = Au(t), t ≥ 0,
u(0) = x.

Let ζ ∈ D[−2,−1] be a fixed test function satisfying
∫∞
−∞ ζ(t) dt = 1. Then, with ζ chosen in this way, we

define I(φ) (φ ∈ D) as follows

I(φ)(·) :=
·∫

−∞

[
φ(t)− ζ(t)

∫ ∞

−∞
φ(u) du

]
dt.
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Then I(φ) ∈ D, I(φ′) = φ, d
dtI(φ)(t) = φ(t) − ζ(t)

∫∞
−∞ φ(u) du, t ∈ R and, for every G ∈ D′(L(E)), the

primitive G−1 of G is defined by setting G−1(φ) := −G(I(φ)), φ ∈ D. It is clear that G−1 ∈ D′(L(E)),
(G−1)′ = G, i.e., −G−1(φ′) = G(I(φ′)) = G(φ), φ ∈ D and that supp(G) ⊆ [0,∞) implies supp(G−1) ⊆
[0,∞).

Now we recall definition of a C-distribution cosine function (cf. [11]-[12] for more details):

Definition 1.4. An element G ∈ D′
0(L(E)) is called a pre−(C −DCF ) iff G(φ)C = CG(φ), φ ∈ D and

(C −DCF1) : G
−1(φ ∗0 ψ)C = G−1(φ)G(ψ) +G(φ)G−1(ψ), φ, ψ ∈ D;

if, additionally,

(C −DCF2) : x = y = 0 iff G(φ)x+G−1(φ)y = 0, φ ∈ D0,

then G is called a C-distribution cosine function, in short (C−DCF ). A pre−(C−DCF ) G is called dense
if the set R(G) :=

∪
φ∈D0

R(G(φ)) is dense in E.

Notice that (DCF2) implies
∩

φ∈D0
N(G(φ)) = {0} and

∩
φ∈D0

N(G−1(φ)) = {0}, and that the assump-
tion G ∈ D′

0(L(E)) implies G(φ) = 0, φ ∈ D(−∞,0].
The (integral) generator A of G is defined by

A :=
{
(x, y) ∈ E × E : G−1

(
φ′′)x = G−1(φ)y for all φ ∈ D0

}
.

It is well known that (G(ψ)x, G(ψ′′)x+ψ′(0)Cx) ∈ A, ψ ∈ D, x ∈ E and (G−1(ψ)x,−G(ψ′)x−ψ(0)Cx) ∈
A, ψ ∈ D, x ∈ E.

Let us remind ourselves of the following fundamental results ([11]):

Lemma 1.5. (i) Let G ∈ D′
0(L(E)) and G(φ)C = CG(φ), φ ∈ D. Then G is a (C-DCF) in E generated

by A iff G is a (C-DS) in E ⊕ E generated by A, where A ≡
(

0 I
A 0

)
, C ≡

(
C 0
0 C

)
and

G ≡
(

G G−1

G′ − δ ⊗ C G

)
.

(ii) A closed linear operator A is the generator of a (C-DCF) G iff for every τ > 0 there exist an integer
nτ ∈ N and a local nτ -times integrated C-cosine function (Cnτ (t))t∈[0,τ) with the integral generator A.
If this is the case, then the following equality holds:

G(φ)x = (−1)nτ

τ∫
0

φ(nτ )(t)Cnτ (t)x dt, x ∈ E, φ ∈ D(−∞,τ).

A (C−DCF ) G is said to be an exponential C-distribution cosine function, (E−CDCF ) in short, iff G is
an (E−CDS) in E⊕E. The above is equivalent to say that there exists ω ∈ R such that e−ωtG−1 ∈ S ′(L(E)).
A (C-DS) G is said to be an exponential C-distribution semigroup, (E-CDS) in short, iff there exists ω ∈ R
such that e−ωtG ∈ S ′(L(E)). It is well known that A is the generator of an (E−CDCF ) in E (an (E-CDS)
in E) iff there exists n ∈ N such that A is the integral generator of an exponentially bounded n-times
integrated C-cosine function in E (an exponentially bounded n-times integrated C-semigroup in E).

A function u(·;x, y) is said to be a mild solution of the abstract Cauchy problem

(ACP )2 :

 u ∈ C([0,∞) : [D(A)]) ∩ C2([0,∞) : E),
u′′(t) = Au(t), t ≥ 0,
u(0) = x, u′(0) = y

iff the mapping the mapping t 7→ u(t;x, y), t ≥ 0 is continuous,
∫ t

0
(t − s)u(s;x, y)ds ∈ D(A) and A

∫ t

0
(t −

s)u(s;x, y)ds = u(t;x, y)− x− ty, t ≥ 0; in the sequel, we primarily consider the mild solutions of (ACP )2
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with y = 0. Denote by Z2(A) the set which consists of all x ∈ E for which there exists such a solution. Let
π1 : E × E → E and π2 : E × E → E be the projections and let G be a (C −DCF ) generated by A. Then
G is a (C-DS) generated by A and we define G(δt)x := π2(G(δt)

(
0
x

)
), t ≥ 0, x ∈ Z2(A). Let us recall that,

for every x ∈ Z2(A), one has G(δt)(Z2(A)) ⊆ Z2(A), t ≥ 0, 2G(δs)G(δt)x = G(δt+s)x+G(δ|t−s|)x, t, s ≥ 0

and G(φ)x =
∫∞
0
φ(t)CG(δt)x dt, φ ∈ D0.

Lemma 1.6. ([11]) Assume that, for every τ > 0, there exists nτ ∈ N such that A is a subgenerator of a local
nτ -times integrated C-cosine function (Cnτ (t))t∈[0,τ). Then the solution space Z2(A) consists exactly of those
vectors x ∈ E such that, for every τ > 0, Cnτ (t)x ∈ R(C) and that the mapping t 7→ C−1Cnτ (t)x, t ∈ [0, τ)
is nτ -times continuously differentiable. If x ∈ Z2(A) and t ∈ [0, τ), then G(δt)x = (dnτ /dtnτ )C−1Cnτ (t)x.

Finally, we give a brief overview of the basic properties of almost periodic functions with values in Banach
spaces. Let I = R or I = [0,∞), and let f : I → E. Given ϵ > 0, we call τ ∈ I an ϵ-period for f(·) iff

∥f(t+ τ)− f(t)∥ ≤ ϵ, t ∈ I.

The set constituted of all ϵ-periods for f(·) is denoted by ϑ(f, ϵ). It is said that f(·) is almost periodic, a.p.
for short, iff for each ϵ > 0 the set ϑ(f, ϵ) is relatively dense in I, which means that there exists l > 0 such
that any subinterval of I of length l meets ϑ(f, ϵ). We call f(·) weakly almost periodic, w.a.p. for short, iff
for each x∗ ∈ E∗ the function x∗(f(·)) is almost periodic.

By AP (I : E) we denote the vector space consisting of all almost periodic functions from the interval I
into E. Equipped with the sup-norm, AP (I : E) becomes a Banach space.

The concept of almost periodicity was first studied by H. Bohr in 1925 and later generalized by many
other mathematicians. Almost periodic Banach space valued functions has been investigated in [15] and
[19]; we can also recommend reading the monographs [7]-[8] by G. M. N’Guérékata and [6] by T. Diagana.

The most intriguing properties of almost periodic vector-valued functions are collected in the following
theorem, stated here for the sake of clarity and better understanding of material which is to follow.

Theorem 1.7. Let f ∈ AP (R : E). Then the following holds:

(i) f(t) is bounded, i.e., supt∈R ∥f(t)∥ <∞;

(ii) if g ∈ AP (R : E), h ∈ AP (R : C), then f + g and hf ∈ AP (R : E);

(iii) Pr(f) := limt→∞
1
t

∫ t

0
e−irsf(s) ds exists for all r ∈ R (Bohr’s transform of f(·)) and Pr(f) :=

limt→∞
1
t

∫ t+α

α
e−irsf(s) ds for all α, r ∈ R;

(iv) if Pr(f) = 0 for all r ∈ R, then f(t) = 0 for all t ∈ R;

(v) σ(f) := {r ∈ R : Pr(f) ̸= 0} is at most countable;

(vi) if c0 * E, which means that E does not contain an isomorphic copy of c0, and g(t) =
∫ t

0
f(s) ds (t ∈ R)

is bounded, then g ∈ AP (R : E);

(vii) if (gn)n∈N is a sequence in AP (R : E) and (gn)n∈N converges uniformly to g, then g ∈ AP (R : E);

(viii) if f ′ ∈ BUC(R : E), then f ′ ∈ AP (R : E).

For the sequel, we need some preliminaries from the pioneering paper [2] by H. Bart and S. Goldberg.
The translation semigroup (W (t))t≥0 on AP ([0,∞) : E), given by [W (t)f ](s) := f(t + s), t ≥ 0, s ≥ 0,
f ∈ AP ([0,∞) : E) is consisted solely of surjective isometries W (t) (t ≥ 0) and can be extended to a
C0-group (W (t))t∈R of isometries on AP ([0,∞) : E), where W (−t) := W (t)−1 for t > 0. Furthermore, the
mapping F : AP ([0,∞) : E) → AP (R : E), defined by

[Ff ](t) := [W (t)f ](0), t ∈ R, f ∈ AP ([0,∞) : E),
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is a linear surjective isometry and Ff is the unique continuous almost periodic extension of a function
f from AP ([0,∞) : E) to the whole real line. We have that [F (Bf)] = B(Ff) for all B ∈ L(E) and
f ∈ AP ([0,∞) : E).

We refer the reader to the monograph [9] by Y. Hino, T. Naito, N. V. Minh and J. S. Shin for further
information concerning almost periodic solutions of abstract differential equations in Banach spaces.

2. Formulation and proof of main results

We start this section by introducing the following definition.

Definition 2.1. Let G be a (C −DCF ) generated by A, resp. let G be a (C-DS) generated by A. Suppose
that Ẽ is a linear subspace of Z2(A), resp. x ∈ Z(A). Then it is said that G is Ẽ-(weakly) almost periodic
iff for each x ∈ Ẽ the mapping t 7→ G(δt)x, t ≥ 0 is (weakly) almost periodic.

Remark 2.2. (i) It is clear that the above notions can be introduced for arbitrary operator family (F (t))t≥0

consisted of possibly non-linear and possibly non-continuous single valued operators.

(ii) Suppose that G is a (C − DCF ) generated by A, resp. G is a (C-DS) generated by A. Let Ẽ be a
linear subspace of Z2(A), resp. x ∈ Z(A), such that G, resp. G, is Ẽ-(weakly) almost periodic. Let
G1 be a (C1 −DCF ) generated by A, resp. let G1 be a (C1-DS) generated by A. Then G1, resp. G1,
is Ẽ-(weakly) almost periodic.

Let A be a closed linear operator. Designate by D (H) the set consisting of all eigenvectors of operator A
which correspond to purely imaginary eigenvalues of operator A (to non-positive real eigenvalues of operator
A); we assume henceforth that the setD0 (H0) is consisted of all eigenvectors of operator A which correspond
to purely imaginary non-zero eigenvalues of operator A (to negative real eigenvalues of operator A).

Motivated by our considerations from the point 10. of [13], we state and prove the following result.

Proposition 2.3. (i) Suppose that G is a (C-DS) generated by A. Then Ẽ := span(D) ⊆ Z(A) and G
is Ẽ-almost periodic. Furthermore, the mapping t 7→

∫ t

0
G(δs)x ds, t ≥ 0 is almost periodic for all

x ∈ span(D0).

(ii) Suppose that G is a (C − DCF ) generated by A. Then Ẽ := span(H) ⊆ Z2(A) and G is Ẽ-almost

periodic. Furthermore, the mappings t 7→
∫ t

0
G(δs)x ds, t ≥ 0 and t 7→

∫ t

0
(t − s)G(δs)x ds, t ≥ 0 are

almost periodic for all x ∈ span(H0).

Proof. We will prove only (i) and outline some basic facts needed for the proof of (ii). By Lemma 1.2,
we know that, for every τ > 0, there exist an integer n = nτ ∈ N and a local n-times integrated C-
semigroup (Sn(t))t∈[0,τ) with the integral generator A. Suppose that r ∈ R and irx = Ax. Then Sn(t)x −
gn+1(t)Cx = ir

∫ t

0
Sn(s)x ds, t ∈ [0, τ), which simply implies that the mapping t 7→ Sn(t)x, t ∈ [0, τ) is

infinitely differentiable with all derivatives at zero of order less than or equal to n− 1 being zeroes and that
(dn/dtn)Sn(t)x = eirtCx, t ∈ [0, τ). Hence, Sn(t)x = (gn ∗0 eir·)Cx, t ∈ [0, τ), G(δt)x = eirtx, t ∈ [0, τ) and
the last equality clearly continues to hold for all non-negative reals t. Now the final conclusions follow from
Lemma 1.3. The proof of part (ii) is quite similar, and can be deduced by using Lemma 1.5(ii), Lemma 1.6
and the equality G(δt)x = cos(rt)x, t ≥ 0, provided that −r2x = Ax for some r ∈ R.

With the help of Proposition 2.3, we can simply construct a great number of non-exponential C-
distribution semigroups (C-distribution cosine functions) that are Ẽ-almost periodic, with the subspace
Ẽ being dense in E (see e.g. the extension of Desch-Schappacher-Webb criterion for chaos of strongly con-
tinuous semigroups [10, Theorem 3.1.36], [11, Theorem 2.2.10] and [10, Example 3.1.41]). As mentioned
in the introductory part, our recent research studies of hypercyclic and topologically mixing properties
of strongly continuous semigroups and cosine functions (see [11, Chapter III] for a comprehensive survey
of results) enable one to construct many other examples of subspace almost periodic strongly continuous
semigroups and cosine functions that are not almost periodic in the usual sense ([13]).
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We want also to mention that Proposition 2.3 continues to hold for C-distribution semigroups and
C-distribution cosine functions in locally convex spaces, which follows from the fact that the equalities
G(δt)x = eirtx, t ≥ 0 and G(δt)x = cos(rt)x, t ≥ 0 used above can be proved without assuming that
the vector-valued distributions G and G are of finite order (cf. [12] for the notion and [3, Lemma 2.8] for
semigroup case; for cosine operator case, combine the above result with Lemma 1.5(i), and [11, Lemma
3.2.33] with λ = ±ir).

Suppose that G is a (C-DS) generated by A, and G is Ẽ-almost periodic. Define T (t)x := Tx(t) := G(δt)x,
t ≥ 0, x ∈ Z(A) and S(t)x := [F (Tx(·))](t), t ∈ R, x ∈ Ẽ. Since F is a linear surjective isometry between
the spaces AP ([0,∞) : E) and AP (R : E), we have that

∥S(t)x∥ ≤ sup
s∈R

∥S(s)x∥ = sup
s≥0

∥S(s)x∥ = sup
s≥0

∥T (s)x∥, x ∈ Ẽ, t < 0,

and therefore,

sup
t∈R

∥S(t)x∥ = sup
t≥0

∥S(t)x∥, x ∈ Ẽ.

Furthermore, it can be easily seen that S(·) commutes with C.

Proposition 2.4. We have the following:

(i) T (t)T (s)x = T (t+ s)x for all t ≥ 0, s ≥ 0 and x ∈ Z(A).

(ii) Suppose that t ≥ 0, s ≤ 0, x ∈ Ẽ and G(δt)x ∈ Ẽ. Then S(s)S(t)x = S(t+ s)x.

(iii) Suppose that t ≥ 0, s ≤ 0 and x ∈ Ẽ. Then S(s)x ∈ Z(A) and T (t)S(s)x = S(t+ s)x.

(iv) Suppose that t ≥ 0, s ≤ 0, x ∈ Ẽ, G(δr)x ∈ Ẽ for all r ≥ 0 and Ẽ is closed. Then S(s)x ∈ Ẽ and
S(t)S(s)x = S(t+ s)x.

(v) Suppose that t ≤ 0, s ≤ 0, x ∈ Ẽ, G(δr)x ∈ Ẽ for all r ≥ 0 and Ẽ is closed. Then S(t)S(s)x = S(t+s)x.

Proof. The part (i) follows immediately from A1., while the proof of (ii) can be deduced by using definition
and properties of extension mapping F, A1. and the inclusion G(δt)x ∈ Ẽ :

S(s)S(t)x = S(s)G(δt)x

=
[
F (TG(δt)x(·))

]
(s) =

[
W (s)TG(δt)x(·)

]
(0) =

[
W (s)W (t)Tx(·)

]
(0)

=
[
W (t+ s)Tx(·)

]
(0) =

[
F (Tx(·))

]
(t+ s) = S(t+ s)x.

For (iii), we need only to prove that

A

∫ t

0

u(r;S(s)x) dr = u(t;S(s)x)− S(s)x,

where u(r;S(s)x) := S(r + s)x, r ≥ 0. It is checked at once that the mapping r 7→ u(r;S(s)x), r ≥ 0 is
continuous and u(0;S(s)x) = S(s)x. Let us suppose first that t ≥ −s. By definition of integral generator A,
we need to prove that:

G
(
−φ′) ∫ t

0

u(r;S(s)x) dr = G(φ)[u(t;S(s)x)− S(s)x], φ ∈ D0. (1)
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But, we have

G
(
−φ′) ∫ t

0

u(r;S(s)x) dr

= G
(
−φ′)(∫ −s

0

+

∫ t

−s

)
u(r;S(s)x) dr

= G
(
−φ′) ∫ −s

0

[
F (Tx(·))

]
(r + s) dr + G

(
−φ′) ∫ t

−s

G(δr+s)x dr

= G
(
−φ′) ∫ 0

s

[
F (Tx(·))

]
(r) dr + G

(
−φ′) ∫ t+s

0

G(δr)x dr

= G
(
−φ′) ∫ 0

s

S(r)x dr + G(φ)[u(t+ s;x)− x], φ ∈ D0,

where the last equality follows from definitions of integral generator A and mild solution u(·;x). Hence, (1)
is equivalent with

G(φ)S(s)x− G(φ)x = G
(
φ′) ∫ 0

s

S(r)x dr, φ ∈ D0, (2)

because u(t;S(s)x) = G(δt+s)x = u(t+s;x). For this, fix a test function φ ∈ D0 and put f(v) := G(φ)S(v)x,
v ≤ 0. By the Newton-Leibniz formula, it suffices to show that

f ′(v) = G
(
−φ′)S(v)x, v ≤ 0. (3)

Observe first that the property A1.-A2. along with definition of mild solution u(·;x) imply:

G(φ)Tx(·+ σ)− G(φ)Tx(·) =
∫ t

0

G
(
−φ′)Tx(·+ σ) dσ, σ ≥ 0,

i.e.,

W (σ)[G(φ)Tx(·)]− G(φ)Tx(·) =
∫ σ

0

W (s′)
[
G
(
−φ′)Tx(·)] ds′, σ ≥ 0.

Because of that, the pair (G(φ)Tx(·),G(−φ′)Tx(·)) belongs to the graph of the integral generator of (W (t))t≥0

on AP ([0,∞) : E), which is well known that equals to the infinitesimal generator of (W (t))t≥0 ((W (t))t∈R).
Hence,

lim
h→0

W (h)− I

h
G(φ)Tx(·) = G

(
−φ′)Tx(·), (4)

for the topology of AP ([0,∞) : E). Using (4), the group property of (W (t))t∈R, the fact that F is a linear
surjective isometry, and elementary definitions, we get that

f ′(v) = lim
h→0

[
W (v)

W (h)− I

h
G(φ)Tx(·)

]
(0)

=
[
W (v)G

(
−φ′)Tx(·)](0) = [F(G(−φ′)Tx(·))](v)

= G
(
−φ′)[F (Tx(·))](v) = G

(
−φ′)S(v)x, v ≤ 0,

completing the proof of (3) and (iii) in the case that t ≥ −s. The case t ≤ −s is much easier and follows
by applying (2) and elementary substitutions in integrals. In order to prove (iv), it suffices to show, by
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definition of an E-valued almost periodic function, that for each n ∈ N there exists a positive number ln
such that any interval I of length ln contains a number τn such that ∥S(v+τn)x−S(v)x∥ ≤ 1/n, v ∈ R and,
in particular, ∥S(s+ τn)x− S(s)x∥ ≤ 1/n. Taking I ⊆ [−s+ 1,∞) we obtain that S(s)x ∈ {S(r)x : r ≥ 0}.
Since S(r)x = G(δr)x ∈ Ẽ for all r ≥ 0 and Ẽ is closed, (iv) immediately follows from the above inclusion.
To prove (v), observe that (iv) implies S(v)x ∈ Ẽ for v ≤ 0. Plugging y = S(s)x, the equality in (v) is
equivalent with S(t)y = S(t+ s)S(−s)y, which follows from an application of (ii), where we use the equality
T (−s)S(s)y = y, which is true due to (iii).

Remark 2.5. The parts (iv) and (v) hold in the case that Ẽ = Z(A), no matter whether this subspace is
closed or not in E. In general case, it is not clear whether the parts (iv) and (v) hold provided that Ẽ ̸= Z(A)
and Ẽ is not closed in E.

Remark 2.6. Suppose that Ẽ = Z(A), and Z(A) is dense in E. Due to Lemma 1.2, for every τ > 0,
there exist an integer nτ ∈ N and a local nτ -times integrated C-semigroup (S+

nτ
(t))t∈[0,τ) with the integral

generator A. Define

S−
nτ
(t)x :=

∫ t

0

(t− s)nτ−1

(nτ − 1)!
CS(−s)x ds, t ∈ [0, τ), x ∈ Z(A).

Then it is not clear how one can prove that there exists a finite constant Mτ such that ∥S−
nτ
(t)x∥ ≤Mτ∥x∥,

t ∈ [0, τ), x ∈ Z(A). Because of that, we are not able to extend S−
nτ
(t) to a bounded linear operator S−

nτ
(t)

acting on E, despite of our assumption made on density of Z(A) in E. It is clear that, owing to Proposition
2.4, we can expect from (S−

nτ
(t))t∈[0,τ) to be a local nτ -times integrated C-semigroup generated by −A. Of

course, the validity of the last statement for all numbers τ > 0 would imply by Lemma 1.3 that Z(A) ⊆ Z(−A)
and that −A generates a Ẽ-almost periodic C-distribution semigroup in E.

In connection with Remark 2.6, we have the following comments to make:

1. Suppose that A generates a global C-regularized semigroup (Q+(t))t≥0. Denote by G+ the induced
C-distribution semigroup generated by A. Then it can be easily seen that (Q+(t))t≥0 is almost periodic
in the sense of [13, Definition 1.1] (i.e., for any element x ∈ E the mapping t 7→ Q+(t)x, t ≥ 0 is almost
periodic) iff G+ is R(C)-almost periodic. If this is the case, [13, Theorem 3.2] implies that the operator
−A generates an almost periodic C-regularized semigroup (Q−(t))t≥0, and therefore, −A generates a
C-distribution semigroup G− that is R(C)-almost periodic.

2. The situation is quite similar if we consider integrated C-semigroups. To explain this, suppose that
A generates an exponentially bounded n-times integrated C-semigroup (Qn,+(t))t≥0 for some n ∈ N.
Then [10, Proposition 2.3.13] shows that there exists a positive real number λ such that A generates
an exponentially bounded ((λ−A)−nC)-regularized semigroup (Rn,+(t))t≥0, so that R((λ−A)−nC) ⊆
Z(A). Denote by G+ the induced exponential C-distribution semigroup generated by A, and suppose
that G+ is R((λ − A)−nC)-almost periodic. Using the analysis from the above paragraph, the afore-
mentioned proposition and Remark 2.2(ii), it is very simple to prove that −A generates an exponential
R((λ−A)−nC)-almost periodic C-distribution semigroup. The same conclusion can be formulated for
weak almost periodicity.

3. Here we would like to propose an interesting question with regard to almost periodicity of C-distribution
cosine functions. Suppose that G is a (C−DCF ) generated by A, and G is Ẽ-almost periodic. Define
C(t)x := Cx(t) := G(δt)x, t ≥ 0, x ∈ Z2(A) and C(t)x := [F (Cx(·))](t), t ∈ R, x ∈ Ẽ. As in the
semigroup case, we have that C(·) commutes with C as well as that ∥C(t)x∥ ≤ sups≥0 ∥C(s)x∥, x ∈
Ẽ, t < 0, and supt∈R ∥C(t)x∥ = supt≥0 ∥C(t)x∥, x ∈ Ẽ. In the present situation, we do not know to

tell what conditions ensure the validity of expected equality C(−t)x = C(t)x, for t ≥ 0 and x ∈ Ẽ.

We continue by stating the following theorem.
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Theorem 2.7. (i) Suppose that G is a (C-DS) generated by A, and G is Ẽ-almost periodic for some linear
subspace Ẽ of Z(A). Put

Prx := lim
t→∞

1

t

∫ t

0

e−irsG
(
δs
)
x ds, r ∈ R, x ∈ Ẽ. (5)

Then APrx = irPrx, r ∈ R, x ∈ Ẽ. Furthermore, if Ẽ is dense in E, then the set D consisting of all
eigenvectors of operator A which correspond to purely imaginary eigenvalues of operator A is total in
E (i.e., the linear span of D is dense in E).

(ii) Suppose that G is a (C −DCF ) generated by A, and G is Ẽ-almost periodic for some linear subspace
Ẽ of Z2(A). Define, for every r ∈ R and x ∈ Ẽ, the element Prx through (5). Then APrx = −r2Prx,
r ∈ R, x ∈ Ẽ. Furthermore, if Ẽ is dense in E, then the set H consisted of all eigenvectors of A which
correspond to the real non-positive eigenvalues of A is total in E.

Proof. Let x ∈ Ẽ and r ∈ R be fixed. We will only prove that APrx = irPrx in semigroup case and that
APrx = −r2Prx, in cosine operator function case; then the remaining part of proof of (i)-(ii) follows by
copying the final part of proof of [20, Theorem 2.1]. Consider first the semigroup case. Then we know that

A

∫ t

0

u(s;x) ds = u(t;x)− x, t ≥ 0, x ∈ Ẽ,

i.e., that

G
(
−φ′) ∫ t

0

G
(
δs
)
x ds = G(φ)

[
G
(
δt
)
x− x

]
, t ≥ 0, x ∈ Ẽ, φ ∈ D0.

Applying the partial integration, we get from the above that

G
(
−φ′)Prx

= G
(
−φ′) lim

t→∞

1

t

[
e−irt

∫ t

0

G
(
δs
)
x ds+ ir

∫ t

0

e−irs

∫ s

0

G
(
δv
)
x dv ds

]

= lim
t→∞

1

t

[
e−irtG(φ)

{
G
(
δt
)
x− x

}
+ ir

∫ t

0

e−irsG(φ)
{
G
(
δs
)
x− x

}
ds

]
,

which can be simply shown to equals ir
∫ t

0
e−irsG(φ)G(δs)x ds by the boundedness of function G

(
δ·
)
x. This

implies by definition of integral generator A that APrx = irPrx, as claimed. Consider now the cosine
operator function case. Then we have that [11]:

A

∫ t

0

(t− s)G
(
δs
)
x ds = G

(
δt
)
x− x, t ≥ 0, x ∈ Ẽ,

i.e., that

G
(
φ′) ∫ t

0

(t− s)G
(
δs
)
x ds = G(I(φ))

[
G
(
δt
)
x− x

]
, t ≥ 0, x ∈ Ẽ, φ ∈ D0. (6)

Fix an element x ∈ Ẽ and a test function φ ∈ D0, and define after that the function H(t) := G(φ′)
∫ t

0
(t −

s)G
(
δs
)
x ds, t ≥ 0. Then (6) in combination with the almost periodicity of function G

(
δ·
)
x implies that H(t)

is two times continuously differentiable, with H(t) and H ′′(t) being bounded for t ≥ 0. Then the Landau
inequality∣∣∣⟨x∗,H ′(t)

⟩∣∣∣2 ≤ 4
∣∣∣⟨x∗,H(t)

⟩∣∣∣ · ∣∣∣⟨x∗,H ′′(t)
⟩∣∣∣, t ≥ 0, x∗ ∈ E∗,



M. Kostić, S. Pilipović, D. Velinov / Appl. Math. Comp. Sci. 2 (1) (2017), 1–12 11

shows that the function t 7→ H ′(t), t ≥ 0 is weakly bounded and therefore bounded. Hence, there exists a
finite constant M > 0 such that

∥∥H ′(t)
∥∥ =

∥∥∥∥∥G(φ′) ∫ t

0

G
(
δs
)
x ds

∥∥∥∥∥ ≤M, t ≥ 0. (7)

On the other hand, applying the partial integration twice, we get that:∫ t

0

e−irsG
(
δs
)
x ds = e−irt

∫ t

0

G
(
δs
)
x ds+ ire−irt

∫ t

0

(t− s)G
(
δs
)
x ds

− r2
∫ t

0

e−irs

∫ s

0

(s− v)G
(
δv
)
x dv ds. (8)

Using (6) and (8), we obtain that:

G
(
φ′)Prx = lim

t→∞
e−irt 1

t

[
G
(
φ′) ∫ t

0

G
(
δs
)
x ds

]

+G(I(φ)) lim
t→∞

ire−irt 1

t

[
G
(
δt
)
x− x

]
− r2 lim

t→∞

1

t

∫ t

0

e−irsG(I(φ))
[
G
(
δs
)
x− x

]
ds.

This equality in combination with (7) and the boundedness of function G
(
δ·
)
x shows that G(φ′)Prx =

−r2G(I(φ))Prx. Since φ ∈ D0 was arbitrary, we get that APrx = −r2Prx, finishing the proof.

Concerning the subspace weak almost periodicity of C-distribution semigroups, we have the following
proposition.

Proposition 2.8. Suppose that G is a (C-DS) generated by A, and G is Ẽ-weakly almost periodic for some
linear subspace Ẽ of Z(A). If Ẽ is dense in E and E is weakly sequentially complete, then the set D defined
above is total in E and G is span(D)-almost periodic.

Proof. Applying the partial integration, we easily get that

(ir −A)
1

t

∫ t

0

e−irsG
(
δs
)
x ds =

1

t

[
x− e−irtG

(
δt
)
x
]
, t > 0, r ∈ R, x ∈ Ẽ.

Then we can proceed as in the proofs of [2, Theorem 3] and [20, Theorem 2.1] in order to see that the set
D is total in E. Hence, the statement of proposition is a simple consequence of Proposition 2.3(i).

Concerning the subspace weak almost periodicity of C-distribution cosine functions, we would like to
propose the following problem (cf. also [18, Theorem 1.5, pp. 246-247]): Suppose that G is a (C −DCF )
generated by A, and G is Ẽ-almost periodic for some linear subspace Ẽ of Z2(A). If Ẽ is dense in E and
E is weakly sequentially complete, is it true that the set H is total in E and that G is span(H)-almost
periodic?

In [13], we have also investigated almost periodic (degenerate) strongly continuous semigroups, cosine
operator functions and the associated sine operator functions acting on Banach spaces which do not contain
an isomorphic copy of the space c0 (cf. Theorem 1.7(vi)). The interested reader may try to formulate
an analogue of Theorem 2.7(ii) in the case that G is a (C − DCF ) generated by A and the mapping

t 7→
∫ t

0
G(δs)x, t ≥ 0 is Ẽ-almost periodic for all elements x belonging to some linear subspace Ẽ of Z2(A).

We close the paper with the observation that the assertions of Proposition 2.3, Proposition 2.4, Theorem
2.7 and Proposition 2.8 hold for C-ultradistribution semigroups of ∗-class and C-ultradistribution cosine
functions of ∗-class in Banach spaces (cf. [12] for the notion).
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[13] M. Kostić, Almost periodic properties of abstract Volterra integro-differential equations, preprint.
[14] P. C. Kunstmann, Distribution semigroups and abstract Cauchy problems, Trans. Amer. Math. Soc. 351 (1999), 837–856.
[15] M. Levitan, V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982.
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